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Abstract

Our understanding of the events taking place within the blood following severe injury with 

hemorrhagic shock is quickly evolving. Traditional concepts have given way to a detailed and 

nuanced understanding of coagulopathy, bleeding, and shock at the cellular and biochemical 

levels. In doing so, the tremendous complexity of events taking place within the blood have been 

illuminated and present an additional challenge. In this review, we seek to understand shock, 

endotheliopathy, and coagulopathy not as isolated events, but rather as the result of changes taking 

place within a single dynamic organ system. This review will highlight the key linkages existing 

between blood and endothelium and how these processes are perturbed by hemorrhagic shock to 

produce a syndrome that we call “hemorrhagic blood failure.” From this perspective, it may be 

regarded that the blood organ system fails in providing its vital functions predictably after injury. 

We review how accumulation of oxygen debt during shock leads to endotheliopathy and 
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coagulopathy, and how current transfusion strategies may impact the syndrome of hemorrhagic 

blood failure.
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The burden of traumatic bleeding

Trauma is responsible for 1 in 10 deaths worldwide and is the leading cause of death of 

people less than 45 years old (1). The two most common causes of death in trauma victims 

are brain injury and hemorrhage (2). Hemorrhage accounts for the preponderance (~60%) of 

deaths in patients with potentially salvageable injuries (~50% of those injured), amounting 

to about one third of trauma deaths (1). Over 90% of potentially-survivable US military 

combat deaths are attributed to hemorrhage (3). The majority of all victims who die from 

hemorrhage will die within the first several hours following injury, indicating that a great 

number of them could be rescued if hemorrhage could be stopped quickly (4,5).

Impaired clot formation, or coagulopathy, that increases bleeding is also present in 20–30% 

of severely-injured trauma patients immediately after injury and is associated with increased 

incidence of multi-organ failure, intensive care utilization, and death (6). Traumatic 

coagulopathy is a distinct and multilayered biochemical response to tissue injury and 

hemorrhagic shock (7). When present on arrival to the Emergency Department, 

coagulopathy is associated with 4–6-fold increased mortality (8). The pathophysiology of 

traumatic coagulopathy is now recognized to be multifactorial and networked in nature, 

consisting of contrasting coagulation states that produce an emergent syndrome that 

contributes to failure of the vital functions of the blood.

Blood as an organ system

Body organs are composed of a variety of distinct tissues that work together to perform one 

or more coordinated functions. Of utmost importance is the circulatory system. The main 

function of the circulatory system is to provide oxygen and nutrients, clear waste products, 

and provide a conduit to connect organs that are separated physically from one another. In 

doing so, the circulatory system links all organ systems and dynamically-regulates 

physiological homeostasis.

Using this perspective, it can be realized that the many components of the cardiovascular 

system must interact intimately and that many subsystems exist therein. None are more 

complex nor dynamic than the blood-endothelial system. The intimate coordination required 

of these two separate tissues to provide a coordinated physiological function meets the 

criteria for classification as a separate organ system. In fact, they may be considered the 

largest organ system in the body. Such separations are artificial at best, and must be made if 

only in the hope of improving overall understanding. Nonetheless, it is useful to consider the 

liquid blood and its components as existing and functioning in concert with the endothelium 

which it bathes, and also derives so much close regulation. The blood-endothelial unit, 
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which we will refer to simply as “blood” in this review, will be approached as a single organ 

system in the sense that these individual components are inextricably linked and closely 

support each other’s function.

Definition of hemorrhagic blood failure

We define hemorrhagic blood failure as an emergent state of blood that arises during 

accumulation of a critical level of oxygen debt (shock). Critically-low tissue oxygen 

delivery, endotheliopathy, platelet dysfunction, and coagulopathy should all be present to 

meet our definition of blood failure. (Fig. 1) These processes are currently recognized to be 

present individually. However, it is useful to consider them together given their 

interconnectedness. Some changes brought about by blood failure may help to maintain 

blood fluidity or protect by activating coagulation during limited blood loss or hypotension 

(9). However, in the particular case of combined tissue injury with hemorrhagic shock where 

blood can be lost from wounds, emergence of blood failure is associated with dramatically-

increased mortality (8).

