Skip to main content
. 2017 Jun 21;7(2):30. doi: 10.3390/metabo7020030

Table 1.

Misclassification rate (%) observed by technique and by significance filtering status (pre- vs. post-) throughout the 1000 baseline simulation studies and 1000 realistic simulation studies. The lowest median misclassification rate observed over each scenario type is shown in bold face.

Method Baseline Pre- Baseline Post- Realistic Pre- Realistic Post-
Mean ± SD Median ± IQR Mean ± SD Median ± IQR Mean ± SD Median ± IQR Mean ± SD Median ± IQR
PLS-DA 15.0 ± 15.5 10.0 ± 28.3 13.1 ± 15.6 5.0 ± 25.0 32.2 ± 17.4 30.0 ± 26.7 25.0 ± 15.7 23.3 ± 24.6
sPLS-DA 13.1 ± 15.3 5.0 ± 25.0 12.1 ± 15.1 3.3 ± 23.3 19.7 ± 15.2 15.0 ± 23.3 22.0 ± 15.0 20.0 ± 21.7
SVM 23.2 ± 24.6 13.3 ± 41.7 10.4 ± 14.3 1.7 ± 19.6 22.8 ± 18.3 16.7 ± 26.7 13.3 ± 12.5 8.3 ± 13.3
NNet 22.0 ± 15.6 20.0 ± 25.0 15.9 ± 13.8 11.7 ± 21.7 29.9 ± 15.2 28.3 ± 21.7 23.3 ± 14.3 21.7 ± 21.7
RF 15.0 ± 14.8 10.0 ± 23.3 13.5 ± 14.4 7.5 ± 21.7 17.5 ± 16.0 11.7 ± 21.7 15.5 ± 15.0 10.0 ± 18.3
k-NN 20.2 ± 17.3 20.0 ± 28.3 21.9 ± 16.4 20.0 ± 25.0 41.3 ± 18.8 41.7 ± 26.7 41.6 ± 17.7 41.7 ± 26.7
NB 14.0 ± 15.3 8.3 ± 25.0 11.1 ± 14.6 1.8 ± 21.7 32.1 ± 18.2 30.0 ± 28.3 19.1 ± 14.8 15.0 ± 21.7

PLS-DA: Partial Least Squares-Discriminant Analysis; sPLS-DA: Sparse PLS-DA; SVM: Support Vector Machines; NNet: Artificial Neural Network; RF: Random Forest; k-NN: k-Nearest Neighbors; NB: Naïve Bayes