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Abstract: Brain functional network analysis has shown great potential in understanding brain functions
and also in identifying biomarkers for brain diseases, such as Alzheimer’s disease (AD) and its early
stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically
meaningful brain network is critical. Sparse learning has been widely used for brain network construc-
tion; however, its l1-norm penalty simply penalizes each edge of a brain network equally, without con-
sidering the original connectivity strength which is one of the most important inherent linkwise
characters. Besides, based on the similarity of the linkwise connectivity, brain network shows promi-
nent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel
brain functional network modeling framework with a “connectivity strength-weighted sparse group
constraint.” In particular, the network modeling can be optimized by considering both raw connectivity
strength and its group structure, without losing the merit of sparsity. Our proposed method is applied
to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the
resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed
method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other
competing methods (e.g., sparse representation, accuracy 5 65.6%). Post hoc inspection of the informa-
tive features further shows more biologically meaningful brain functional connectivities obtained by
our proposed method. Hum Brain Mapp 38:2370–2383, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Study of brain functional network based on resting-state
functional magnetic resonance imaging (rs-fMRI) has
shown great potential in understanding brain functions
and also identifying biomarkers for neurological and psy-
chiatric disorders (Fornito et al., 2015; Wernick et al.,
2010). Accurate construction of brain functional network
from regional rs-fMRI time series is an essential step prior
to the subsequent statistical analysis or disease classifica-
tion (Eguiluz et al., 2005; Rubinov and Sporns, 2010; Van
Den Heuvel and Pol, 2010). Many approaches for brain
functional network modeling have been proposed in the
past (Smith et al., 2011). One of the most popular ways is
to represent a brain network as a graph that comprises
nodes and edges (Sporns et al., 2004; Supekar et al., 2008).
The definitions of nodes and edges in a graph may differ
in scale, but in this article, we construct a macroscopic
brain functional network by treating the brain regions, or
regions of interest (ROIs) from predefined atlas (Craddock
et al., 2012; Tzourio-Mazoyer et al., 2002), as nodes and
the functional connectivity (estimated using the observed
regional mean blood-oxygen-level-dependent [BOLD] time
series) between each pair of regions as an edge (Smith
et al., 2011).

With the above definitions, the most popular approaches
for brain network modeling are based on inter-regional
Pearson’s correlation (PC) (Hampson et al., 2002; Power
et al., 2011; Wee et al., 2012) and partial correlation
(Fransson and Marrelec, 2008; Salvador et al., 2005). While
the former is easy to understand and can capture pairwise
functional relationship based on a pair of regions, the lat-
ter can account for more complex interactions among mul-
tiple brain regions. But the estimation of partial correlation
involves an inversion of a covariance matrix, which may
be ill-posed due to the singularity of the covariance
matrix. To overcome this issue, a number of representative
approaches with l1-norm regularization have been intro-
duced by adding a sparsity term since the brain network is
believed to be sparse, i.e., some insignificant or spurious
connections caused by the low frequency (<0.1 Hz) fluctua-
tion of BOLD signals (Fransson, 2005) and physiological
noise are forced to be zero, thus making the constructed
sparse connectivity relatively easier to be interpreted. To a
certain extent, the constructed sparse brain network is neu-
rologically justified by the fact that brain regions have only
“first-order/direct” interactions with a few regions, instead
of connecting with all brain regions. Two major types of
representative approaches, i.e., l1-norm regularized maxi-
mum likelihood estimation (Huang et al., 2009; Rosa et al.,
2015; Yuan and Lin, 2006), a.k.a. graphical LASSO (Fried-
man et al., 2008), and l1-norm regularized linear regression
or sparse representation (SR) (Meinshausen and B€uhlmann,
2006; Peng et al., 2009), have been widely applied to con-
struct brain network for brain disease studies, such as Alz-
heimer’s disease (AD), mild cognitive impairment (MCI)
(Huang et al., 2010), and autism spectrum disorder (Lee

et al., 2011). More recent representative approaches also
take group structure into consideration by adding a group
sparsity constraint because of the modular structure of the
human brain (Rubinov and Sporns, 2010). To further intro-
duce sparsity within each group, sparse group representa-
tion (SGR) has been developed by combining l1-norm and
lq;1-norm constraints, which finally achieves both inter- and
intra-group sparsity (Jiang et al., 2015).

