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Abstract. Compressed sensing (CS) has been utilized for acceleration of data acquisition in magnetic reso-
nance imaging (MRI). MR images can then be reconstructed with an undersampling rate significantly lower
than that required by the Nyquist sampling criterion. However, the CS usually produces images with artifacts,
especially at high reduction rates. We propose a CS MRI method called shearlet sparsity and nonlocal total
variation (SS-NLTV) that exploits SS-NLTV regularization. The shearlet transform is an optimal sparsifying trans-
form with excellent directional sensitivity compared with that by wavelet transform. The NLTV, on the other hand,
extends the TV regularizer to a nonlocal variant that can preserve both textures and structures and produce
sharper images. We have explored an approach of combining alternating direction method of multipliers
(ADMM), splitting variables technique, and adaptive weighting to solve the formulated optimization problem. The
proposed SS-NLTV method is evaluated experimentally and compared with the previously reported high-per-
formance methods. Results demonstrate a significant improvement of compressed MR image reconstruction on
four medical MRI datasets. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.2.026003]
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1 Introduction
Compressed sensing (CS)1–3 is a way of speeding the signal
acquisition by providing means for smarter sampling. Since
2006, compressed sensing or compressive sampling has been
receiving considerable attention in theory and applications,
and, among them, magnetic resonance imaging (MRI) is one
whose implied sparsity suggested the use of sparse sampling.
Compared with the standard sampling theory, MR images are
speed-limited physically and constrained by physiological
nature.4 Acceleration of MRI while preserving image quality has
a major impact in diagnostics. Such acceleration may be pro-
vided by exploiting MRI sparsity by means of undersampling
and efficient image reconstruction, which are the main goals of
CS.1,5

CS allows the recovery of magnetic resonance images from
vastly undersampled k-space data without being constrained by
Shannon/Nyquist requirements.2 The process includes encod-
ing, sensing, and decoding processes. Most of the compressed
MRI approaches are based on the linear model Ax ¼ b, A ¼ SF,
where S is a selection or a sampling matrix, F is a two-dimen-
sional (2-D) discrete Fourier matrix, and b is the observed
k-space data, which are significantly undersampled, that is beyond
the limits of the fundamental sampling theorem. Given the sparsity
assumption about x̂ which is an estimate of x, where x is the
image, one possible solution would be fminxjxj0∶Ax ¼ bg, but,
since solving lo-minimization problem is NP-hard,6 a reasonable
alternative would be fminxjxj1∶Ax ¼ bg. j:j0 denotes l0-norm.
Thus, the objective is to minimize absolute differences (variation),
and it is useful to penalize by finite differences. For this reason, TV
is used for checking the sparsity by forming finite differences and
coarse denoising.

The review of the CS MRI methods shows how to solve the
above problem with different regularization and penalty terms.
For example, He et al.7 proposed a model for compressed MRI
using two nonsmooth regularization terms to attain accuracies
superior to the total variation (TV) regularization model.8 Chang
et al.9 proposed a partial differential equation-based method to
reconstruct MR images. Lysaker et al.10 improved the quality of
reconstructed images by introducing a fourth-order regulariza-
tion term yielding the MRI model too complex to solve for high-
resolution images. Lustig et al.4 reviewed different compressed
MRI steps and developed a model using sparsity of the wavelets
and exploiting l1-minimization to reconstruct the MR image.
Jung et al.,11 Ye et al.,12 Candes et al.,13 and Chartrand and
Yin,14 explored lp-quasinorm minimization model 0 < p < 1

using FOCUSS15 to reconstruct MR images, but, because of
nonconvexity of the objective function, a global minima was
not guaranteed. Trzasko et al.16 proposed a homotopic noncon-
vex objective function based on the l0-minimization model;
however, it has the global minima issue.

