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In public health and medicine, there is a tension between internal and external validity.1–12 

Many interventions are known to be efficacious at the individual level, but less is known 

about 1) their impact once scaled to a population level, 2) effect modification by both 

measured and unmeasured factors, and 3) which intervention components should be 

implemented universally and which adapted to local context. The field of HIV prevention 

and treatment provides an illustrative example. Randomized trials and observational studies 

have shown that immediate initiation of antiretroviral therapy for an HIV-positive individual 

improves his/her health and prevents transmission between couples and from mothers to 

children.13–16 Four community randomized trials aim to examine the impact of ‘Universal 

Test-and-Treat’ (population-wide HIV testing with immediate antiretroviral therapy 

initiation for all HIV-positive persons) on HIV incidence in several countries in Eastern and 

Southern Africa.17–20 These trials are pragmatic in that they aim to learn about effectiveness 

and implementation in real world conditions. Nonetheless, the specific components of their 

interventions, their implementation, and their impact are expected to vary within and across 
trials. Given promising interim results,21 open questions remain about nation-wide rollout 

and the heterogeneity in expected impact.

In this issue of Epidemiology, Lesko et al.12 highlight the distinction between estimating the 

effect for the study units and the effect for the target population. Concretely, the sample 

average treatment effect22–23 is the mean difference in the counterfactual (potential) 

outcomes for the enrolled units, while the population average treatment effect is the expected 

difference in the counterfactual (potential) outcomes for the population from which the study 

units were selected. It is worth emphasizing that sample and population effects are 

fundamentally different causal parameters - even when the units are drawn as a simple 

random sample from the target population, there is only one version of the treatment, and 

there is no interference.1–2,11 In other words, if all the assumptions for both internal and 

external validity held, the sample and population effects are likely to be different.
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Consider the simulation study conducted by Lesko et al.,12 hereafter called “the authors”. 

There is one value of the population average treatment effect, calculated analytically or by 

Monte Carlo simulations as −5.5%. In contrast, the sample average treatment effect is a data-

adaptive parameter; with each new selection of study units, a new value of the sample effect 

is obtained. To illustrate this point, we replicate the authors’ simulation 5000 times. For 

increasing enrollment sizes, we draw a simple random sample of n units and calculate the 

sample effect as the average difference in the counterfactual outcomes for the enrolled units 

(R code in Appendix C). The resulting minimum, median, and maximum values of the 

sample effect and its variability from our study are shown in Table 1. For the smallest size of 

100, the true value of the sample effect ranges from −14.8% to 9.2% with a median value of 

−5.8%. In some studies the intervention is highly protective and in others quite harmful. Our 

simple simulation highlights the potential dangers of immediately generalizing the sample 

effect to the population level, even when the conditions for internal and external validity 

hold.

The sample effect is also an appealing causal parameter, but has received less attention in 

public health literature. As discussed by the authors, we commonly assume the existence of 

a real or hypothetical target population from which the study units were selected and about 

which we wish to make inferences. Concretely defining this population is challenging. In 

contrast, the sample effect avoids all assumptions about a “vaguely defined super-population 

of study units”7 and is simply the intervention effect for units at hand. In the SEARCH trial, 

for example, the sample effect corresponds to the average difference in the counterfactual 

cumulative HIV incidence under the test-and-treat strategy and under the standard of care for 

the n=32 study communities.11 In this example, the sample effect captures the impact for 

approximately 320,000 people living in rural Uganda and Kenya. As Lesko et al.12 and 

others1–11 discuss, generalizing this intervention effect to a wider population (e.g. all of 

Uganda and Kenya) or transporting it to a different population (e.g. Boston or San 

Francisco) requires additional assumptions and distinct estimators. Finally, the sample effect 

will be estimated with at least as much precision as the population effect,1,22–23 especially 

under pair-matching.11,24 In particular, if there is heterogeneity in the intervention effect by 

measured or unmeasured factors, a given study will have more power to detect a sample than 

a population effect. In other words, the price for generalizing the sample to the population is 

higher variance. Altogether, the interpretability, relevance, and increased precision from 

specifying the sample average treatment effect as the target of inference make this causal 

parameter an appealing alternative to the population average treatment effect.