A common issue of all the aforementioned sparsity-
based network construction methods is that the sparse
constraint term penalizes each edge equally. In other
words, when learning SR for a target ROI, the BOLD sig-
nals from all other ROIs are treated equally. Such process
ignores the inherent similarity between BOLD signals of
the target ROI and the other ROIs during network recon-
struction. Consequently, this will usually result in a sparse
but difficult-to-understand “brain network”. We assume in
this article that a target ROI’s signal is prone to be repre-
sented by signals from the ROIs whose BOLD activities
are highly synchronized with the target ROI. Based on this
assumption, the constructed sparse brain functional net-
work may be more reasonable. On the other hand, not all
the weak links to the target ROI have to be removed.
Instead, with a delicately designed learning-based frame-
work, the connectivity network can be learned by mini-
mizing an objective function consisting of both a data-
fitting term and a “weighted” sparse regularization term.
In this way, some ROIs with signals weakly correlated to
the target ROI can still be kept, as long as they can largely
reduce the data-fitting error. In this article, we combine
the merits of both pairwise correlations and the SR to bet-
ter model the brain functional network. Specifically, we
make better use of the pairwise correlation from PC to
drive sparse model, instead of simply discarding this
important information. In light of this, we introduce a
“functional connectivity strength-related” penalty in SR,
namely, weighted sparse representation (WSR).

Figure 1 shows the simple example of brain networks
constructed by PC, SR, and our proposed WSR from real
fMRI data. In this proof-of-concept case, the PC-based net-
work is denser compared with the two SR-based networks
(by SR and our proposed WSR method, respectively). Due
to equal penalization, the network constructed by SR looks
as noisy as a random network, probably due to the fact
that it often misses many important connections that
should have close relationships. In contrast, by considering
pairwise functional connectivity strength (derived from
PC) in sparse coding, the links with strong connectivity
strength are less penalized. By retaining both sparsity and
connectivity prior, the network constructed by the WSR is
thus more biologically meaningful (i.e., having a clearly
structured connectivity matrix or modular architecture).
This is because that the relationship between two regions
is measured by considering both pairwise correlation and
the contribution of other regions. Moreover, to further
make the penalty consistent within each subset of links
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with similar pairwise connectivity strength, we additionally
propose a group structure-based constraint in the model. In
this way, similar links will share similar penalties during
network construction. Thus, we can jointly model the
whole-brain network, instead of independently modeling
each ROI; in this way, each ROI’s construction will gain
benefit from other ROIs’ constructions. This joint estimation
strategy can result in more biologically meaningful brain
functional network. We call our method “connectivity
strength-weighted sparse group representation (WSGR),”
which integrates (1) sparsity, (2) functional connectivity
strength, and (3) group structure in a unified framework.

We hypothesize that, based on our method, brain network
construction will be more reasonable and better reflect the
true functional organization architecture of the human brain.
To validate this, we conduct experiments on real fMRI data,
construct different brain functional networks based on our
method and other competing methods (PC, SR, and SGR),
and use these networks to conduct individualized diagnosis
of brain disorder (i.e., distinguishing MCI subjects from nor-
mal controls). The results show that our method, even with
simple feature selection and linear support vector machine
(SVM), achieves superior classification performance com-
pared with other methods. The selected features (i.e., net-
work connections) can be utilized as potential biomarkers
to guide early intervention of AD in the future.

The remainder of this article is organized as follows. In
Section 2, we detail the proposed brain network construc-
tion model. Then, we apply the constructed brain network
for MCI classification in Section 3. The experiments and
results will be given in Section 4, followed by discussions
and summary in Sections 5 and 6, respectively.

WSGR-BASED BRAIN NETWORK

CONSTRUCTION

In this work, we propose a WSGR for brain functional net-
work construction, which considers traditional correlation as

connectivity strength to guide sparse modeling for brain net-
work construction. Overview of the proposed construction
framework is shown in Figure 2.

In a classical brain functional network construction
problem, the brain can be parcellated into N ROIs accord-
ing to a certain brain atlas. The regional mean time series
of the ith ROI can be denoted by a column vector
xi5 x1i; x2i; . . . ; xMi½ � 2 RM, where M is the number of time
points in the entire time series, and thus X5 x1; x2; . . . ; xN½ �
2 RM3N denotes the data matrix of a subject. By modeling
brain functional network as a graph, a key step is to esti-
mate the connectivity matrix W 2 RN3N , given the N nodes
(i.e., xi; i51; 2; . . . ;N), each representing an ROI’s signal.