Recent CS efforts in MR pursue a best combination of spar-
sifying transforms17–22 and a fast solution toward obtaining a
high-quality reconstruction. Various methods have been pre-
sented to reconstruct MR images from undersampled data. Ma
et al.17 introduced an operator-splitting algorithm, total variation
compressed MR imaging (TVCMRI) for MR image reconstruc-
tion. Knoll et al.18 presented total generalized variation for MRI
reconstruction. By taking advantage of fast wavelet and Fourier
transforms, TVCMRI can process actual MR data accurately.
Yang et al.19 solved the same objective function presented in
Ref. 17 by a variable splitting method [reconstruction from partial
Fourier data (RecPF)], which is TV-based l1 − l2 MR recon-
struction. This method uses an alternating direction method for
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recovering MR images from incomplete Fourier measurements
and solving it as in Ref. 20. A fast composite splitting algorithm
(FCSA)21 was proposed by Huang et al. FCSA is based on the
combination of variable and operator splitting. It splits the var-
iable x into two variables and exploits the operator-splitting
method to minimize the regularization terms over the splitting
variables.

Nonlocal total variation for MR reconstruction (NTVMR)22

and the framelet + nonlocal TV (FNTV)23 methods have been
proposed lately. In Ref. 24, the use of the first-order derivatives
is analyzed to have two major shortcomings, such as oil-painting
artifacts and contrast loss. Out of the two methods that use non-
local TV regularization, FNTV delivers a better quality. FNTV is
formulated to minimize the combination of nonlocal TV, frame-
let, and the least-square data fitting terms. Recently, shearlet-
based methods have been proposed for MR reconstruction pur-
poses.25,26 A new framework, i.e., “nonseparable shearlet trans-
form iterative soft thresholding reconstruction algorithm”
(FNSISTRA), was presented by Pejoski et al.26 Along with the
discrete nonseparable shearlet transform27 as a sparsifying trans-
form, the authors used a fast-iterative soft thresholding algo-
rithm28,29 to solve their reconstruction formulation. In Ref. 30,
an MRI reconstruction method (BM3D-MRI) that utilized
decoupled iterations alternating over a BM3D denoising step algo-
rithm and a reconstruction step was presented. The method, in most
cases, has accomplished the reconstruction with a better signal-
to-noise ratio (SNR) measured than those by the abovemen-

tioned state-of-the-art methods, where SNR ¼ 10 log10
kxk2

2

kx−xnk2
2

,

x is the original image, and xn represents the reconstructed
image after n iterations.

In this paper, we propose an optimization scheme for MR
image reconstruction. It integrates the SS-NLTV. Sparsifying
transforms such as wavelets are not always able to handle edges
or curves, and, in general, singularities in higher dimensions.
Shearlets are efficient in representing anisotropic features that
comprise the object shape and express textures such as edges of
various orientations, strengths, and scales, and thus their inclusion
into regularization promises a better performance compared with
those by wavelets, which are isotropic objects. On the other hand,
the NLTV, which is the TV extension to a nonlocal variant, pre-
serves fine structures, details, and textures and prevents the oil-
painting artifacts inherent to TV, while maintaining the contrast.

The goal of obtaining a higher quality of reconstruction than
that demonstrated by advanced methods such as TVCMRI,17

RecPF,19 FCSA,21 FNTV,23 FNSISTRA,26 and BM3D-MRI30

is attained as confirmed by the experimental study.
The rest of the paper is organized as follows: the SS-NLTV

method is described in Sec. 2, the results and performance com-
parison are presented in Sec. 3, and the conclusions are drawn
in Sec. 4.

