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Many people avidly consume foods and drinks containing caffeine, despite its bitter taste. Here, we review
what is known about caffeine as a bitter taste stimulus. Topics include caffeine’s action on the
canonical bitter taste receptor pathway and caffeine’s action on noncanonical receptor-dependent and
-independent pathways in taste cells. Two conclusions are that (1) caffeine is a poor prototypical bitter
taste stimulus because it acts on bitter taste receptor-independent pathways, and (2) caffeinated prod-
ucts most likely stimulate ‘‘taste’’ receptors in nongustatory cells. This review is relevant for taste re-
searchers, manufacturers of caffeinated products, and caffeine consumers.
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Introduction

The sense of taste helps to determine whether or

not a food or beverage will be ingested. Typically,

sweet tastes motivate intake and bitter tastes discour-

age intake. However, two of the most widely ingested

beverages—coffee and tea1—are bitter, which contra-

dicts this general rule. One factor that likely contributes

to the popularity of coffee and tea is that they contain the

psychoactive alkaloid, trimethylxanthine (caffeine).

Many reviews describe the mechanisms supporting the

behavioral, cognitive, and emotional effects of caf-

feine.2–10 However, none have evaluated caffeine as a

bitter taste, or covered what is known about caffeine

action in cells between the tongue and the brain. These

topics deserve attention because (1) caffeine is some-

times considered a prototypical bitter;11–17 (2) there are

currently more caffeinated products on the market than

there have been in the past and many contain higher con-

centrations of caffeine than do coffee and tea18; (3) new

mechanisms may be exposed by recent discoveries of bit-

ter taste receptors lining the digestive tract, which must

come into contact with caffeine; and (4) new mecha-

nisms may be exposed by recent discoveries that caffeine

targets (e.g., adenosine receptors [ARs], GABA recep-

tors, intracellular receptors, and so on) in nontaste cells

(e.g., neurons) can modulate taste in the mouth. Thus,

this review will place a particular emphasis on caffeine’s

effects on taste cells and other caffeine-responsive cells

that reside outside of the central nervous system.

What Is a Bitter Taste?

Before discussing caffeine’s bitterness, we will briefly re-

view bitter taste in general. Bitter chemicals are structurally

diverse and include alkaloids (e.g., caffeine, quinine, nic-

otine, and morphine),19 some L-amino acids,20–23 urea,24

phenylthiocarbamide,24 6-n-propylthiouracil,24 and some

divalent salts25 (for a more comprehensive list of bitter

chemicals see Beckett et al. 26). It has been suggested

that the more bitter a compound, the more toxic it is, al-

though there are many exceptions.27 Like sweet tastes,

most bitter tastes, regardless of their structure, are detected

by G-protein-coupled receptors (GPCRs) in type 2 taste

cells (taste receptor cells [TRCs]).

When a taste (i.e., a chemical that elicits a taste per-

cept) binds to a GPCR expressed by a TRC, it activates

an intracellular signaling cascade that can result in the re-

lease of adenosine triphosphate (ATP) and stimulation of

peripheral nerve fibers. Whether or not a TRC is acti-

vated by a taste depends on the receptor it expresses.

TRCs that express T1Rs are activated by sweet or

umami tastes, and cells that express taste 2 receptors

(T2Rs) are activated by bitter tastes.

In the canonical bitter taste transduction cascade

(Fig. 1), intracellular signaling starts with activation of

G-proteins such as a-gustducin. This results in the disso-

ciation of bc subunits, which activate phospholipase Cb2

(PLCb2). PLCb2 then cleaves phosphatidylinositol 4,5-

biphosphate (PIP2) into inositol (1,4,5) triphosphate

(IP3). The IP3 triggers release of calcium from the
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endoplasmic reticulum by binding to type 3 IP3 receptors

(ITPR3s). This calcium release activates and opens the

nonselective cation channel, transient receptor potential

cation channel subfamily M member 5 (TRPM5), lead-

ing to cation influx and depolarization of the taste cell

(see Kinnamon28 for a review). This depolarization acti-

vates voltage-gated sodium channels, which trigger the

release of ATP through CALHM1 channels.29–31 The

signal, transmitted by ATP release, is then conveyed to

the brain through peripheral nerve fibers that express

purinergic receptors.32

Taste information from the peripheral nerve fibers is

first sent to a relay station in the brainstem, the nucleus

of the solitary tract, which controls swallowing, salivation,

and automatic behaviors related to taste rejection or accep-

tance.33–35 Thereafter, taste information is sent through

multiple synaptic connections to higher brain areas where

taste quality perceptions are generated. Although there is

some debate about the exact route that taste information fol-

lows (see de Brito Sanchez and Giurfa36 for a discussion),

qualities such as bitterness and sweetness can be generated

by stimulating bitter and sweet cortical fields in the gusta-

tory cortex alone,37 which provides strong support that the

gustatory cortex harbors taste percepts.