The traditional sparse brain network modeling of the ith

ROI xi can be formulated as a standard l1-norm regular-
ized optimization problem, and the whole-brain network
construction can be defined as

min
W

XN

i51

1

2
jjxi2

X
j6¼i

xjWjijj
2

2
1k
X

j6¼i
jWjij

� �
(1)

where Wji is the estimated functional connectivity between
xi and xj after excluding the confounding effects of other
regions.

Connectivity Strength-Based Weighting and

Weighted Sparse Representation (WSR)

The l1-norm regularization involved in Eq. (1) (the sec-
ond term) penalizes each representation coefficient (Wji)
with the same weight of one. In other words, it treats
each ROI equally when reconstructing signals (xi) for a
target ROI. Thus, the inherent pairwise correlation with
respect to xi, i.e., “functional connectivity strength,” is
completely discarded during the optimization. As a
result, this type of sparse modeling methods may tend to
select only the ROIs with weak connectivities to the tar-
get ROI, as long as this can minimize the objective

Figure 1.

Illustration of our motivation. Note that these networks are obtained from real rs-fMRI data

(where all values are absolute). The black boxes in the matrices are used to show the corre-

sponding effect of the connectivity strength-based weights in the constructed brain network.

[Color figure can be viewed at wileyonlinelibrary.com]
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function in Eq. (1). Moreover, the representation of one
ROI is independent of the representations of other ROIs.
This “independent representation” can lead to less bio-
logically meaningful brain network. The estimated repre-
sentation coefficients of the functionally similar ROIs
could vary largely in an unconstrained way. Considering
these issues, we argue that the prior functional connectiv-
ity strength should be incorporated into the brain func-
tional network construction.

Specifically, we can introduce a connectivity strength-
weighted sparse penalty in Eq. (1) to take the strength of
functional connectivity into account. We suppose that if the
BOLD signals of two ROIs have a high correlation, indicating
a strong link between each other, then this strong functional
link should be less penalized to make it more possible to be
chosen to represent the target ROI. Meanwhile, a weak func-
tional link will be penalized more, i.e., with a larger weight,
to impede it being chosen. In this way, the constructed
sparse brain functional network will be more reasonable.

The penalty weight Cji, i.e., the link between the ith ROI
xi and the jth ROI xj, can be defined as an exponential
function of the PC coefficient:

Cji5 exp 2P2
ji=r

� �
(2)

where Pji is the PC coefficient between the ith ROI xi and
the jth ROI xj, and r is a positive parameter used to adjust
the weight’s decay speed for the connectivity strength
adaptor. Accordingly, the connectivity strength-WSR can
be formulated as

min
W

XN

i51

1

2
jjxi2

X
j6¼i

xjWjijj
2

2
1k
X

j6¼i
CjijWjij

� �
; (3)

where C 2 RN3N is the connectivity strength adaptor
matrix, with each element Cji being inversely proportional
to the similarity (i.e., PC coefficient) between the signals in
jth ROI xj and the signals in the target ROI xi.

Grouping of Similar Subnetworks and Weighted

Sparse Group Representation (WSGR)

Note that the above reconstruction of xi, i.e., the ith

ROI’s construction, is independent of the reconstructions

Figure 2.

Framework of the proposed brain functional network construction. Given brain functional signals

X, we can compute a Pearson’s correlation (PC) matrix P, which will be used to define both the

connectivity strength weight C for the l1-norm and the group partition for the l2;1-norm in the

proposed model. The brain network W will be constructed with optimization. [Color figure can

be viewed at wileyonlinelibrary.com]
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of others. To further make the connectivity strength-
weighted penalty consistent across all links which have
similar functional connectivity strength, we propose a
group constraint on the similar links (within a subnet-
work) for allowing them to share the same penalty during
the whole-brain network construction. In this way, we can
model the whole-brain network jointly, instead of sepa-
rately modeling each ROI. Of note, we use connectivity
strength to group the ROIs into subnetworks although
existing other grouping ways, such as using diffusion ten-
sor image-based tractography to group the ROIs.