The authors’ presentation is focused on the enrollment (sampling) mechanism, and their 

estimators are derived under the potential outcomes framework.1–4,7,9,22–26 An alternative 

would be to consider the structural causal model of Pearl.27 Recall the authors’ notation with 

W as the set of characteristics influencing enrollment, S as indicator of being selected into 

the study, A as an indicator of receiving the exposure, and Y as the outcome. Specifically, 

we consider a binary exposure with A=1 for the intervention and A=0 for the control. For 

simplicity we define the exposure and outcome (A,Y) to be zero for units not selected (S=0). 

Then the following causal model would describe a study (observational or randomized) 

wherein units are enrolled as a function of baseline covariates and the exposure is assigned 

as a function of baseline covariates and enrollment:
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Here  denote the corresponding set of background or unmeasured factors 

that have some joint distribution . This approach for representing selection into the study 

(a threat to external validity) could easily be extended to include missing data after 

enrollment (a threat to internal validity) as well as post-enrollment covariates that influence 

the exposure assignment (additional confounders, another threat to internal validity) 

(Appendix A). Furthermore, this causal model is defined at the unit-level and implicitly 

assumes no interference. (This framework could also be extended to handle interference.) 

The authors’ simulation example is one possible data generating process, compatible with 

this structural causal model. In a randomized trial (such as considered by the authors), the 

unmeasured factors contributing to the intervention assignment  are independent of the 

others and the covariates W do not impact randomization A.

We assume that the above causal model provides a description of the data generating process 

under existing conditions and under specific interventions.27 (See Appendix 1 in Bareinbom 

and Pearl8 for a short introduction.) Counterfactual outcomes are generated by intervening 

on this causal model. To define the sample effect, we intervene to set the exposure A=a to 

generate the counterfactual outcome : the outcome that would have been observed if 

unit i received exposure-level A=a. Then the sample average treatment effect (SATE) is 

defined as the average difference in these counterfactual outcomes among enrolled units 

(S=1)

where n denotes the total number of units in the study. To define the population average 

treatment effect (PATE) in the context of biased sampling, we consider a hypothetical 

intervention to enroll the entire target population (i.e. set S=1) and assign the exposure A=a. 

We denote the counterfactual outcome under this joint intervention as Y(s=1,a). The PATE is 

then given by the expected difference in these counterfactual outcomes across the target 

population of interest:
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For illustration, we repeat the authors’ simulation study 5000 times: 1) generate a target 

population of 50,000 units; 2) from that population draw a biased sample of n=2000 units; 

and 3) for each sample calculate the SATE as the average difference in the counterfactual 

outcomes for the enrolled units (R code in Appendix C). As shown in Table 1, the sample 

effect under the biased sampling scheme ranges from −12.8% to −8.3% and is −10.4% on 

average. The sample effect is larger on average than the population effect (−5.5%), because 

units at higher risk of the outcome are selected into the study. Practically, this may suggest 

that instead of rolling out the intervention to the entire population, the greatest impact could 

be obtained by targeting the intervention to high-risk groups. Likewise, the effect 

heterogeneity may suggest alternative parameters of interest, such as the conditional average 

treatment effect, an intermediate between the sample and population effects (Appendix 

B).1,28–29

The structural causal model representation also draws a connection between the authors’ 

assumptions and estimators for external validity and the standard machinery for controlling 

for confounding, selection bias, and/or unrepresentative sampling.3–4,8,10,30–35 Given the 

sequential randomization assumption

and the corresponding positivity assumptions, we have the G-computation identifiability 

result:32

This estimand is written equivalently in inverse probability weighting (IPW) form as

where the weights could be factorized into a product of propensity score 

and selection mechanism .4,30 While stabilized weights are also possible,3 the 

above estimands showcase the equivalence when non-parametric estimators are used for the 

outcome regression and selection/exposure mechanisms in both observational and trial 

settings.
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For our simulation study, we implemented the corresponding G-computation (a.k.a. 