Who gets hemorrhagic blood failure?

Evidence suggests that trauma victims having both tissue injury and hemorrhagic shock are 

susceptible to intrinsic hemorrhagic blood failure, which is further modified by plasma 

dilution, hypothermia, and acidosis, some of which can be iatrogencially produced. 

Approximately 25–35% of severely injured victims presenting with both severe anatomical 

injuries defined by an injury severity score > 15 and hemorrhagic shock defined by base 

deficit < 4 meq/L will also have coagulopathy which includes platelet dysfunction, partly 

meeting our definition of hemorrhagic blood failure (7,8). Significant tissue injury may not 

be absolutely required to induce blood failure because coagulopathy can arise after blood 

loss with minimal tissue injury such as in the case of rupture abdominal aortic aneurysms 

(10). However, tissue injury likely contributes to coagulopathy and may speed its onset with 

less blood lost through processes that exacerbate tissue hypoxia. Those experiencing 

polytrauma or high-energy mechanisms of injury, such as blast injuries or high-velocity 

gunshot wounds seen with military trauma, typically have an increased incidence of 

coagulopathy (11). Specific types of tissue injury, such as traumatic brain injury, may 

generate especially strong perturbations in blood homeostasis, contributing to the overall 

syndrome of blood failure when shock is also present (12). However, in trauma patients it is 

often difficult or impossible to distinguish between the independent contributions of shock 

and tissue injury. When stratified in a non-biased way using hierarchical clustering analysis 

of multiple coagulation parameters, overt coagulopathy typical of that seen as a component 

of blood failure was present in approximately 11% of Emergency Department trauma 

patients (13). These subjects were bluntly injured (78%), were significantly injured (median 

ISS = 41), and were in shock (median base deficit = 8.1 meq/L). It is clear that blood failure 

can emerge as a result of hemorrhagic shock, but is also modulated and exacerbated by 

tissue injury. Clinical suspicion should remain highest in polytrauma patients having 

significant tissue injury that also have evidence of blood loss.
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Effect of blood failure on clot formation

Of paramount importance are the effects of hemorrhagic blood failure on hemostatic clot 

formation. Measurements obtained in the field at the site of injury prior to hospital transport 

indicate that coagulopathy contributing to blood failure can manifest almost immediately 

after injury (14,15). Abnormal thrombelastography (TEG) measurements and Protein C 

activity measurements taken in the field tend to persist or worsen over time (14,15). Clot 

phenotypes change in a predictable way as shock severity increases when measured using 

viscoelastic techniques such as TEG or rotational thromboelastometery (ROTEM). 

Davenport et al. found that a decrease of clot amplitude (or strength) was the first significant 

viscoelastic change noted in the Emergency Department when comparing trauma patients 

grouped according to a mild increase of prothrombin ratio > 1.2 (16). Notably, platelet-

induced clot contraction, which is a major contributor to clot amplitude, was the first major 

abnormality noted to be present in blood obtained prehospital (14). Over the ensuing 

minutes and hours clot amplitude tends to decrease further and clot onset times become 

prolonged (16). Increased clot lysis then often becomes apparent, with the intensity of lysis 

becoming strongly predictive of increased mortality (17). Once terminal stages are reached, 

i.e. after traumatic cardiac arrest, the viscoelastic tracing approximates a diamond shape 

with shortened onset time and a rapid, but short lived, amplitude that decreases to zero 

within 30 minutes of clot formation time (18). Termed the “Death Diamond” by Chapman et 

al, this clot formation phenotype signals a terminal state of blood failure. Interestingly, 

asphyxia alone can produce similar clot formation phenotypes to that seen in the most severe 

trauma patients. In drowning victims, Schwameis et al. found that ROTEM clot formation 

was severely diminished or abolished, and positively correlated with plasma tPA 

concentration. Clot formation could be rescued in these drowning victims using fibrinogen 

supplementation, antifibrinolytics, and heparinase (19). These results support a strong 

linkage between injury, tissue hypoperfusion, and coagulopathy manifested by immediate 

platelet dysfunction that progresses to rapid anticoagulation within moments, and 

overwhelming hyperfibrinolysis within hours of injury.