Taste compounds activate taste receptors found not

only in the tongue38,39 but also in the alimentary

tract,38–44 pancreas,45 other endocrine glands,46,47 the

airway epithelium,38,48–52 and brain.38,53–57 The ubiqui-

tous expression of taste receptors raises the possibility

that chemicals that are tasted also exert a variety of

other functional consequences. There is already evidence

that taste stimuli influence the function of cells involved

in nutrient absorption,40,53,58–61 satiety,62 fertility,47,63 res-

piration,64 and metabolism.65 Bitter taste receptors specif-

ically have been implicated in several nontaste functions

ranging from innate immunity52 to neurite outgrowth.54

Caffeine’s Action on the Canonical Bitter
Taste Pathway

Caffeine has a bitter taste, and bitter tasting chemicals

are detected by a large family of GPCRs (T2Rs). Humans

have at least 25 functional T2R subtypes, and rodents

have at least 29. Meyerhof et al. demonstrated that caf-

feine is a ligand of five human bitter taste receptors as

follows: hTAS2R7, TAS2R10, TAS2R14, TAS2R43,

and TAS2R4666 (see Fig. 2 for tissue-specific expression

of caffeine-responsive T2Rs). In their study, the level of

intracellular calcium induced by caffeine was analyzed

in HEK293T cells transfected with TAS2R genes.66

Although the effects of caffeine on taste cells that endog-

enously express T2Rs need to be confirmed, there is good

reason to believe that the receptors identified by Meyer-

hof et al. are important targets: Two studies show that

polymorphisms in TAS2R43 (a gene encoding one of

the receptors that Meyerhof et al. found to be responsive

to caffeine) are associated with coffee liking67 and the

perceived bitterness of caffeine.68 This suggests that

TAS2R43 might be particularly important for caffeine

taste detection in humans. Interestingly, ratings of caf-

feine bitterness in humans are also positively correlated

with levels of TAS2R43 mRNA.69 Thus, polymorphisms

FIG. 1. The canonical taste transduction pathway.
Caffeine, and other chemicals that elicit bitter taste sen-
sations, activate T2R-type GPCRs. GPCRs have seven
domains that span the plasma membrane. When bitter
tasting chemicals bind to T2Rs, this elicits an intracellular
signaling cascade that starts with activation of G-proteins
(e.g., a-gustducin). Activation of Ga causes the dissociation
of bc subunits, which then activate the enzyme PLCb2.
PLCb2 then cleaves PIP2 into IP3. The IP3 triggers release
of calcium from the endoplasmic reticulum by binding to
ITPR3s. This calcium release activates and opens TRPM5
leading to sodium influx and depolarization of the taste
cell. This depolarization activates voltage-gated sodium
channels (VGNC)182 boosting the depolarization triggered
by TRPM5, which triggers the release of ATP through
CALHM1 channels. The signal, transmitted by ATP release,
is then conveyed to the brain through peripheral nerve fibers
that express purinergic receptors. ATP, adenosine triphos-
phate; T2R, taste 2 receptor; TRPM5, transient receptor po-
tential cation channel subfamily M member 5.
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FIG. 2. Tissue-specific expression of caffeine-responsive T2Rs. The gene IDs for TAS2R7, TAS2R10, TAS2R14,
TAS2R43, and TAS2R46 were entered in GENEVESTIGATOR� and the Agilent Human Gene Expression 8x60K
Microarray dataset was selected. In this dataset, TAS2R14 showed the highest expression in most tissues, including
the oral cavity. However, TAS2R43 expression was high relative to TAS2R7, 10, 14, and 46 in the pancreas and thy-
mus. Whether or not caffeine modulates the function of tissues in the alimentary, circulatory, integumentary, endocrine,
immune, musculoskeletal, nervous, reproductive, respiratory, and urinary systems by acting on caffeine-responsive
T2Rs is a relatively unexplored area of research.
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in TAS2R43 associated with the perceived bitterness of