To identify the group structure in the brain network, we
partition all links, i.e., pairwise connections among ROIs,
into K nonoverlapping groups based on the PC coeffi-
cients. Specifically, assuming that the numerical range of
the absolute value of the PC coefficient jPijj is Pmin;Pmax½ �
with Pmin� 0 and Pmax � 1, we partition Pmin;Pmax½ � into K
uniform and nonoverlapping partitions with the same
interval D 5 Pmax2Pminð Þ=K. Then, the kth group can be
defined as Gk5 i; jð ÞjjPijj 2 Pmin1 k21ð ÞD;Pmin1kD½ �

� �
. Fig-

ure 3 shows an exemplar grouping results with K 5 5 from
a randomly selected subject, for illustration purpose.

To integrate constraints on functional connectivity
strength, group structure, as well as sparsity in a unified
framework, we propose a novel weighted sparse group
regularization as formulated below:

min
W

XN

i51

1

2
jjxi2

X
j6¼i

xjWjijj
2

2
1k1

X
j6¼i

CjijWjij
� �

1k2

XK

k51
dkjjWGk

jjq

(4)

where jjWGk
jjq5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;jð Þ2Gk

Wij

	 
qq

q
is lq-norm (with q 5 2 in

this work). dk is a predefined weight for the kth group,

i.e., dk5exp 2E2
k=r

	 

, where Ek5

1
jGkj
P

i;jð Þ2Gk
jPijj and jGkj

represents the number of links in the kth group (Gk). r is
the same parameter in Eq. (2), which is set as the mean of
all subjects’ standard variances of absolute PC coefficients.
After obtaining groups, with E1 < E2 < . . . < EK, we can
penalize the group with higher Ek by smaller dk and vice
versa. Eq. (4) can also be expressed in a matrix form as
follows:

min
W

1

2
jjX2XWjj 2

F1k1jjC�Wjj11k2

XK

k51
dkjjWGk

jjq; (5)

s:t: Wii50; 8 i51; 2; . . . ;N:

where jj�jjF5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i;j51 �ij

	 
2
q

is the F-norm of matrix, �
denotes the elementwise multiplication. Unless specifically

noted, we denote jj�jj1def
5

PN
i;j51 j�ijj in this article. To avoid a

trivial solution of W5I, we further enforce the constraint

Wii50, equivalent to remove signals of the ith ROI from X
when representing itself.

In Eq. (5), the first regularizer (which can be regarded as
l1-norm penalty) controls the overall sparsity of the recon-
struction model, and the second regularizer (lq;1-norm pen-
alty) contributes the sparsity at the group level. k1 and k2

are the two parameters used to balance the tradeoff
between the (first) l1-norm regularization and the (second)
group regularization in the objective function. It is note-
worthy that our proposed model can be treated as a gener-
alized form of sparse brain construction models.
Specifically, if Cji51 and k250 in Eq. (4), our model
reduces to the SR model. If k250, it will degrade to the
WSR model. Moreover, if Cji51, the proposed method
shares the same formulation with the SGR (Simon et al.,
2013). In the experimental section, we also include these
three special cases for comparison. To our best knowledge,
(1) using the connectivity strength-based weights derived

Figure 3.

Illustration of similar subnetwork grouping for a randomly selected healthy subject in our data-

set. (a) Pearson correlation coefficient matrix P with Pii50, i51; 2; . . . ;N: (b) The corresponding

grouping result (K 5 5) of (a). (c) The grouped links (with green) in the fifth subnetwork, corre-

sponding to the green bar in (b). [Color figure can be viewed at wileyonlinelibrary.com]
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from PC to guide brain network modeling and (2) using
the connectivity strength to group subnetworks have not
been reported in the previous studies.

MCI CLASSIFICATION

MCI, as an intermediate stage of brain cognitive decline
between AD and normal aging, shows mild symptoms of
cognitive impairment. Individuals with MCI may progress
to AD with an average conversion rate of 10–15% per
year, and more than 50% within 5 years (Gauthier et al.,
2006; Petersen et al., 2001). Thus, accurate and early diag-
nosis of MCI is crucial to reduce the risk of developing
AD and the possible delay of dementia with appropriate
pharmacological treatments and behavioral interventions.
Functional connectivity analysis has shown potential in
diagnosis of MCI before appearing of clinical symptoms
(Chen et al., 2016; Fox and Raichle, 2007; Friston et al.,
1993; Greicius, 2008; Rombouts et al., 2005; Sorg et al.,
2007; Wang et al., 2007). But its performance depends on
the accuracy of constructed brain network. Therefore, we
use MCI identification as a way for validating our pro-
posed brain network construction model.

