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Abstract

The number of clinical trials in regenerative medicine is burgeoning, and stem cell/tissue 

engineering technologies hold the possibility of becoming the standard of care for a multitude of 

diseases and injuries. Advances in regenerative biology reveal novel molecular and cellular targets 

with potential to optimize tissue healing and functional recovery, thereby refining rehabilitation 

clinical practice. The purpose of this review is to: 1) highlight the potential for synergy between 

the fields of regenerative medicine and rehabilitation, a convergence of disciplines known as 

Regenerative Rehabilitation; 2) provide translational examples of Regenerative Rehabilitation 

within the context of neuromuscular injuries and diseases, and 3) offer recommendations for ways 

to leverage activity-dependence via combined therapy and technology with the goal of enhancing 

long-term recovery. The potential clinical benefits of Regenerative Rehabilitation will likely 

become a critical aspect in the standard of care for many neurological and musculoskeletal 

disorders.
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Introduction

The combination of rehabilitation together with engineered devices and regenerative 

therapies holds potential to improve quality of life after neuromuscular injury or disease. 

The field of regenerative medicine is based on the assumption that the health of our 
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population would benefit from a paradigm shift in the way we approach the treatment of 

acute and chronic conditions so as to maximize clinical outcomes. As proposed by Daar and 

Greenwood:

Regenerative medicine is an interdisciplinary field of research and clinical 

applications focused on the repair, replacement or regeneration of cells, tissues or 

organs to restore impaired function resulting from any cause, including congenital 

defects, disease, trauma and ageing. It uses a combination of several converging 

technological approaches, both existing and newly emerging, that moves it beyond 

traditional transplantation and replacement therapies. The approaches often 

stimulate and support the body’s own self-healing capacity1.

Regenerative medicine technologies have been investigated as a means to enhance the 

functional capacity of a host tissue when endogenous regenerative mechanisms are 

inadequate or fail altogether. The enthusiasm surrounding regenerative medicine continues 

to build, and this enthusiasm is being matched with clinical deliverables at an accelerating 

pace. Over the next decades, stem cell and tissue engineering protocols hold the possibility 

of becoming the standard of care for a number of diseases and injuries. While early stem cell 

applications were initially limited to the treatment of potentially fatal conditions, clinical 

trials are increasingly investigating a diverse array of applications, including musculoskeletal 

and neurological systems. As an example, the Clinical Trials registry 

(www.clinicaltrials.gov) lists seven active studies investigating cellular therapies for the 

treatment of Duchenne Muscular Dystrophy (accessed July 19, 2016). Cell sources for these 

trials include umbilical cord mesenchymal stem cells and bone marrow derived cells. A 

similar query using the Boolean search terms, “stroke” and “stem cell”, yields 102 hits 

(accessed July 19, 2016). With return to normal tissue function as the ultimate goal of these 

biological therapies, it is clear that regenerative medicine shares an increasingly convergent 

path with rehabilitation.

Overview of Regenerative Rehabilitation

Physical rehabilitation has foundations in the targeted application of mechanical stimuli to 

enhance intrinsic tissue healing potential. Mechanobiology is a growing scientific field that 

seeks to better understand how mechanical forces induce cellular and tissue responses, and 

how these forces contribute to tissue development, homeostasis and pathophysiology. A 

central area of study within mechanobiology is mechanotransduction, the process by which 

mechanical stimuli are sensed, transmitted and translated into biologic responses (reviewed 

in 2,3). There is robust evidence supporting biologic adaptations in response to both dynamic 

and static mechanical stimuli. Advances in mechanobiology suggest that changes in cell 

mechanics, extracellular matrix (ECM) structure and composition, and mechanotransductive 

sequences may contribute to the pathophysiology of many inheritable and acquired disabling 

conditions (reviewed in 2,3). Applied mechanical stimuli represent a potent stimulus to 

harness intrinsic tissue healing capacity. This concept has served as a foundation for the 

application of rehabilitation protocols for the treatment of diseased or injured tissues.

Similar mechanical and biological stimuli can also be used to activate the nervous system to 

induce reorganization and potentially repair. Pairing physical movement with activity in the 
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nervous system is the foundation for many therapies aimed at promoting neuroplasticity. 

These approaches leverage the phenomenon discovery by Donald Hebb in the 1950s, now 

paraphrased as ‘neurons that fire together wire together’.4 Current approaches to physical 

therapy promote recovery by leveraging this activity-dependent plasticity via assisted 

movement and stimulation applied to the muscles, nerves, spinal cord or brain. Going 

forward, such active and timing-dependent strategies will be needed in combination with 

stem cell or tissue engineering solutions in order to guide the incorporation of tissue grafts 

or promote the regeneration and functional organization of endogenous stem cells.