caffeine may indirectly control the expression level of

the T2R43 receptor. Alternatively, caffeine drinking

could increase expression of T2R43. However, given

that the TAS2R43 gene is absent from the genome of

*18–30% of people,69–72 yet subjects with this deletion

report they can taste caffeine’s bitterness,69 non-T2R43

mechanisms must be partly responsible for the bitter

taste of caffeine. A genome-wide meta-analysis identi-

fied polymorphisms in TAS2R7 and TAS2R14 as being

associated with coffee liking,73 again supporting the con-

clusion that Meyerhof et al. identified important targets

for caffeine detection in their in vitro study. Although

coffee contains multiple bitter chemicals, and caffeine

is responsible for only a fraction of coffee’s bitterness,74

the fact that TAS2R7 and TAS2R14 were identified as

caffeine-responsive in a heterologous expression system

suggests that these receptors might be especially impor-

tant for caffeine taste. However, there are no reports that

TAS2R46 is associated with coffee liking or the per-

ceived bitterness of caffeine. With that said, a recently

published study found that the odorant citronellal attenu-

ates caffeine bitterness by blocking T2R43 and T2R46,

further evidence that these receptors are important for

caffeine taste.75

Caffeine taste is aversive to both vertebrates and inver-

tebrates, and bitter-responsive GPCRs are at least partly re-

sponsible for aversive responses to caffeine.76 However,

bitter taste receptors are not conserved across species77

and, therefore, neither are the mechanisms responsible

for caffeine taste. For example, a recent study found

that caffeine activated only one mouse T2R: Tas2R121,

which is encoded by the gene, Tas2r121,14 an ortholog

of human TAS2r13. Polymorphisms in hTAS2R13 have

been associated with ethanol preference78 and intake in

humans,79 but hTAS2R13 is not responsive to caffeine.66

Caffeine’s action on endogenously expressed T2Rs

has not yet been confirmed in taste cells (the ability to

knockdown or block T2Rs expressed by taste cells in

culture or to conditionally knockout [KO] T2Rs in

type II TRCs would be required for confirmation), but

there is evidence that caffeine is a T2R ligand in other

cells that endogenously express T2Rs. For example,

Xu et al. demonstrated that caffeine increases calcium

release in haploid germ cells (e.g., spermatids and sper-

matozoa) from mouse seminiferous tubules. Caffeine-

induced calcium release was most likely mediated by

T2Rs because a T2R antagonist blocked the effect.63

Although the T2R antagonist used by Xu et al., pro-

benecid, has other pharmacological targets, we30 (and

others31) found that knocking out one of the main

alternative targets (Panx1)80 has no effect on taste re-

sponses. Moreover, a-gustducin (also known as Gnat-

3) KO mice do not avoid caffeine in brief-access taste

tests,81 which suggest that a-gustducin, another protein

important for signaling through T2Rs,82–87 is necessary

for detecting the aversive (presumably bitter) taste of

caffeine. It is noteworthy that in a previously published

study we found no difference between Itpr3 WT and

KO mice in intake of caffeine during 48-hour tests88

(Itpr3 is necessary for T2R-mediated signaling).

Because caffeine is a psychoactive drug with postinges-

tive effects, it is possible that the Itpr3 KO mice used

cues other than bitterness to avoid drinking the caffeine

solutions in the study.

Caffeine is a toxic deterrent to honeybees89 and other

insects at higher concentrations (e.g., the concentration

found in vegetative and seed tissues90), but at lower

concentrations (e.g., the concentration found in pollen,

which is below the bitter detection threshold for bees) it

can enhance a pollinator’s memory of reward, which

could increase the likelihood of the plant’s reproduc-

tive success.91 Caffeine appears to be the product of se-

lective pressure on plants to protect their leaves and

seeds, while encouraging pollination. Like in mam-

mals, caffeine activates canonical bitter taste recep-

tors in insects. In drosophila, at least Gr33, Gr66, and

Gr93 are important for aversive responses to caffeine.92

Knocking out Gr66 diminishes aversive responses to

the drug93,94 and activation of neurons that are respon-

sive to bitter receptor cells causes insensitivity to caf-

feine.95 Interestingly, inducing apoptosis in gustatory

receptor neurons that express Gr93 completely abolishes

caffeine sensing in drosophila.13 Either Gr93 is sufficient

for caffeine sensing or the cells that express Gr93 are

necessary for caffeine sensing. Caterpillars also display

aversive behavioral responses to caffeine, which are me-

diated by their epipharyngeal and lateral styloconi taste

sensillum—sensilla that are also sensitive to other chem-

icals that humans describe as bitter.96,97 However, it is

not clear if bitter taste receptors mediate these responses.