Blood failure is initiated by shock

Blood failure is strongly-linked to the presence of shock. This linkage is supported by both 

preclinical animal studies of hemorrhagic shock and observational human clinical data. The 

evidence suggests that hemorrhagic blood failure is initiated and propagated by blood loss 

that decreases systemic oxygen delivery to critically low levels incapable of supporting 

aerobic metabolism. Once the lower threshold for critical oxygen delivery is surpassed, an 

instantaneous oxygen deficit is incurred, oxygen becomes maximally extracted from the 

blood by the tissues, and anaerobic metabolism increases. Oxygen debt is the accumulation 

of oxygen deficit over time, and represents both the severity of shock and time spent in the 

shock state (20). The burden of accumulated oxygen debt must be repaid by increasing 

oxygen delivery above baseline levels in a timely fashion in order to restore metabolic 

function and prevent ongoing organ injury at the cellular level (21,22). Therefore, simply 

returning oxygen delivery to normal basal levels after accumulation of oxygen debt is not 

sufficient to prevent subsequent organ injury. Instead, a substantial amount of oxygen debt 

must be repaid to prevent significant or permanent organ injury because metabolic activity 
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continues during cellular ischemia, leading to altered cellular and subcellular membrane 

potentials, accumulation of byproducts of anaerobic metabolism, and activation of 

neurovascular compensatory mechanisms (23). A period of increased aerobic metabolism is 

required to reverse these changes, replenish oxygen and the phosphagen, glycogen-lactic 

acid system, and return to physiological homeostasis. Therefore, to understand how shock 

induces blood failure, it is important to understand the cellular and metabolic changes that 

take place during shock.

Oxygen participates directly in aerobic metabolism as a terminal electron acceptor (or 

oxidant). More specifically, oxygen interacts with mitochondrial cytochrome c oxidase 

(Complex IV) which transfers membrane electrons produced by upstream cytochromes to 

oxygen, creating water, and pumping the hydrogen protons required to drive ATP synthase 

(Complex V), producing ATP. When oxygen delivery is critically-low, oxygen becomes 

limiting as the terminal electron acceptor and ATP production decreases. This results in a 

shift towards anaerobic metabolism, and an increase of mitochondrial membrane electron 

burden which alters and destabilizes mitochondrial membrane electrochemical potentials 

(23). Electrons begin to leak from the mitochondrial membrane, and what oxygen is 

available is pathologically reduced to form reactive oxygen species such as superoxide 

radical. Superoxide can subsequently react with nitric oxide to form peroxynitrite, a highly 

toxic radical which nitrosylates tyrosine moieties and alters protein function. In addition, 

superoxide dismutase catalyzes formation of hydrogen peroxide from superoxide. Peroxides 

can form extremely-damaging hydroxyl radicals when antioxidant systems based on catalase 

and glutathione peroxidase become overwhelmed (24,25). As oxygen debt accumulates, 

ongoing production of these oxidants can induce increasing and irreversible cellular damage 

in the form of protein nitrosylation, lipid peroxidation, and DNA damage (24). Oxidants can 

also play a role in inflammatory signaling as cytokine-induced second messengers (25,26).