Specifically, the estimated brain network is applied to
classify MCI and normal control (NC) subjects. Note that
the connectivity matrix W learned from SR-based methods
could be asymmetric. Thus, similar to other related works
(Elhamifar and Vidal, 2013; Lee et al., 2011; Wee et al.,
2014), we simply make it symmetric as W�5 W1WT

	 

=2,

and then use W� to represent the final network, which has
N N21ð Þ=2 effective links due to the symmetry of W�. These
links are treated as a feature vector to represent each subject,
with the dimensionality of 4005 when N 5 90. For feature
selection, we use a two-sample t-test with the significance
level of p < 0.05 to select features that significantly differ
between MCI and NC groups. Figure 4 shows the classifica-
tion process. Note that only the training data participate in
the feature selection part. The dimension of testing data will
be reduced according to the selected feature indices provid-
ed by the above t-test-based feature selection. After feature
selection, we employ a linear SVM (Chang and Lin, 2011),
with default cost parameter c 5 1, for classification.

EXPERIMENTS

Subjects and Data

The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset (Jack et al., 2008) is used in this study.
Specifically, 50 MCI patients and 49 NCs are selected from
the ADNI-2 dataset in our experiments. This study has
been performed in accordance with the ethical standards
as laid down in the 1964 Declaration of Helsinki and its
later amendments. Informed consent was obtained from
all individual participants included in the study. Subjects
from both classes are age- and gender-matched, and they
were all scanned using 3.0 T Philips scanners. For details
of imaging parameters, please check adni.loni.ucla.edu. In
preprocessing, SPM8 toolbox (http://www.fil.ion.ucl.ac.

Figure 4.

Procedure for mild cognitive impairment (MCI) classification. In

the training stage, we use the two-sample t-test to select signifi-

cant features for two classes, i.e., mild cognitive impairment

(MCI) and normal control (NC) classes. The selected features

will be used to train the classifier. For the testing data, we use

the same selected features as used in the training stage to pre-

dict the label of testing data as MCI or NC, using the trained

classifier. [Color figure can be viewed at wileyonlinelibrary.com]
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uk/spm/) is used to preprocess the rs-fMRI data according
to the well-accepted pipeline (Rubinov and Sporns, 2010).
Specifically, the first 3 volumes of each subject are dis-
carded before preprocessing for magnetization equilibrium.
Then, rigid-body registration is used to correct head motion
(but the subjects with overall head motion larger than
2 mm or 28 during scanning are discarded). The fMRI

images are normalized to the Montreal Neurological Insti-
tute (MNI) space and spatially smoothed with a Gaussian
kernel with full-width-at-half-maximum (FWHM) of 6 3 6
3 6 mm3. To reduce the negative effect on brain network
modeling caused by excessive framewise head motion, we
estimate framewise head motion and exclude subjects who
have too many frames with excessive framewise head
motion. Specifically, we calculate framewise displacement
(FD) based on Power et al.’s (2011) algorithm and exclude
the subjects with more than 2.5 min (50 frames) data of
FD> 0.5 from further analysis (Wu et al., 2015). However,
we do not censor the data of the remaining subjects to
ensure them to have the equal number of rs-fMRI data, to
make the functional connectivity network modeling results
comparable across subjects. Head motion parameters (i.e.,
Friston-24 model) and the mean BOLD time series of white
matter and cerebrospinal fluid are regressed out from the
band-pass filtered (0.01–0.08 Hz) rs-fMRI data.

Brain Functional Network Construction

For each subject, the mean rs-fMRI signals extracted
from N 5 90 ROIs defined by Automated Anatomical

TABLE I. Brain functional network construction models

Method Data-fitting term Regularization term

PC jjW2XTXjj2F —
SR 1

2 jjX2XWjj2F kjjWjj1
WSR 1

2 jjX2XWjj2F kjjC�Wjj1
SGR 1

2 jjX2XWjj2F k1jjWjj11k2

PK
k51 dkjjWGk

jjq
WSGR 1

2 jjX2XWjj2F k1jjC�Wjj11k2

PK
k51 dkjjWGk

jjq

Note: The regularized parameters k; k1, k2 are positive; Wii50;
8 i51; 2; . . . ; N.
PC, Pearson’s correlation; SR, sparse representation; SGR, sparse
group representation; WSR, weighted sparse representation;
WSGR, weighted sparse group representation.