Because bitter taste receptors are responsible for rejec-

tion of bitter food across (nearly) all species, it is likely

that caffeine binds to these receptors because the taste

of caffeine is universally avoided. Goldfish reject caf-

feine.98 Guinea pigs, hamsters, and mice also avoid the

taste of caffeine, suggesting that it is bitter (or elicits a

negative taste quality) to these species as well.17,99 Rhe-

sus macaques generalize between quinine and caffeine

(i.e., they do not discriminate between the taste of qui-

nine and the taste of caffeine), again demonstrating its

similarity to other bitter tastes, at least in primates.100

In rodents, discrimination between caffeine and other

chemicals that taste bitter to humans has not received

enough attention. As would be expected based on their

aversive responses to the taste of caffeine, rats easily dis-

criminate between sweet taste (which elicits appetitive

responses) and caffeine taste.101 However, somewhat

surprisingly, one study found that golden hamsters do

not cross-generalize a conditioned taste aversion to bitter

tastes and caffeine, suggesting that caffeine possesses

qualities beyond bitterness that this species can detect.17
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The authors proposed that caffeine may elicit aversive

reflexes in hamsters using a nontaste route. This seems

possible given that caffeine elicits little to no chorda

tympani17 or glossopharyngeal nerve responses102 in ro-

dents. With that said, a separate study using single neu-

ron recordings found that caffeine both inhibits and

activates chorda tympani and glossopharyngeal neurons

in rats.103 Although whole-nerve recordings show small

responses to caffeine, individual gustatory nerve fibers

in rodents likely respond to caffeine. Overall, responses

to the aversive properties of caffeine are well-conserved,

but whether or not these properties always include bitter-

ness as humans perceive it or some other quality remains

to be determined.

In summary, bitter taste receptors are likely the main

mechanism responsible for caffeine’s bitterness across

species. However, there is good reason to believe that

caffeine acts on pathways that do not involve bitter

taste receptors. There are several lines of evidence that

support this claim: First, even after total ablation of bitter

responsive neurons in drosophila larvae, some avoidance

to caffeine remains intact.13 Second, some species do not

generalize between caffeine and other bitter tastes, sug-

gesting that caffeine may not elicit a purely bitter taste.

Finally, as will be discussed in the following section, caf-

feine is known to act on a number of molecular pathways

that do not involve bitter taste receptors.

T2R-Independent Mechanisms of Caffeine Taste

T2R-independent mechanisms of caffeine action on

taste cells are mediated by three types of mechanism:

(1) non-T2R receptors on TRCs (Fig. 3A), (2) plasma

membrane ion channels on nerve fibers (Fig. 3B), and

(3) intracellular (both receptor-dependent and indepen-

dent) (Fig. 4). We discuss each in turn.

Non-T2R receptors on TRCs

Adenosine receptors. Caffeine is a nonspecific AR

antagonist.4 In fact, its action as an AR antagonist in

the brain is the primary mechanism responsible for its

psychoactive effects.2 Like T2Rs, ARs are GPCRs that

modulate activity of effector molecules such as adenylate

cyclase and PLC.104 However, in contrast to T2Rs, which

are always linked to inhibitory G proteins (i.e., G pro-

teins that decrease levels of cAMP), AR antagonism

can both increase and decrease cAMP levels depending

on whether or not the AR is linked to a stimulatory G

FIG. 3. T2R-independent mechanisms of caffeine taste. Caffeine can inhibit the A2B GPCR and the GABAA channel
on TRCs (A). Caffeine can activate Trpa1 and TRPV1 channels, which are expressed by trigeminal nerve fibers (B).
GPCRs, G-protein-coupled receptors; TRCs, taste receptor cells.
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protein or an inhibitory G protein. The ultimate effect of

an AR antagonist such as caffeine depends on the relative

expression of the AR subtype in the tissue. Four ARs

have been cloned as follows: A1, A2A, A2B, and

A3.105 A1 and A3 are coupled to inhibitory G proteins.