During shock, aerobic mitochondrial metabolism subsequently shifts to anaerobic pathways 

within the cytosol and lactate assumes the alternative role of the terminal electron acceptor 

from NADH by the action of lactate dehydrogenase on pyruvate (27). Intracellular lactate is 

shuttled from the cytosol to the extracellular space resulting in rapid accumulation of 

extracellular lactate. Importantly, adrenergic activation and catecholamine release induced 

by neurovascular compensation also stimulates lactate production by activation of the Na+-

K+-ATPase so that lactate is enriched in the blood to be used as an alternative fuel for vital 

organs (28). Concomitant vasoconstriction occurring in part due to increase adrenergic 

output further decreases nutritive flow to many organ systems thus increasing tissue hypoxia. 

These changes affect the blood by causing altered blood redox potential, lactic acidosis, and 

an increase in adrenergic mediators such as epinephrine (29,30). The resulting effects on 

endothelial cells, plasma proteins, and blood cells induce the endotheliopathy of trauma that 

includes the coagulopathy that represents blood failure.

The role of endothelium

The vascular endothelium is an organ in itself that is heterogeneous and communicates 

systemically throughout the body (31). In severe hemorrhagic shock and trauma, the 

endothelium is damaged and this leads to the development of an endotheliopathy of trauma 
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characterized by three main components: 1) endothelial compromise and paracellular 

permeability, 2) dysfunctional coagulation, and 3) inflammation; all components which 

potentially contribute to blood failure (32, 33). Endothelial cells regulate the integrity of the 

blood-organ barrier and clot formation including both pro-coagulant and anticoagulant 

functions. Induction of the endotheliopathy of trauma by hemorrhage and trauma involves 

hypoxia, endothelial cell surface receptor activation by inflammatory mediators and growth 

factors, binding of platelets, red blood cells and leukocytes to activated endothelial cells, and 

production of coagulation pathway intermediates. An understanding of the role of the 

endothelium in initiation and propagation of the endotheliopathy of trauma and blood failure 

is primarily based upon pre-clinical work in vitro and in vivo in animal models of 

hemorrhagic shock and trauma. Human clinical trials have also provided some observational 

insight (34,35). Under normal physiological conditions, the endothelial surface maintains 

blood fluidity and regulates flow by multiple anticoagulant mechanisms. The surface-linked 

protein Thrombomodulin binds thrombin converting it from a potent procoagulant to an 

anticoagulant by increasing its affinity for protein C above that of fibrinogen (36). Activation 

of Protein C can further reduce Factor V and VIII levels. Activated protein C also interacts 

with endothelial cells to activate cell survival responses and maintain the endothelial barrier 

(37). Local synthesis of prostacylin (PGI2) and metabolism of ADP to adenine nucleotides, 

also inhibits platelet activation, adhesion, and aggregation. Endothelial cells also regulate 

vasoreactivity and vascular patency by synthesizing nitric oxide, a potent vasodilator, and 

tPA which activates plasminogen to plasmin, the primary proteolytic enzyme of fibrin 

(31,37).

Paracellular permeability leading to organ edema and organ failure is caused by breakdown 

of endothelial cell-cell tight and adherens junctions that regulate the endothelial blood-organ 

barrier in various tissues. This barrier is tissue specific and is maintained by structural 

components (i.e. adherens junctions), cellular components (i.e. smooth muscle cells and 

pericytes), and extracellular matrix proteins working in unison to prevent vascular 

permeability. These components form the tethers that hold the endothelium together. Cell 

surface receptor based signaling is a key component that also regulates the blood-organ 

barrier. Antagonistic signaling of angiopoietins 1 and 2 signal via the Tie-2 receptor to 

tighten (Ang-1) or loosen (Ang-2) the barrier that separates the strongly procoagulant 

subendothelial tissues from blood (38). An additional layer of protection is afforded by a 

thick surface matrix made up of membrane-bound glycoproteins and proteoglycans having 

heparin-like activity called the glycocalyx. The glycocalyx is a protective border on 

endothelial cells that regulates endothelial permeability, shear stress, limits interactions with 

circulating blood cells, and inhibits local thrombin activity (39). However, with traumatic 

injury and shock, injured endothelium can promote coagulation and barrier disruption when 

activated by releasing Ang-2, tissue factor, von Willebrand factor (VWF), platelet activating 

factor, and PAI-1 (39). Therefore, the endothelium can exist in a quiescent anticoagulant or 

activated procoagulant phenotype depending upon local and systemic blood and tissue 

conditions.