Figure 5.

Comparison of brain functional networks of the same subject, reconstructed by five different

methods, based on (a) Pearson’s correlation (PC), (b) sparse representation (SR), (c) sparse

group representation (SGR), (d) weighted sparse representation (WSR), and (e) weighted sparse

group representation (WSGR). [Color figure can be viewed at wileyonlinelibrary.com]
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Labeling (AAL) template (Tzourio-Mazoyer et al., 2002)
are utilized to model brain functional network. For com-
parison, we also construct brain networks using two basic
methods, PC and SR. To further explore the effects of both
the proposed connectivity strength-based weighting and
structure-grouping, we have also compared our proposed
WSGR with both SGR (without weight C) and WSR (with-
out group constraint). Their matrix-regularized objective
functions are provided in Table I.

The optimization of the objective functions of the SGR
and WSGR models can be solved by the Moreau–Yosida
regularization associated with the sparse group Lasso pen-
alty (Liu and Ye, 2010). All the SR models in this article
are solved using SLEP toolbox (Liu et al., 2009), and W is
initialized with zero matrix.

Figure 5 shows the visualization of the constructed brain
functional networks from a randomly selected subject
using five different methods separately. As can be seen

from Figure 5a, the intrinsic grouping in brain connectivity
is observed, whereas the PC-based brain network is very
dense. All the networks constructed from the SR models
are sparse. Regarding the effectiveness of using the con-
nectivity strength-based weights, we can see that the
sparse constraint with the connectivity strength-based
weights (Figure 5d,e) is more reasonable in modeling brain
functional network than its counterparts without weights
(Figure 5b,c). Compared with the traditional SR models,
some connections with high connectivity strength are
enhanced by the WSR models, and vice versa. This vali-
dates the effectiveness of our proposed method which
integrates the pairwise correlation and the sparse learning.
Regarding the grouping constraint used, the group struc-
ture is more obvious in Figure 5e by our WSGR method
than in Figure 5d by WSR.

Classification Results

After constructing the brain functional networks, we
regard the connections as features for MCI classification. A
leave-one-out cross-validation (LOOCV) strategy is
adopted in our experiments. To set the values of the regu-
larization parameter (i.e., k in SR and WSR, and k1, k2 in
SGR and WSGR), we employ a nested LOOCV strategy on
the training set to grid-search the respective parameter
values in the range of 225; 224; . . . ; 21; 22

� �
.

Specifically, given a total of S subjects, one of them is
left out for testing, and the remaining S21 subjects are
used for training. Then, we select the optimal parameter
values by grid-searching on the training set with the
nested LOOCV strategy. Specifically, among these S21
subjects, a training subset with S22 subjects was formed
by leaving one training subject out to test in the nested
LOOCV procedure (based on the t-test with default

TABLE II. Definitions of six statistical measurement

indices

Measurement Definition

ACC TP1TN

TP1FP1TN1FN
SEN TP

TP1FN
SPE TN

TN1FP
YI SEN1SPE21

F-Score 23
precision 3 recall

precision 1 recall

BAC
1

2
SEN1SPEð Þ

ACC, accuracy; SEN, sensitivity; SPE, specificity; YI, Youden’s
index; BAC, balanced accuracy.

Figure 6.

Comparison of classification results by five different methods

using 7 performance metrics and also ROC curves. Results are

based on the Pearson’s correlation (PC), sparse representation

(SR), sparse group representation (SGR), weighted sparse repre-

sentation (WSR), and weighted sparse group representation

(WSGR). Seven metrics include accuracy (ACC), sensitivity

(SEN), specificity (SPE), area under curve (AUC), Youden’s index

(YI), F-Score, and balanced accuracy (BAC). [Color figure can be

viewed at wileyonlinelibrary.com]
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p< 0.05 for feature selection, and the linear SVM with
default c 5 1 for classification). Thus, there are S21 differ-
ent training subsets and S21 corresponding testing sam-
ples. The combination of regularization parameters that
gives the best performance is selected as the optimal
parameters. Then, by backing to the training set with S21
subjects, we apply the optimal regularization parameters
onto the S21 different training subsets, each with S22
subjects. Note, there are S21 classifiers that are used to
classify the completely unseen testing subject. The final
classification decision is determined via majority voting.
Every subject in the whole dataset will be left out for test-
ing, so the above process repeats S times. Finally, an over-
all cross-validation classification accuracy is calculated.