2 Shearlet Sparsity-Nonlocal Total Variation
Method

The MRI model can be expressed as

EQ-TARGET;temp:intralink-;e001;326;618Ax ¼ b; (1)

where x ∈ RM is an MR image, A ∈ RN×M is a measurement
matrix with N ≪ M, and b ∈ RN is the observed data. The
MR data can be recovered by solving the following minimiza-
tion problem:

EQ-TARGET;temp:intralink-;e002;326;547 minimize JðxÞ subject to Ax ¼ b; (2)

EQ-TARGET;temp:intralink-;e003;326;511when JðxÞ ¼ jΦðxÞj1; (3)

where JðxÞ is a regularizing functional and Φ is a sparsifying
transform. In the CS model of MRI, A ¼ SF, where S is a selec-
tion or a sampling matrix, F is the 2-D discrete Fourier matrix,
and b is the observed k-space data. Assuming the sparsity of the
model, the problem is ill-posed for minimizing the least-squares
function. Therefore, the following cost function with a regulari-
zation term has been considered:

EQ-TARGET;temp:intralink-;e004;326;409minxjΦðxÞj1 subject to kAx − bk22 ≤ σ; (4)

where σ is the variance of distortion in b. In Eq. (4), j:j1 denotes
l1-norm and k:k2 denotes l2-norm. The constrained optimiza-
tion in Eq. (3) is equivalent to the following unconstrained opti-
mization problem as it is formulated in Ref. 13:

EQ-TARGET;temp:intralink-;e005;326;337minxjΦðxÞj1 þ
λ

2
kAx − bk22; (5)

where λ > 0 is a balancing constant, which relies on the sparsity
of the underlying MR image x under linear transformation.

Fig. 1 (a) Noisy MRI image, radial subsampling under 20% rate, (b) recovered using TV, and (c) recov-
ered using NLTV.
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Also, λ can be interpreted as a contribution of the regularization
to the total cost. The lower its value is, the less is the importance
of the data fitting term, which amounts to more regularization. λ
remains constant across the iterations; therefore, we choose a
value for λ that minimizes the condition number of the subpro-
blems. We have determined that when λ ¼ 10, the convergence
is reached with a fewer number of iterations.

Considering the problem, we propose and formulate the opti-
mization problem using a combination of both the NLTVand the
shearlet as regularizers. The proposed optimization problem to
obtain reconstruction x̂ is as follows:

EQ-TARGET;temp:intralink-;e006;326;529x̂ ¼ argminxαj∇wxj1 þ β
X
k

jSHkðxÞj1 þ
λ

2
kAx − k22; (6)

where j∇wxj1 ¼
P

t j∇wxtj1 is the NLTV norm and nonlocal
weights w are computed from image estimate x̂. SHðxÞ is the
combination of different subbands of shearlet transform. 0 < α <
1 and 0 < β < 1 are the weighting parameters stressing two regu-
larization terms. The values of these two parameters in each loop
are adaptively derived based on the variance of noise present in
the reconstructed image from a previous iteration. We stress
more on the shearlet regularizer term if the estimated variance
in each shearlet subband is greater than a specified threshold.
The variances of the signal in every shearlet subband are com-
puted by exploiting the maximum likelihood estimator applied
on the neighborhood (a square) areas of coefficients.

Fig. 2 Images used to test the performance of the proposed CT-TGV method and for comparison:
(a) brain, (b) chest, (c) artery, and (d) cardiac.

Fig. 3 (a) Random variable subsampling and (b) radial subsampling.

Fig. 4 Performance of methods with random variable density subsampling for cardiac and brain images.
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2.1 Nonlocal Total Variation

NLTV is defined to describe the patch-level correspondence in
contrast to the TV, which is based on the correspondence at the
pixel level.31 For image x, the nonlocal weights can be formed
concerning any two spatial nodes i and j,

EQ-TARGET;temp:intralink-;e007;63;690ϖxði; jÞ ¼ e−

R
R1

Gσ ðtÞ½xðjþtÞ−xðiþtÞ�2dt

σ2 ; (7)

where G is a Gaussian kernel with the variance σ2 and R1 char-
acterizes the spatial neighborhood around i and j for similarity

consideration. The nonlocal gradient ∇wxði; jÞ at i is described
as a vector of all partial derivatives ∇wxði; .Þ32

EQ-TARGET;temp:intralink-;e008;326;730∇wxði; jÞ ¼ ½xðjÞ − xðiÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖxði; jÞ

p
; ∀ j ∈ R2; (8)

where R2 is the spatial neighborhood around i, whose nonlocal
gradient ∇wxði; jÞ is calculated. The adjoint of Eq. (8) is derived
from the adjoint relationship with a nonlocal divergence oper-
ator divw as

EQ-TARGET;temp:intralink-;e009;326;653h∇wx; vi ¼ hx; divwvi; (9)

Fig. 5 Performance of methods with radial subsampling for cardiac and brain images.

