Skip to main content
. 2017 Jun 21;7(2):30. doi: 10.3390/metabo7020030

Table 4.

Simulation study parameters.

Technique Parameter Type Value/Search Grid
PLS-DA Number of components Optimized [1, 2, ..., 15]
Sparse PLS-DA Number of components Optimized [1, 2, ..., 15]
Regularization (λ) Optimized [0.1, ..., 0.9] by 0.1
Random Forest Ensemble size Fixed 1000
Random subspace size Optimized [5, ..., p] of length 25
SVM Kernel Fixed Gaussian
Bandwidth (γ) Optimized 10^[−5, ..., −1] of length 1000 ;
10^[−2, ..., 0] of length 1000
Neural Network Number of hidden layers Optimized 1 or 2
Number of hidden nodes Optimized [15, ..., 100] by 5
Activation function Fixed Logistic
Learning function Fixed Resilient Backpropagation
Error function Fixed Cross-entropy Loss
k-NN Number of neighbors Optimized [1, 2, ..., 20]

Prior-to significance filtering. Post-significance filtering.