This means that their activation inhibits adenylate cy-

clase and decreases the production of cAMP. In contrast,

A2A and A2B are coupled to stimulatory G proteins.106

Caffeine displays similar micromolar (lM) affinity at

A1, A2A, and A2B and lower affinity for A3.107

Taste cells show prominent expression of A2B

(stimulatory), moderate expression of A1 (inhibitory),

and no expression of A2A and A3.108 Thus, because

caffeine is a nonspecific AR antagonist with micromo-

lar affinities for all ARs, caffeine most likely antago-

nizes A2B (Fig. 3A) and A1, the receptors expressed

by taste cells, at the concentration typically found in cof-

fee (coffee contains *0.75 mg/mL [*4 mM] caffeine);

a typical 8-oz cup and provides a dose of 2.5 mg/kg

and a peak plasma concentration of 10 lM.4 Because sal-

ivary concentrations are 65–85% of plasma concentra-

tions if caffeine is taken in pill form, the concentration

of caffeine in the oral cavity likely ranges between

8.5 lM and 4 mM (depending on whether or not coffee

is in the mouth). Although no studies have explored

whether or not caffeine antagonism of A2B or A1 is re-

sponsible for aspects of caffeine taste, several studies

have indirectly examined the interplay between adeno-

sine and caffeine on taste with contradictory results.

One study found that adenosine reverses caffeine-

induced enhancement of NaCl and quinine taste in hu-

mans109 (the ability of caffeine to enhance flavors, at

least the flavor of soda, remains controversial110–112).

In contrast, a later study found that neither caffeine nor

caffeine paired with adenosine influenced taste respon-

sivity or taste intensity ratings in humans.113 Adenosine

can enhance sweet taste through A2B receptors in mouse

taste bud cells that coexpress the sweet sensing receptor

subunit Tas1r2.28,108 Therefore, it is possible that adeno-

sine has a general bitter-masking effect, at least in rodents

(and maybe in humans, too109). However, this seems un-

likely because adenosine does not mask responses to

other bitter stimuli in mice.108 Therefore, caffeine may

elicit bitterness or reduce sweetness by blocking the action

of endogenous adenosine at A2B. Interestingly, one study

found that preadministration of an adenosine agonist in-

creases caffeine consumption114 suggesting that adenosine

decreases caffeine’s aversive taste qualities. Furthermore,

a genome-wide meta-analysis identified 15 polymor-

phisms in ADORA2B, the gene that encodes A2B, as

being associated with coffee drinking.73 Whether or

not caffeine’s bitterness can be partly attributed to its

ability to antagonize A2B receptors remains unknown.

GABA receptors. Caffeine (and other methylxan-

thine stimulants) is thought to be an antagonist at the

benzodiazepine-positive modulatory site on GABAA re-

ceptors (Fig. 3A). The first evidence for this was provided

by Marangos et al.,115 who found that caffeine competi-

tively inhibited H3 diazepam binding. Although it remains

somewhat unclear if caffeine directly binds to GABAA re-

ceptors, or indirectly decreases binding of GABAA ligands

(i.e., if caffeine’s effect on GABAA ligand binding or cur-

rents are primary or secondary),4 the effects of caffeine on

GABAA signaling have been demonstrated using several

different methods and cell types (mainly neuronal sub-

types116–119 and caffeine seem to either effect GABAA li-

gand binding directly or to affect the stability or function

of GABAA receptors). Interestingly, GABA (the endoge-

nous amino acid ligand for GABAA receptors) masks the

bitter taste of caffeine (in addition to the bitter taste of qui-

nine, coca, and chocolate).120 It was reported that GABA is

a bitter taste receptor antagonist, but it is also possible that

GABA prevents caffeine blockade of GABAA receptors. In

taste buds, like in the mature brain, GABA is an inhibitory

transmitter. In TRCs during taste stimulation, GABA acts

on both GABAA and GABAB receptors to suppress ATP

secretion.121 It has been postulated that GABA not only

suppresses ATP secretion in taste cells but also regulates

FIG. 4. Intracellular mechanisms of caffeine taste. Caf-
feine can directly block PDEs, GRKS, and ITPR3 by en-
tering TRCs and other cells. Caffeine can activate RYRs.
GRKs, GPCR kinases; PDE, phosphodiesterase; RYRs,
ryanodine receptors.
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the growth and differentiation of taste buds.121 In support

of the role of GABA in development of oral tissue,

GABAA receptor KO mice show abnormal palate develop-

ment.122 Because GABAA receptors are also expressed in

other cells in the gastrointestinal tract, including the duode-

num where they appear to regulate motility,123 it is possible

that caffeine can also modulate gastric motility by acting on

GABA transmission in duodenal cells. In fact, increased gut

motility is a well-documented side effect of caffeine.

Although this effect of caffeine can be partly attributed to

its blockade of ARs,124 caffeine action at GABA receptors

is a possibility as well.

Plasma membrane ion channels

TRP channels. There is evidence that caffeine is not

only a bitter taste but also has other chemosensory qual-

ities such as oral irritation (e.g., burning and tingling).