Just as endogenous musculoskeletal and neural tissues benefit from the application of 

rehabilitation protocols to promote functional tissue recovery after injury and with disease, it 

is increasingly recognized that the functional efficacy of regenerative medicine technologies 

may be enhanced when coupled with mechanical and electrical stimuli.5–11 The recognized 

potential for synergy between the fields of regenerative medicine and rehabilitation science 

has in recent years launched the birth of a new field, Regenerative Rehabilitation.12–14 The 

International Consortium for Regenerative Rehabilitation defines Regenerative 

Rehabilitation as “the integration of principles and approaches from the fields of 
rehabilitation science and regenerative medicine. Regenerative medicine focuses on the 
repair or replacement of tissue lost to injury, disease, or age, primarily via the enhancement 
of endogenous stem cell function or the transplantation of exogenous stem cells. A focus of 
Rehabilitation science is the use of mechanical and other physical stimuli to promote 
functional recovery. The integration of these two approaches will optimize independence 
and participation of individuals with disabilities.” (www.ar3t.pitt.edu).

Successes in Regenerative Rehabilitation and related therapies

Musculoskeletal Regenerative Rehabilitation

Progress in Regenerative Rehabilitation research has arguably been the greatest when 

considering musculoskeletal applications, such as the treatment of traumatic skeletal muscle 

injuries. Although skeletal muscle is capable of remarkable regenerative potential, when the 

injury or disease is extensive and destroys the underlying architecture, regeneration is 

aborted and is characterized, instead, by scar tissue formation (reviewed in15). The 

consequence is severely impaired functional capacity of the damaged tissue. In cases such as 

these, cellular therapies have been investigated as a means to boost tissue regenerative 

capacity. Unfortunately, the therapeutic benefit of these interventions has often been limited 

by massive cell death following transplantation and a poor transplantation efficiency,16,17 

ultimately resulting in poor functional outcomes. To overcome this barrier, studies have 

demonstrated that the combination of stem cell transplantation and muscle loading increases 

the engraftment of donor cells, both in cases of myopathy6,7,18 and injury.5,19

Accordingly, surgical placement of acellular biologic scaffold materials (a tissue engineering 

approach) composed of mammalian extracellular matrix (ECM) promotes constructive tissue 

remodeling in cases of volumetric muscle loss (VML 20–22). The mechanisms underlying the 

reported functional improvements have yet to be elucidated, but it has been hypothesized 

that donor ECM-mediated response occurs through the recruitment of stem/progenitor cells 

at the site of implantation.23–26 The application of rehabilitation protocols following ECM 
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implantation has been suggested to be beneficial—even crucial—for providing the needed 

mechanical signals to encourage site-specific tissue remodeling (reviewed in 27,28). Future 

randomized studies to determine whether and how optimal rehabilitation protocols may 

enhance functional outcomes following the application of a tissue engineering device for the 

treatment of VML are warranted.

Neurological Regenerative Rehabilitation

In the central nervous system (CNS), electrical and chemical signaling are believed to be the 

strongest drivers of plasticity and remodeling. Following injury to the CNS, fibrosis 

formation can alter the biophysical tissue properties and may trigger a multitude of 

downstream cellular responses and strongly influence plasticity and recovery. Indeed, static 

mechanical and electrical properties of the cellular microenvironment have been shown to 

exert potent effects on mesenchymal stem cell regenerative potential.29,30 Spinal cord and 

hippocampal neurons grown on a soft gel substrate were shown to form three times as many 

branches compared to neurons grown on stiffer gels.31 Together, these studies suggest that 

complementary methods to optimize the biophysical microenvironment (e.g. through 

pharmacological or cell-based therapies) may be a critical step in realizing the full potential 

of rehabilitation protocols after spinal cord injury, stroke, or traumatic brain injury.