To evaluate the classification performance, we use seven
evaluation measures: accuracy (ACC), sensitivity (SEN),

specificity (SPE), area under curve (AUC), Youden’s index
(YI), F-score, and balanced accuracy (BAC). The detailed defi-
nitions of these seven statistical measures except area under
ROC curve (AUC) are provided in Table II, where TP, TN, FP,
and FN denote the true positive, true negative, false positive,
and false negative, respectively, and precision5 TP

TP1FP and
recall5 TP

TP1FN. In this article, we treat the MCI samples as pos-
itive class and the NC samples as negative class.

As shown in Figure 6, the proposed brain network con-
struction model (using weighted group sparsity) achieves
the best classification performance with an accuracy of
84.85%, followed by WSR with an accuracy of 79.80%. By
comparing these results, we can verify the effectiveness of
connectivity strength-based weights from two aspects.
First, it can be observed that the WSR model with connec-
tivity strength-based weights performs much better than

Figure 7.

Illustration of 47 consistently selected features (i.e., connections). The red arcs represent the

features related to the default mode network. [Color figure can be viewed at wileyonlinelibrary.

com]
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PC and SR models. Second, the classification result of the
WSGR model outperforms the SGR model (with an accura-
cy of 72.73%). Similarly, by comparing the results of the
SR and WSR models with those of the SGR and WSGR
models, the effectiveness of our introduced group
structure-based penalty can be well justified. The superior
performance of our method suggests that the weighted
group sparsity is beneficial in constructing brain networks
and is also able to improve classification performance. Fig-
ure 6b shows the ROC curves of different methods. To fur-
ther confirm the statistical significance of classification
results by different methods, we adopt the DeLong’s
(1988) test, which allows for the comparison of two ROC
curves calculated on the dataset, by performing a nonpara-
metric statistical test. The results show that our proposed
WSGR significantly outperforms PC, SR, WSR, and SGR
under 95% confidence interval with p values 5 1:4131026;

3:6131026; 0:06 and 0:01 respectively.

DISCUSSIONS

Top Discriminative Features

As the selected features by two-sample t tests in each
validation might be different, we record all the selected

features during the training process. There are 47 features
that are consistently selected in all validations, as visual-
ized in Figure 7, where the red arcs represent the features
related to the default mode network (DMN) that have
been commonly regarded as AD-pathology related (Grei-
cius et al., 2004; Teipel et al., 2015). According to previous
studies (Fair et al., 2008; Fox et al., 2005), the detailed
names for the ROIs related with DMN are listed in the
Table I in Supporting Information. Interestingly, most of
these consistently selected discriminative features are the
DMN-related connectivities. The grey arcs in Figure 7
denote the consistently selected discriminative features
outside the DMN, including the olfactory cortices, middle
orbitofrontal cortices, fusiform, caudate, and so on.

The linear SVM classification model obtained on the
training data in each cross-validation is a maximum-
margin hyperplane, represented by the learned weight
coefficients for all selected features. To further study the
connectivity pattern that contributed to MCI identification,
we average the weight coefficients of each selected feature
across all the cross-validations to analyze the linear classi-
fication model. All consistently selected connectivities
shown in Figure 7 are displayed in Figure 8 in the full
brain view (see also Table II in Supporting Information for
detailed connections). Specifically, the nodes here represent

Figure 8.

Classification Pattern. The thickness of each edge indicates its weight used in a linear SVM model

for MCI classification. [Color figure can be viewed at wileyonlinelibrary.com]
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the ROIs, with their sizes indicating the sum of weights
connecting to each ROI (which can be regarded as the
degree of the nodes in the brain network), and the edges
represent the connections (or features used in this article)
with their thickness indicating the corresponding weights
in classification pattern.