However, the mechanisms supporting these sensations

are not yet clear. Published anecdotal evidence led to rec-

ommendations that patients who have facial pain caused

by trigeminal neuralgia should reduce or avoid food

and drink that contains caffeine.125 There is experimental

evidence to support this. For example, cultured rat tri-

geminal neurons respond to caffeine as measured by

changes in intracellular calcium.126 However, other alka-

loids, such as nicotine, seem to have a much stronger ef-

fect on trigeminal neurons than does caffeine. The

principal machinery responsible for trigeminal neuron acti-

vation in response to oral stimulation with taste stimuli is

TRP channels. TRP channels are expressed in taste buds

and trigeminal nerve fibers, and are important for transduc-

ing signals that give rise to the sensations of taste, irritation,

warmth, coolness, and pungency.127 Several TRP channels

could be responsible for aspects of caffeine taste (e.g.,

TRPM5, TRPV1, and TRPA1). TRPM5 is downstream

of all signaling through taste receptors and triggers ATP re-

lease necessary for the detection of taste qualities, including

sweetness and bitterness (Fig. 1). Caffeine does not appear

to act directly on Trpm5.128 In contrast, caffeine does act on

TRP channels expressed by sensory fibers (Fig. 3B). For

example, Trpv1, a receptor for irritants such as capsaicin—

the chemical responsible for the spiciness and burning sen-

sation caused by hot chili peppers—is present in sensory fi-

bers, but not TRCs. Trpv1 is activated by acidic (and basic)

pH.129 Caffeine solutions are neutral (*6.9) and there are

no published reports of caffeine activating Trpv1 channels

expressed by trigeminal fibers. However, caffeine activates

Trpv1 channels in rat nodose ganglion neurons.130 Further-

more, other bitter alkaloids (with the exception of quinine)

activate Trpv1.127,131,132 Therefore, it is reasonable to con-

clude that caffeine activates Trpv1 channels in trigeminal

fibers as well. Caffeine activates mouse Trpa1 channels

in a heterologous expression system, but inhibits human

TRPA1 channels.133 Why caffeine would have different ef-

fects on Trpa1 signaling in rodents and humans is not clear

(however, the aversive quality of caffeine does seem to be

more than bitterness in rodents. As mentioned previously,

rodents do not generalize between caffeine and other bitter

tastes, but primates do). Caffeine does not act on Trpa1

channels in moths either, again highlighting the species-

specific responses to caffeine.134

Potassium, sodium, and chloride channels. Caffeine

modulates voltage-activated ionic currents in taste cells.135

Using patch clamp and ratiometric imaging techniques on

dissociated rat TRCs, Zhao et al. found that caffeine inhibits

outwardly and inwardly rectifying potassium currents.135 In

the same study, caffeine inhibited sodium and calcium cur-

rents, yet had no effect on chloride currents.135 These results

are interesting because Breslin et al. found that NaCl sup-

presses the bitterness of caffeine in humans.136 Together,

these studies raise the possibility that the ability of NaCl

to suppress caffeine bitterness is due to NaCl-induced rever-

sal of the inhibitory effect of caffeine on sodium currents.

Intracellular targets

Caffeine is lipophilic (i.e., fat soluble). As a result, it

readily crosses all biological membranes and, thus, has

the potential to exert direct intracellular effects, indepen-

dently of cell surface receptors or ion channels (Fig. 4).

This is an important point for understanding caffeine

taste because taste quality is determined by the cell, not

by the receptor expressed by the cell. For example, sweet

taste cells that are genetically engineered to express bitter

taste receptors confer appetitive qualities to aversive chem-

icals like caffeine.86 Therefore, if caffeine unselectively

enters all types of taste cells, it could produce an unpredict-

able taste quality (i.e., a combination of all tastes).

ITPR3 and other intracellular calcium channels. Caf-

feine elicits distinct effects in cells that express many of

the effector proteins in the canonical taste pathway (e.g.,

ITPR3 and TRPM5), but do not express T2Rs. Caffeine

has no effect on TRPM5 currents; however, it can mod-

estly inhibit ITPR3-mediated calcium flux (Fig. 4).128

Given that Itpr3s have a caffeine binding domain,137

caffeine could modulate intracellular calcium release in-

dependently of T2Rs by directly binding to ITPR3. Much

evidence suggests that caffeine also increases intracel-

lular calcium levels by acting on ryanodine receptors

(RYRs)138,139 (Fig. 4). The importance of intracellular

receptors in the effect of caffeine on calcium levels is

strengthened by the finding that caffeine-induced changes

in calcium levels are dependent on intracellular stores, not

extracellular calcium levels in TRCs.135 In addition, our

unpublished work showing that Itpr3 KO mice do not de-

tect the aversive taste of caffeine during brief-access taste

tests suggests that a direct interaction between ITPR3 and

caffeine could modulate taste.