Fig. 6 Performance of methods with random variable density subsampling for artery and chest images.
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EQ-TARGET;temp:intralink-;e010;63;741divwvði; jÞ ¼
Z
R2

½vði; jÞ − vðj; iÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖxði; jÞ

p
dj: (10)

For image x ∈ RM ¼ Rm×n and R1 ¼ Rð2a1þ1Þð2b1þ1Þ and
R2 ¼ Rð2a2þ1Þð2b2þ1Þ, weights in Eq. (8) are calculated accord-
ing to Eq. (11)

EQ-TARGET;temp:intralink-;e011;63;694ϖxðk1; l1; k2; l2Þ ¼ e−
P

2a1
z1¼0

P
2b1
z2¼0

Gσ ðz1 ;z2Þ½xðk1−a1þz1 ;l1−b1þz2Þ−xðk2−a1þz1 ;l2−b1þz2Þ�2

σ2 k1; k2 ¼ 1; : : : ; m: l1; l2 ¼ 1; : : : ; n; (11)

and nonlocal gradient ∇wx ∈ Rm×n×ð2a2þ1Þ×ð2b2þ1Þ can be calculated as
EQ-TARGET;temp:intralink-;e012;63;639

∇wxðk1; l1; ∶; ∶Þ ¼2
6664

½xðk1 − a2; l1 − b2Þ − xðk1; l1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖxðk1 − a2; l1 − b2; k1; l1Þ

p
· · · ½xðk1 − a2; l1 þ b2Þ − xðk1; l1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖxðk1 − a2; l1 þ b2; k1; l1Þ

p
½xðk1 − a2 þ 1; l1 − b2Þ − xðk1; l1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖxðk1 − a2 þ 1; l1 − b2; k1; l1Þ

p
· · · ½xðk1 − a2 þ 1; l1 þ b2Þ − xðk1; l1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖxðk1 − a2 þ 1; l1 þ b2; k1; l1Þ

p
· · · · · · · · ·

½xðk1 þ a2; l1 − b2Þ − xðk1; l1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖxðk1 þ a2; l1 − b2; k1; l1Þ

p
· · · ½xðk1 þ a2; l1 þ b2Þ − xðk1; l1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖxðk1 þ a2; l1 þ b2; k1; l1Þ

p

3
7775;

(12)

where ∇wxðk1; l1; ∶; ∶Þ is a 2-D submatrix acquired by stacking
the third and fourth dimensions of ∇wx at the k1’th location in
the first and the l1’th location in the second dimension. a1 ¼
b1 ¼ 3 and a2 ¼ b2 ¼ 5 in R1 and R2 neighborhoods, respec-
tively. Figure 1 shows the comparison of TV versus NLTV
reconstruction from a noisy MRI image.

2.2 Shearlet Sparsity

Shearlet transform is introduced and investigated in Refs. 33–37
and generally has been used for solving the inverse prob-
lems.38,39 Let ψa;s;t denote the shearlet basis functions or simply
shearlets. The continuous shearlet transformation of image f is
defined as

EQ-TARGET;temp:intralink-;e013;63;365SHa;s;tðxÞ ¼
Z
R2

fðxÞψa;s;tðt − xÞdx; (13)

where s ∈ R, a ∈ R, and t ∈ R2 define the orientation, scale,
and location in the spatial domain, respectively, and fðxÞ ∈ R2

is a 2-D reconstructed image. Shearlets are shaped by dilating,
shearing, and translating the mother shearlet ψa;s;t ∈ R2, as
follows:

EQ-TARGET;temp:intralink-;e014;326;461ψa;s;tðxÞ ¼ j detðKa;sÞj−1
2ψ ½K−1

a;sðx − tÞ�; (14)

EQ-TARGET;temp:intralink-;e015;326;429Ka;s ¼
�
a

ffiffiffi
a

p
s

0
ffiffiffi
a

p
�

¼ BS ¼
�
1 s
0 1

��
a 0

0
ffiffiffi
a

p
�
; (15)

where S is an anisotropic scaling matrix with a scaling parameter
a > 0 and B is a shear matrix with a factor s ∈ R. B and S are
both invertible matrices, with detðBÞ ¼ 1. detðAÞ is the determi-
nant of matrix A. The shearlet mother function ψ is a composite
wavelet, which fulfills admissibility conditions.38,40 The Meyer

Fig. 7 Performance of methods with radial subsampling for artery and chest images.
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wavelet with a good localization ability in both time and fre-
quency spaces is exploited as a mother wavelet for ψ in the
shearlet transformation. In addition to its localization properties,
Meyer wavelet filters are directly described in the frequency
space byΨðωÞ¼Ψ1ðω1ÞΨ2ðω2∕ω1Þwith ω ¼ ½ω1;ω2�,Ψ1ðω1Þ
being the Fourier transform of the wavelet function (ψ) and
Ψ2ðω2Þ being a compactly supported bump function Ψ2ðω2Þ ¼
0 ↔ ω2 ∈= ½−1; 1�.41,42 The shearlet transform is invertible if the
function ψ satisfies the admissibility property

EQ-TARGET;temp:intralink-;e016;63;653

ZZ
R2

jΨðω1;ω2Þj2
jω1j2

dω1dω2 < ∞: (16)

Assume l is a function describing piecewise smooth func-
tions with discontinuities along C2 curves, and lSHp

is the shear-
let approximation of l obtained by taking the p largest absolute
shearlet coefficients, then

EQ-TARGET;temp:intralink-;e017;63;564kl − lSHp
k
2
≤ Cp−2ðlog pÞ3; (17)

as p → ∞, while the asymptotic error is Cp−1 for wavelet.
Therefore, shearlet transform is better in sparsely approximating
piecewise smooth images. We can implement the k’th subband
of the shearlet transform (SHk) as a mask Zk in the frequency
domain43

EQ-TARGET;temp:intralink-;e018;63;476SHkðxÞ ¼ F�diag½vecðZkÞ�F · x ¼ Pk · x; (18)

where vec is the vectorizing ðRn×n → Rn2Þ and diag is the
matricization diagonal ðRn → Rn×nÞ operators.

2.3 Solution

The optimization problem is formulated as follows:

EQ-TARGET;temp:intralink-;e019;63;382argminxαj∇wxj1 þ β
X
k

jSHkðxÞj1 þ
λ

2
kAx − bk22: (19)

The problem has both l1- and l2-norm terms, and, thus, the sol-
ution in a closed-form is difficult to obtain. The alternating
direction method of multiplier (ADMM)44 and splitting varia-
bles are used to solve the formulated problem as follows:

EQ-TARGET;temp:intralink-;e020;63;291

argminxαjy1j1 þ β
X
k

jy2ðkÞj1 þ
λ

2
kAx − bk22

subject to y1 ¼ ∇wx; y2ðkÞ ¼ SHkðxÞ; (20)

where y1 ∈ RM and y2ðkÞ ∈ RM are the auxiliary variables.
The split Bregman method,45 as a technique for solving a

variety of l1-regularized, is another reinterpretation of the
ADMM method. We have also solved our problem with split
Bregman, but since we choose the regularization parameters
adaptively, wewere able to reach faster convergencewith ADMM
compared with that of split Bregman, and this is the reason we
have chosen ADMM as part of the solution.