standardization)36–37 and IPW estimators for the population effect. For comparison we also 

implemented the unadjusted estimator, as the difference in the mean outcomes between 

enrolled treated units and enrolled control units. The results of 5000 repetitions are shown in 

Table 2 (R code in Appendix C). As expected, the unadjusted estimator is unbiased for the 

sample effect, but exhibits substantial bias when the target of inference is the population 

effect. Also as expected, the G-computation and IPW estimators are able to correct for the 

biased sampling scheme and are identical. (The algorithms are equivalent when non-

parametric estimators are used for the outcome regression and the selection/exposure 

mechanism.)

The structural causal model representation also emphasizes that a rich toolkit of estimators 

could be used to correct for biased sampling, which is presented by the authors as a threat to 

external validity. The non-parametric estimators, implemented by the authors and here, will 

break down when many covariates or a single continuous covariate influence unit selection 

(and/or the exposure mechanism in an observational setting). As an alternative, we could 

immediately implement augmented inverse probability weighting or targeted maximum 

likelihood estimation.35,38–39 These methods are double robust and can incorporate data-

adaptive (machine learning) algorithms to relax parametric modeling assumptions, while 

retaining valid statistical inference.

An important open question, not addressed by Lesko et al.12 nor in this commentary, is 

generalizability and transportability when the intervention (or its specific components) must 

be adapted to local context. We should be wary assuming the sample effect is immediately 

generalizable to the population. We should also be wary of assuming that a one-size-fits-all 

intervention is best.
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Appendix A

Let Z denote the set of post-enrollment characteristics influencing exposure assignment and 

 be an indicator that a unit has its outcome measured (i.e. is not loss to follow-up). For 

simplicity, we define the post-enrollment characteristics, the exposure, the missing data 

indicator, and the outcome (  equal to zero for units not enrolled (S=0). Then the 

following structural causal model would describe a study (observational or randomized) 

wherein units are enrolled as a function of baseline covariates, the exposure is rolled out as a 

function of baseline and post-enrollment characteristics, and missingness on the outcome is 

not random:
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Here  denote the corresponding set of background or 

unmeasured factors with some distribution. Let  denote the counterfactual 

outcome for a given unit under a hypothetical intervention to ensure its enrolled (i.e. set 

S=1), assign the exposure A=a, and ensure its outcome is measured (i.e. set . Then the 

PATE is defined as

Under the sequential randomization and positivity assumptions,32 the corresponding 

statistical estimand could be estimated with a variety of methods, including longitudinal 

parametric G-computation,40 longitudinal inverse probability weighting33,41, and 

longitudinal targeted maximum likelihood estimation.35,42

Appendix B

In 2002 Abadie and Imbens28 proposed the conditional average treatment effect as

where  indexes the n=2000 units selected for the study. The conditional effect is interpreted 

as the average intervention effect given the covariates of the study units and is equal to 

−10.4% under this biased sampling scheme:
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Appendix C

Simulation studies were conducted in R-3.3.2.43 Full R code and the resulting data set are 

available at https://github.com/LauraBalzer/On-Generalizability.
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Table 1

Summary of the causal parameters (in %) over 5000 simulations under simple random sampling of size 

n={100, 500, 2000} and the authors’ biased sampling scheme of size n=2000.

Sample average treatment effect

Min Median Max Variance

n=100 simple −14.8 −5.8 9.2 0.10

n=500 simple −10.2 −5.6 0.2 0.02

n=2000 simple −8.0 −5.5 −2.9 0.006

n=2000 biased −12.8 −10.4 −8.3 0.005
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