Intracellular enzymes. Phosphodiesterases: Although

much is known about caffeine’s action as a
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phosphodiesterase (PDE) inhibitor in insects, little is

known about how caffeine acts on mammalian PDEs. As

was mentioned earlier (What Is a Bitter Taste section),

when taste receptors are activated, the bc subunit of the

GPCR activates PLCb and IP3-mediated release of calcium

from intracellular stores. Another part of the taste transduc-

tion pathway involves the a subunit, a-gustducin, which

likely activates PDEs to decrease intracellular cAMP lev-

els140–144 (Fig. 4). If caffeine is able to directly interfere

with PDE activity in taste cells, this could prolong

stimulus-induced increases in intracellular cAMP or

cGMP. In fact, Rosenzweig et al. found that caffeine in-

duces rapid, transient, and gustatory tissue-specific in-

creases in cGMP levels (cGMP is a second messenger

like cAMP; however, cGMP is a more specialized messen-

ger than cAMP) and hypothesized that this rise in cGMP

levels was responsible for caffeine’s bitter taste.145 The au-

thors proposed that the increase in cGMP was due to caf-

feine’s action as a PDE inhibitor (PDEs inhibit the

degradation of cGMP). However, this hypothesis was not

investigated further.146,147

GPCR kinases: In intestinal cells, caffeine activates

GPCR kinases (GRKs) and increases calcium in a PLC-

dependent manner.148 In contrast, caffeine and other amphi-

pathic taste compounds have been shown to inhibit GRKs

in taste cells (Fig. 4).149 Because GRKs are important for

phosphorylation and desensitization of GPCRs (including

bitter taste receptors),150 caffeine may be able to modulate

the responsiveness of T2Rs, ARs, and GABARs to their li-

gands. In other words, caffeine may have the ability to mod-

ulate its own receptors by directly activating GRKs.

Other Factors Contributing to Caffeine’s Bitterness

Over the past 15 years twin studies, double-blind/

placebo-controlled trials, and genome-wide association

studies have identified associations between more than

20 genes and caffeine taste, responses to caffeine, and/or

drinking of caffeinated beverages.73,151–162 This work

sheds light on mechanisms responsible for caffeine detec-

tion and voluntary caffeine consumption. Genes encoding

bitter taste receptors, ARs, and intracellular enzymes have

all been implicated in responses to caffeine and caffein-

ated beverages, as described in What Is a Bitter Taste, Caf-

feine’s Action on the Canonical Bitter Taste Pathway, and

T2R-Independent Mechanisms of Caffeine Taste sections.

However, there are many variables to take into consider-

ation when analyzing these genetic studies, including the

caffeine vehicle (e.g., water, coffee, or soda), whether or

not the subject or animal has had prior experience with

caffeine, and age, to name a few. Next, we will discuss

these other factors.

Vehicle

Caffeine is a natural compound found in coffee and

tea and is an additive found in sodas and energy drinks.

Because of its reinforcing properties, it has been chal-

lenging to determine how the taste of caffeine per se is

influenced by other compounds in coffee and tea or by

sugars or other chemicals in sodas and energy drinks

(i.e., how caffeine taste is influenced by the vehicle). It

also remains unclear how the temperature or pH of caf-

feinated solutions influences caffeine action and caffeine

taste. There is evidence both supporting109 and refut-

ing111,112 caffeine’s purported role as a flavor enhancer.

However, there is evidence that fatty vehicles interfere

with caffeine taste. One study demonstrated that caffeine

can be sequestered by biophenols in olive oil, which

could prevent it from reaching its targets and decrease

its bitterness.163 Another study demonstrated that lipo-

proteins can inhibit nerve responses to caffeine.164

Although beverage manufacturers have described caffeine

as a ‘‘flavor enhancer,’’ evidence does not support this

claim. For example, most people cannot distinguish between

caffeinated and noncaffeinated beverages.111 Only after re-

peated pairings of caffeine and various flavors do prefer-

ences begin to shift, suggesting that caffeine’s purported

flavor enhancing effects are actually the result of its action

in the central nervous system.111,165–167 Similarly, caffeine

increases soda liking in adolescents, but only after repeated

exposures,168 suggesting that immediate taste responses are

not involved. In contrast, as mentioned previously, Breslin

et al. found that NaCl reduces the bitterness of caffeine.136

Therefore, the salt content of a beverage may affect caffeine

taste. More work is needed to understand under what cir-

cumstances caffeine modulates taste and flavor perception.