Hemorrhagic shock with cellular ischemia affects endothelium by activating both 

procoagulant and anticoagulant responses to various degrees. Local acidosis can induce a 

decrease in nitric oxide and PIG2 production promoting vasoconstriction and platelet 
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adhesion (40). Amongst the first events are shedding of the glycocalyx, which releases 

syndecans with antithrombotic properties into the blood stream (34,35,41,42). The extent to 

which these shed products are capable of measurably anticoagulating the blood remains 

unknown. However, clot formation can be improved in blood from coagulopathic trauma 

patients in the presence of heparinase, suggesting a role for autoheparinization of the blood 

as a component of coagulopathy (43). Circulating epinephrine and high circulating 

syndecan-1, a marker of endothelial glycocalyx degradation, has been positively correlated 

with the degree of glycocalyx shedding and mortality in trauma patients (35). The 

catecholamine surge correlated to patient mortality also includes biomarkers of endothelial 

cell damage, degradation of the glycocalyx, hyperfibrinolysis and coagulopathy that occurs 

after trauma, all components of the endotheliopathy of trauma that potentially lead to blood 

failure.

Endothelial cell-blood cell adhesion also leads to vascular endothelial compromise in 

hemorrhagic shock. An important consequence of glycocalyx shedding is the enabling of 

direct interactions between inflammatory blood cells and their mediators and the endothelial 

surface. Endothelial exposure may activate platelets as indicated by increased plasma soluble 

CD40 ligand (sCD40L), a platelet-derived inflammatory mediator that is associated with 

sympathoadrenal activation, immune system activation, and increased mortality (44). 

Activated neutrophils migrate to the endothelial surface, contribute to oxidation, and activate 

coagulation locally by release of neutrophil extracellular traps (44). Local endothelial 

oxidation is also capable of directly promoting red blood cell adhesion and inducing local 

thrombosis as demonstrated experimentally by local application of Ferric Chloride (46).

Oxidative stress from activated neutrophils may also directly affect important coagulation 

factors. Oxidation of a single key methionine in Aα-C domain of fibrinogen to methionine 

sulfoxide by hypochlorous acid, produced by activated neutrophils, can disrupt fibrin 

polymerization in vitro (47). Methionine sulfoxide content was also found to be significantly 

increased at the same position in coagulopathic trauma patients (48). Taken together, the 

complex processes regulated on the surface of the vascular endothelium are critical to 

homeostasis and repair in both health and disease. Elucidation of the complex components 

and mechanisms of action of the endotheliopathy of trauma and its contributions to blood 

failure is vital to understanding relevant therapeutic targets in treating the disease.

Coagulopathy

Many observational human clinical studies support coagulopathy as a major component of 

blood dysfunction after trauma. During shock the endothelium responds to maintain blood 

fluidity through the action of multiple anticoagulant responses. A primary response to 

hypotension and central hypovolemia is release of tPA to activate fibrinolysis (9). In 

addition, soluble thrombomodulin and activated Protein C are increased in the blood (49). 

However, levels of activated Protein C reported in trauma patients are insufficient to 

anticoagulate normal plasma alone (50). Platelets can also provide sufficient activated FV to 

support hemostasis and overcome even super-physiologic concentrations of activated Protein 

C (50). In addition, procoagulant activity and thrombin generation is generally accepted to 

be increased above healthy control levels in the blood of trauma patients, even those with 
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coagulopathy (51–53). This suggests that trauma patient blood, even in the setting of 

prolonged PT/INR may not be truly anti-coagulated. Abnormalities in clot-based assays like 

PT/INR that might suggest anticoagulation likely reflect complex interactions of fibrinogen 

depletion, fibrin degradation product interference with fibrin mesh formation, dysregulated 

thrombin generation, and excess plasmin activity manifested most obviously in fibrinolysis.