More traditional interventions for CNS trauma involve activity dependent therapies. For 

example, following spinal cord injury or stroke, assisted locomotor training is used with the 

goal of delivering synchronous input both above and below a lesion.32,33 As reviewed below, 

such interventions may also employ electrical stimulation of the muscles, peripheral nerves, 

or spinal cord to activate the affected neuromuscular tissue. In addition to direct efferent 

activation, such stimulation often also results in activation of sensory afferents, providing 

coordinated input to the CNS distal to a lesion.32–34

Several methods exist for electrically or magnetically activating the brain and spinal cord 

after injury. Methods of electrical stimulation include application of current to the dorsal 

surface of the spinal cord, termed epidural stimulation (Figure 1). Early human studies are 

possible due to the off-label use of stimulators designed to alleviate chronic pain.35–37 Non-

invasive methods of spinal stimulation are also possible using magnetic fields, which have 

improved spasticity following spinal cord injury for up to 24 hours.38 Magnetic stimulation 

of the lumber spinal cord can be triggered by upper extremity movement to create an 

activity-dependent paradigm where stepping movements are synchronized with arm swing in 

spinally-intact volunteers.39

Parallel work in animals utilizes hair-like wires within the spinal cord, termed intraspinal 

microstimulation (ISMS; Figure 1). Intraspinal microstimulation can evoke functional 

synergies for walking40 and reach/grasp.41,42 Such stimulation can also lead to long-term 

improvements in forelimb function in animal models of spinal cord injury,11 especially when 

triggered by residual muscle signals in an activity-dependent paradigm.10 While intraspinal 

stimulation is more invasive than epidural stimulation, it is currently scheduled for the first 

human experiments and provides much greater specificity of activation that may benefit the 

incorporation of regenerative therapies (see below).
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In both the brain and spinal cord, pairing of artificial stimulation can benefit individuals 

recovering from stroke and spinal cord injury.43,44 Application of peripheral nerve 

stimulation followed by transcranial magnetic stimulation after an appropriate latency can 

reinforce45,46 or inhibit44 connections either within the intact brain or in subjects recovering 

from stroke. Similar mechanism have been applied to the cervical spinal cord after injury43 

to reinforce weak but spared connections bypassing a lesion. Even stimulation applied 

directly to the brain surface improves function in animal models of ischemic stroke.47,48 

Further, paired stimulation delivered to the brain or brain and spinal cord can lead to long-

term changes in synaptic strength in the intact49,50 and injured CNS.51 Building on the 

success of constraint induced therapy,52,53 if such methods of stimulation can incorporate 

time- or activity-dependence, they may induce long term plasticity and recovery. Going 

forward, efforts are required to assure that such stimulation methods are effectively 

combined with physical therapy, and eventually cellular and regenerative therapies, in order 

to optimally improve function after injury.

Appropriate neural activity is likely a prerequisite for stem cells to improve function in the 

damaged central nervous system. Neural activity is critical for avoiding cell death following 

insult,54,55 improves blood perfusion and the related health of neurons,56 and up-regulates 

brain-derived neurotrophic factor (BDNF), which is implicated in plasticity and 

recovery.57,58 In contrast, reduced activity such as that observed in models of spinal 

muscular atrophy is associated with reduced axon growth.59 Based on this cumulative 

evidence, one of the most successful stem cell transplant studies coupled brief electrical 

stimulation of the peripheral nerve with motor neuron cell grafts and demonstrated 

impressive cell survival and muscle re-innervation.60 This landmark study suggests that the 

combination of regenerative cell therapies and artificial stimulation may be critical for 

achieving targeted plasticity and functional recovery following injuries or degeneration of 

the neuromuscular system.

Obstacles & Barriers to Regenerative Rehabilitation- What is holding us 

back?

The clinical translation of regenerative medicine approaches for the enhancement of physical 

functioning presupposes the existence of a critical mass of basic scientists working in close 

collaboration with rehabilitation clinicians. Unfortunately, while interdisciplinary research is 

conceptually desirable, there are few opportunities providing rehabilitation scientists with 

the resources and training necessary to become engaged in the field of regenerative 

medicine. Of the almost 1300 currently funded studies investigating “stem cell 

transplantation” or “tissue engineering” listed on NIH reporter, only eight are housed in 

rehabilitation departments (Accessed July, 2016).

One reason for the disconnect between regenerative biology and rehabilitation studies may 

be that many rehabilitation programs lack faculty members with the expertise necessary to 

teach principles and concepts in the domain of cellular and regenerative biology. Physical 

therapy and occupational therapy departments are often in schools without basic science 

research programs, thereby limiting opportunities for interaction with basic science 
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colleagues. Similar barriers have impeded those working in the basic sciences from 

understanding application of their work to clinical practice, as they generally have limited 

exposure to rehabilitation practice. As a result, regenerative medicine scientists may not 

consider clinically available approaches, technologies such as robotics and modalities such 

as neuromuscular electrical stimulation or ultrasound that may be beneficial in targeting the 

mechano-transductive pathways so fundamental for driving the tissue regenerative cascade. 