The Lagrangian function for the problem in Eq. (20) can be
written as follows:

EQ-TARGET;temp:intralink-;e021;326;752

Lðx; y1; y2; u1; u2Þ ¼
λ

2
kAx − bk22 þ αjy1j1

þ η

2
k∇wx − y1 þ u1k22 þ β

X
k

jy2ðkÞj1

þ Γ
2

X
k

kSHkðxÞ − y2ðkÞ þ u2ðkÞk22; (21)

where u1 ∈ RM and u2ðkÞ ∈ RM are the newly defined scaled
dual variables.

Finally, the problem is solved by iterating over Eqs. (22)–
(26)

EQ-TARGET;temp:intralink-;e022;326;618xðnþ1Þ ¼ argminxL½x; yðnÞ1 ; yðnÞ2 ; uðnÞ1 ; uðnÞ2 �; (22)

Fig. 8 Reconstruction of brain image from 20% radial subsampling:
(a) original, (b) TVCMRI, (c) RecPF, (d) FCSA, (e) FNTV,
(f) FNSISTRA, (g) BM3D-MRI, and (h) SS-NLTV.
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EQ-TARGET;temp:intralink-;e023;63;741yðnþ1Þ
1 ¼ argminy1L½xðnþ1Þ; y1; u

ðnÞ
1 �; (23)

EQ-TARGET;temp:intralink-;e024;63;725yðnþ1Þ
2 ¼ argminy2L½xðnþ1Þ; y2; u

ðnÞ
2 �; (24)

EQ-TARGET;temp:intralink-;e025;63;696uðnþ1Þ
1 ¼ uðnÞ1 þ ½∇wxðnþ1Þ − yðnþ1Þ

1 �; (25)

EQ-TARGET;temp:intralink-;e026;63;667uðnþ1Þ
2 ¼ uðnÞ2 þ fSH½xðnþ1Þ� − yðnþ1Þ

2 g: (26)

The optimal solution for the subproblem by Eq. (22) requires
finding roots of its derivatives, which leads to Eq. (27)

EQ-TARGET;temp:intralink-;e027;63;616

λATAx − λATbþ η divwð∇wx − y1 þ u1Þ
þ Γf

X
k

P�
kPkxþ

X
k

P�
k½y2ðkÞ − u2ðkÞ�g ¼ 0; (27)

where we can solve it in the Fourier domain by multiplying both
sides of it by F

EQ-TARGET;temp:intralink-;e028;63;535

fλSþ ηFdivw∇wF� þ Γ
X
k

diag½vecðjZkj2Þ�g

Fx ¼ λbþ ηFdivwðy1 − u1Þ
þ Γ

X
k

diag½vecðZkÞ�F½u2ðkÞ − y2ðkÞ�: (28)

Minimization in Eqs. (23) and (24) can be attained by shrinkage
operators such as45

EQ-TARGET;temp:intralink-;e029;63;427yðnþ1Þ
1 ≔ Shrink½∇wxðnþ1Þ þ uðnÞ1 ; ϑ2�; (29)

EQ-TARGET;temp:intralink-;e030;63;394yðnþ1Þ
2 ≔ ShrinkfSH½xðnþ1Þ� þ uðnÞ2 ; ϑ2g; (30)

where ϑ1 ¼ α
η, ϑ2 ¼ β

Γ, and

EQ-TARGET;temp:intralink-;e031;326;741Shrinkðx; ξÞn ¼ signðxnÞ:maxfjxnj − ξ; 0g: (31)

3 Results
We test the proposed SS-NLTV method on four 256 × 256 MR
images, i.e., brain, chest, artery, and cardiac images,19 as shown
in Fig. 2. The cardiac image is intentionally used as a test image
to demonstrate the reconstruction of an image with artifacts. The
input data in our experiments include only the magnitude values.
Six high-performance methods are chosen for comparison, i.e.,
TVCMRI,17 RecPF,19 FCSA,21 FNTV,23 FNSISTRA,26 and
BM3D-MRI.30 For realization of the method, we used shearlab46

to obtain shearlet coefficients because of the fast implementa-
tion. The methods are studied with two subsampling techniques,
i.e., random variable subsampling and radial subsampling.
Figure 3 visualizes these two types of subsampling. We demon-
strate results for the fixed number of 50 iterations as the methods
under comparison utilized this number as a stopping point to
reach the convergence. Four sampling ratios to acquire the meas-
urement b are 15%, 20%, 25%, and 30%. Figures 4–7 show
SNR plots for methods under comparison, where SNR ¼
10 log10

kxk2
2

kx−xnk2
2

, x is the original image, and xn represents the

reconstructed image after n interations. SNR values are mea-
sured for the above quantities of subsampling ratios, with radial
and random subsampling.