Perhaps more important to the pathophysiology of coagulopathy during blood failure is the 

increase of proteolytic activity within the blood. Multiple proteolytic enzymes are increased 

in blood after trauma, including neutrophil elastase and plasmin (54). Plasmin is a serine 

protease having wide proteolytic activity against a multitude of coagulation proteins, 

membrane proteins, and integrins. (Table 1.) Plasmin proteolysis can inactivate FV, FVIII, 

FXIIIa, and can activate FXII, thus linking its activation to complement, inflammation, and 

immunity by direct generation of bradykinin from high molecular weight kininogen (55–63). 

However, the most direct effect of plasmin on coagulation is its activity against both 

fibrinogen and fibrin which contributes to rapid fibrinogen consumption and fibrinolysis 

after trauma (64,65). The degree of fibrinolysis is positively associated with mortality and 

likely proportional to the degree of shock, even when it is not sufficient to induce whole 

blood clot lysis (66). Overall, severe trauma and shock appear to increase both thrombin 

generation and plasmin activation, with an early increase in thrombin and a gradual increase 

in relative plasmin activity over time. Interestingly, some degree of physiological fibrinolysis 

may be beneficial after trauma. Moore et al, have demonstrated in a multicenter cohort that 

both increased fibrinolysis and a lack of fibrinolysis or fibrinolytic resistance are both 

associated with increased mortality after trauma (67). Therefore, some degree of fibrinolysis 

may support vascular patency during low flow states, but may also exacerbate blood loss 

when significantly increased or when bleeding wounds are present. Randomized controlled 

human data suggests that using an antifibrinolytic agent to inhibit plasmin-induced 

fibrinolysis confers a significant survival advantage for trauma patients. The CRASH-2 trial 

demonstrated a clear mortality benefit for the use of tranexamic acid, an antifibrinolytic 

lysine analogue, if administered within 3 hours of injury (68). Questions remain regarding 

appropriate patient selection for antifibrinolytic therapy, however, it is clear that shock-

induced blood proteolysis is an important component of coagulopathy and a driver of blood 

failure. Inhibition of plasmin activation with tranexamic acid in the setting of trauma and 

shock also improves epithelial and endothelial barrier function and reduces tissue edema and 

injury, likely in part due to reduced bradykinin generation (69). This effect underscores the 

interconnectedness of blood and the endothelium as an integrated organ system.

Another important contributor to coagulopathy and hemorrhagic blood failure is platelet 

dysfunction. Circulating platelets act to initiate clot formation at wounds by adhesion and 

aggregation during primary hemostasis. They also provide a local environment that supports 

thrombin generation and they forcefully contract fibrin to stabilize clots. Platelet dysfunction 

after trauma, measured by decreased impedance aggregation has been strongly associated 

with increased mortality (70). The mechanism of platelet dysfunction remains unclear, given 

that the surface of dysfunctional platelets also appear to be paradoxically activated (71). 

Platelet-induced clot contraction is a determinant of clot strength after injury and partly 

explains the variability in clot strength seen in Emergency Department trauma patients (72).
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Shock appears to induce a spectrum of endothelial-driven coagulation responses that initially 

promote a procoagulant phenotype that rapidly transitions to anticoagulation as oxygen debt 

accumulates and shock worsens. These responses are coordinated at the blood-endothelial 

interface and are modulated by circulating catecholamines, anaerobic metabolites, 

inflammation, oxidation, proteolysis, and cellular dysfunction. (Fig. 2)