Moreover, given that functional benefit is the ultimate goal of all translational regenerative 

therapies, basic scientists stand to benefit from the expertise of rehabilitation specialists in 

functional outcomes assessment.

There is also a large unmet need for better pre-clinical models of rehabilitation. Currently, 

pre-clinical models of rehabilitation are limited, and the bulk of the studies employ treadmill 

or wheel running, for example. Yet clinical rehabilitation consists of much more than just the 

presence or absence of exercise, and investigation into combined rehabilitation modalities 

such as neuromuscular electrical stimulation, ultrasound, etc., to enhance stem cell 

transplantation or implantation of a tissue engineering device is needed. Finally, timing, 

dosing and intensity are all critical variables for both pharmacological and rehabilitation 

interventions following central nervous system injury, and work is ongoing to determine the 

optimal paradigm for combining multiple therapies.61,62

Conclusions and charge to the field

As is our tradition, rehabilitation practice must continuously evolve such that it may be 

responsive to scientific and technological innovations that impact clinical practice. 

Undoubtedly, progress in the field of rehabilitation will increase proportionately with the 

pace at which rehabilitation professionals keep up with innovations in medical practice. Just 

as the prescription of rehabilitation is the standard of care following the onset of most 

musculoskeletal and neurologic injuries and diseases, it is likely that rehabilitation will 

necessarily be the standard of care as regenerative medicine technologies increasingly make 

their way to clinical practice.

To drive knowledge transfer and the technical capabilities of medical rehabilitation 

researchers to perform cutting edge Regenerative Rehabilitation investigations, we must 

begin to systematically promote the integration of basic scientists with rehabilitation 

specialists. We must train rehabilitation clinicians who can help oversee the quality, safety, 

and validity of these innovative Regenerative Rehabilitation technologies and protocols.

In addition, to be effective in this partnership, there is a need for an improved mechanistic 

understanding by which mechanical forces and modulation of the tissue microenvironment 

(e.g. through exercise and modalities) may be used to optimize outcomes following a 

regenerative medicine intervention. Molecular and cellular mechanisms must be the 

foundation upon which clinical Regenerative Rehabilitation protocols are derived, and a 

better understanding of these mechanisms will allow for the more rational design of clinical 

protocols that elicit targeted and specific cellular and tissue responses. In the absence of 

these guiding mechanisms, clinical protocols will be left to a trial-and-error approach, an 

approach that is ineffective both in terms of clinical outcomes as well as economics.
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Finally, our ability to utilize engineered devices to interact with the neuromuscular system is 

beginning to accelerate. Implanted stimulators capable of triggering activity-dependent 

stimulation are now in early human studies for essential tremor and Parkinson’s disease.63 

Experimental devices are already capable of delivering electrical, magnetic,64 optical,65 and 

pharmacological66 stimulation to targeted locations within the brain and spinal cord, as well 

as the peripheral nerves and muscles.67 Optogenetics, or light activation of neurons,68,69 is 

currently under trial to treat blindness.70 This technique may soon be combined with stem 

cell interventions to enable targeted activation of grafts in situ. Given the current pace of 

technological advancement, there is tremendous potential to leverage engineered solutions to 

enhance biological regeneration.

The combination of regenerative therapies such as stem cell or tissue grafts with methods to 

induce appropriate mechanical or electrical stimuli within the injury or diseased site is likely 

critical to the success of Regenerative Rehabilitation. If emerging technologies can be 

effectively coupled with sound physical therapy practice to induce activity-dependent 

remodeling of injured tissues, Regenerative Rehabilitation therapies may soon dramatically 

improve plasticity and participation for people with injuries to the neuromuscular system.
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Figure 1. 
Illustration of spinal stimulation techniques applied distal to an injury. Epidural stimulation 

is applied to the dorsal surface of the spinal cord, adapting an FDA-approved treatment for 

chronic pain. Epidural stimulation most likely activates sensory afferents and dorsal roots to 

recruit spinal networks below the injury. In the presence of constant epidural stimulation, 

people with otherwise complete paralysis can move their joints individually, and have lasting 

improvements in autonomic function. Intraspinal stimulation (ISMS) is applied via thin 

wires implanted within the spinal cord to target the intermediate and ventral lamina where 

the motor neuron cell bodies are located. ISMS can evoke functional synergies from select 

stimulating locations and lead to long-term recovery of function when applied 

therapeutically or in an activity-dependent manner. Reprinted with permission from 71.
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