Saliva composition

Saliva composition may also determine the taste of

caffeine. Dsamou et al. demonstrated that subjects who

are hypersensitive to the bitterness of caffeine had higher

levels of amylase fragments, immunoglobulins, and

serum albumin in their saliva.169 The saliva of the

same hypersensitive subjects contained lower levels of

cystatin SN (a protease inhibitor). Therefore, proteolysis

within the oral cavity may, in part, determine sensitivity

to the bitter taste of caffeine.

Prior exposure to caffeine

Substances that are perceived as bitter are typically

avoided by animals and this may be an adaptation

that protects them from consuming foods that will pro-

duce adverse physiological effects.170–173 Consump-

tion of bitter substances such as caffeine may include

a learned component. For instance, Newland et al. found

that when caffeine-naive rats were presented with caffeine

or water, they consumed very little caffeine.114 However,

rats with a history of forced caffeine consumption con-

sumed caffeine more readily. Therefore, repeated exposure

to caffeine likely results in positive associations between

the bitterness of caffeine and its psychoactive effects.
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There may be other effects of prior exposure to caffeine

that increase its palatability, but that do not involve learning.

For example, Lipchock et al. recently found that caffeine

intake is correlated with PAV-TAS2R38 expression.174

Therefore, caffeine intake may alter expression of taste re-

ceptor genes and influence bitter detection as a consequence.

Psychiatric conditions

Differential reactivity to sweet and bitter tastes is associ-

ated with psychiatric disorders such as depression,175 alco-

holism,176,177 and posttraumatic stress disorder.178 Taste

preferences may therefore be a marker for drug abuse vul-

nerability and other psychiatric disturbances. Interestingly,

caffeine-enhanced sensitivity to the bitterness of quinine

may be a characteristic of panic disorder.178

The focus of this review is on caffeine action in taste

cells, not the brain, but the line between taste and nontaste

receptors has become blurry. Neurons are able to respond

to various taste compounds and caffeine may act directly

on bitter taste receptors in the brain to modulate bitter per-

ception. Singh et al. found that T2Rs are expressed in mul-

tiple regions of the rat brain. Tas2r4, Tas2r107, and

Tas2r38 transcripts were present in the brain stem, cere-

bellum, cortex, and nucleus accumbens.54 In the same

study the authors demonstrated that quinine could activate

these T2Rs. Caffeine likely activates T2Rs in the brain as

well because caffeine-responsive T2Rs are expressed

there (Fig. 2).56 Whether or not caffeine taste perception

is mediated by both peripheral and central bitter taste re-

ceptors remains uncertain.

Age-related responses to caffeine

Children generally dislike bitter tastes more than

adults do.179 Not surprisingly, children also display dif-

ferent responses to bitter-masking compounds. Although

sodium gluconate decreases caffeine bitter perception in

adults, it has no effect on caffeine taste responses in chil-

dren.180 Interestingly, both children and adults respond

similarly to the bitter masking effect of sucrose on caf-

feine.180 Age-related differences in caffeine taste deserve

more attention because caffeinated beverages are mar-

keted to children and adolescents.

Conclusion

Caffeine directly activates T2Rs,14,66 but there are

other taste transduction mechanisms as well, including

ARs, GABA receptors, TRP channels, and intracellular

receptors and enzymes. These targets, including T2Rs,

are expressed not only in taste tissue but also in diverse

cell types throughout the digestive, endocrine, and repro-

ductive systems (Fig. 2). In summary, caffeine should not

be considered a prototypical bitter taste—not only can it

act on many T2R-independent pathways in taste cells but

also it can activate the trigeminal system, and it acts di-

rectly on the central nervous system.

Public health message: At low concentrations the ef-

fects of caffeine are likely benign, which is why it has

been labeled a GRAS substance by the FDA. However,

exposure to caffeine is increasing due to an increase in

the number of products containing caffeine18,112 and the

concentration of caffeine added to them.181 Furthermore,

caffeinated products are being marketed to, and consumed

by, children, whose taste systems and preferences are de-

veloping. Therefore, it is important to understand how caf-

feine might influence taste sensation and perception and

the function of the digestive system. Specifically, more re-

search is needed to better understand how higher concen-

trations of caffeine might influence the function and

development of the taste system and digestive system.
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