The 11 discriminative regions, which have at least three
connection features among all the consistently selected fea-
tures, are shown in Figure 9. Specifically, the right inferior
orbitofrontal cortex and right olfactory cortex are highly relat-
ed to AD pathology, according to previous studies (Tekin
and Cummings, 2002). The left superior medial frontal cortex,
right anterior cingulate cortex, left inferior parietal lobule,
and left inferior temporal gyrus are within the DMN. The
right caudate, right putamen, and right pallidum are subcorti-
cal regions with dense connections to the cortex, which are
important for MCI classification (Albert et al., 2011).

Sensitivity to Network Model Parameters

To investigate the sensitivity of our model to the
involved regularization parameters, i.e., k1 and k2, we

have also conducted an experiment that discards the nested
LOOCV parameter selection on the training set. We directly
compute the classification accuracy under different parame-
ter combinations in the proposed WSGR method with
LOOCV. The classification accuracies are shown in Figure
10. It can be observed that the results change with different
values of the regularized parameters, and the best accuracy
(87.88%) is achieved with k1520 for (weighted) sparsity and
k25224 for group sparsity. Note that to validate the effec-
tiveness of our proposed method, we adopt the grid-
searching strategy to select the optimal regularization
parameters within the training data, while leaving the test-
ing data for validation. The optimal parameters selected
automatically in different validations are not fixed. The per-
formance of our method with such grid-searching strategy
achieves 84.85% accuracy, which is close to the highest
accuracy 87.88% with specific parameter values.

Related Works

In this work, we proposed the connectivity strength-
WSGR model for constructing the brain functional

Figure 9.

Demonstration of the discriminative regions used in classifica-

tion. The regions shown in red, i.e., right inferior orbitofrontal

cortex, right olfactory cortex, left superior medial frontal cor-

tex, right anterior cingulate cortex, left inferior occipital gyrus,

left fusiform gyrus, left inferior parietal lobule, right caudate,

right putamen, right pallidum, and left inferior temporal gyrus,

have at least three connections as selected features over all the

consistently selected features. [Color figure can be viewed at

wileyonlinelibrary.com]
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network. In terms of the l1-norm regularization term, it is
not only for statistical estimation but also for providing a
principled way of incorporating sparsity priors (as brain
region predominantly interacts with only a small number
of other regions) into a network learning framework.
Many neuroscience studies have already suggested that
the brain network is sparse (Sporns, 2011). For the group
sparsity by lq;1-norm, there are some similar models on the
network construction in the literature. For example, Varo-
quaux et al. (2010) used group sparsity prior (lq;1-norm
regularizer) to constrain all subjects within the same group
to share the same network topology. Wee et al. (2014)
used the similar group-constrained sparsity to overcome
intersubject variability in the brain network construction.
In their works, each ROI’s representation was still inde-
pendent to each other, and they did not consider the con-
nectivity strength during the SR.

In terms of combining l1-norm constraint with lq;1-norm
constraint, a recent work (Jiang et al., 2015) defined
“group” based on the anatomical connectivity using diffu-
sion tensor imaging, and then applied SGR to construct
brain functional network using whole-brain rs-fMRI sig-
nals. Compared with their work, our method proposes to
define the group by using the intrinsic connectivity

strength derived from the rs-fMRI data, which does not
need any additional imaging data that sometimes may not
be available. In addition, we have added connectivity
strength-based weights to the l1-norm constraint, for con-
structing more reasonable brain functional network.

CONCLUSION

In this article, we have proposed a novel method with
WSGR to optimally construct brain functional network
from rs-fMRI data. We have taken the advantage of both
Pearson’s correlation and SRs, which are the two most
used brain network modeling approaches, to ensure the
construction of more biologically meaningful brain net-
work by a unified framework that integrates connectivity
strength, group structure, and sparsity. Our proposed meth-
od has been validated in the task of MCI and NC classifi-
cation, obtaining superior results compared to other brain
network construction approaches. In future, we plan to
work on more effective grouping strategy, i.e., partitioning
the links into the overlapping groups, to model more
meaningful brain networks. Moreover, our method can be
applied to various brain disorders and diseases, such as
autism and Parkinson’s disease.

Figure 10.

Classification accuracy based on the networks estimated by the proposed method with different

regularized parametric values. The parameters are chosen between [225; 22]. The results are

obtained by LOOCV on all subjects. [Color figure can be viewed at wileyonlinelibrary.com]
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