Our method outperforms the BM3D-MRI in the radial sub-
sampling experiments (for brain, cardiac, and artery MR
images). Also, our method shows a better performance with a
large margin on the cardiac image with the stripe pattern artifact.
The BM3D-MRI method achieves a better performance in the
random subsampling experiments on three MR images but lacks
the performance with the cardiac image when the random

Table 1 The SNRs (db) by all the methods at 20% random and radial subsampling ratios.

Method Brain Cardiac Chest Artery

Subsampling Radial Random Radial Random Radial Random Radial Random

TVCMRI 11.97 14.19 12.26 16.97 13.25 16.99 14.63 18.70

RecPF 12.82 14.75 14.68 17.65 14.84 17.38 16.68 19.98

FCSA 14.27 15.78 16.74 18.77 15.81 17.63 17.26 23.61

FNTV 17.31 18.97 18.45 20.93 18.02 20.16 21.83 27.21

FNSISTRA 21.03 22.83 20.67 22.23 21.75 24.22 23.14 29.11

BM3D-MRI 21.42 25.55 18.87 22.97 23.05 26.13 23.95 29.49

SS-NLTV 22.12 24.13 21.61 23.46 22.67 25.26 23.98 30.27

Note: The bold value shows the maximum SNR value for each column (each image with specific subsampling) in the table.

Table 2 Run times for different methods.

Method TVCMRI RecPF FCSA FNTV FNSISTRA BM3D-MRI SS-NLTV

Time (s) 1.1419 0.9157 0.6499 5.2785 9.8147 21.9058 7.1270
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subsampling is used. The results can be explained by the fact
that the BM3D-MRI uses a powerful denoiser, which copes
very well with random noise. The success of our method on
radial sampling is secured by directional selectivity of shearlets.
We demonstrate the reconstruction results for brain image with
radial subsampling in Fig. 8. Table 1 shows the SNRs (db) by all
the methods at 20% random and radial subsampling ratios.

The superior performance of SS-NLTV is derived from uti-
lization of NLTV, which locates sharper edges and suppresses
artifacts; it is due to the exceptional spatial localization and
directional selectivity of the shearlet transform. Table 2 shows
the run times calculated for all the methods under comparison
(for brain image and 20% random subsampling). All the imple-
mentations of different algorithms were run on 4 Gigabyte
RAM, Intel core 2 Duo E8400 processor, and with the
NVIDIA Tesla C2050 GPU board. The execution times of the
implementations are average values over five executions.

4 Conclusion
In this paper, we have presented a method, the SS-NLTV for
compressively sampled MRI reconstruction. The method uti-
lizes sparsifying shearlet transform and the NLTV in collabora-
tion to gain on directional sensitivity and selective regularization
at different levels of transformation. We formulated the optimi-
zation problem for the reconstruction process and solved it
uniquely by combining ADMM, splitting variables technique,
and adaptive weighting. The method is aimed at reconstructing
images with a high quality assessed visually and using objective
quality metrics. Specifically, oil-painted artifacts common for
CS and specifically pronounced at high reduction factors have
not been observed in reconstructed images. High SNRs pro-
duced by the method quantify its high performance. The con-
ducted experiments and the analysis of different reconstructed
medical MRI datasets under different types of subsampling
and ratios have demonstrated a superior quality of reconstruc-
tion by the proposed method in comparison with six reference
methods, including the state-of-the-art BM3D-MRI method.
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