Blood transfusion to treat blood failure

To adequately treat hemorrhagic blood failure, we must consider holistic treatments that 

simultaneously address its multiple components. Repayment of oxygen debt must be 

accomplished in addition to simultaneous treatment of both endothelial injury and 

coagulopathy. The role of using oxygen carriers to increase tissue oxygen delivery as well as 

metabolic therapies which reduce tissue oxygen consumption should be considered and 

researched to counter the primary effects of tissue hypoxia on blood failure. Further insight 

into how blood failure may treated can be gained by identifying the contributions and 

limitations of individual blood product components currently in use. (Fig. 3)

Packed red blood cells (PRBC’s) are transfused to primarily address oxygen debt by 

increasing oxygen carrying capacity (oxygen content), cardiac output, and thus oxygen 

delivery. The role of red blood cell age remains questionable as the ability to offload oxygen 

and support hypoxic vasodilation decreases with increased storage length (73). It seems 

reasonable to transfuse the freshest red blood cells to the sickest patient population. 

However, data to support the use of fresh red blood cells preferentially for critically-ill 

patients is lacking (74). Hematocrit also contributes to platelet margination to the vessel wall 

under flow and low hematocrit is associated with increased bleeding time (75,76).

Plasma transfusion supports cardiac output through intravascular volume expansion and 

provides coagulation factors to support hemostasis. All coagulation factors are present in 

plasma in roughly mg/ml concentrations, providing for balanced coagulation factor 

replacement. However, their volume of distribution may limit the hemostatic efficacy of 

plasma when given in large volumes alone (77). Plasma may also provide the additional 

benefit of providing endothelial protection by replacing important protective enzymes that 

can contribute to sealing the endothelial barrier, speed recovery of the glycocalyx, and 

rebalance thrombin generation by the provision of antithrombin (78–80). However, plasma 

has also been independently linked to multi-organ failure and lacks the cellular elements 

required to fully restore clot formation (81).

Early platelet transfusion is associated with improved outcome in the acutely bleeding 

trauma patients. Platelet concentrates clearly contribute to hemostasis by increasing 

thrombin formation, increasing clot stiffness, and increasing resistance to clot lysis (82). 

Platelets are also a rich source of proteins which may confer a degree of fibrinolytic 

protection by inhibition of tPA (83). However, platelets are the most precious blood product 

by way of having the most limited shelf life partly due to the requirement for room-

temperature storage. Interestingly, shelf life limitations have a regional variation from 3 days 

in Japan to 5 days in the US and 7 days in Europe. The historical paper by Murphy and 

Gardner published in 1969 that defined the essentials of platelet storage (room temperature 
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storage under constant agitation) has been used for the last 45 years (84). In addition, the 

current model for platelet transfusion is based on prophylactic treatment of hypoproliferative 

thrombocytopenia (i.e. during chemotherapy) neglecting other patient populations requiring 

platelet transfusion for bleeding. More recent data has suggested that platelets stored at 4°C 

retain better hemostatic properties and remain energetic and viable up to 15 days of storage 

(85,86). Even though refrigerated platelets may also remain for a shorter period of time in 

the circulation, they remain long enough to contribute to hemostasis in the most crucial 

period of acute traumatic injury, and may also decrease endothelial permeability compared 

to 22°C-stored platelets (87). A recent intravital microscopy study in a rat hemorrhagic 

shock model has documented that cold platelets can also contribute to clot formation without 

excess thrombogenicity (88).

Cryoprecipitate provides a rich source of fibrinogen, Factor VIII, and von Willebrand factor 

and is primarily used to enhance hemostasis while also likely offering benefit to 

endothelium. Early and aggressive fibrinogen supplementation can recover viscoelastic clot 

strength when given in concentrated doses (89) and cryoprecipitate provides grams of 

fibrinogen per dose. Retrospective data supports an association between the combined use of 

cryoprecipitate and tranexamic acid and reduced mortality after battlefield injury (90). 

However logistical limitations and lack of evidence have prevented the widespread use of 

cryoprecipitate in civilian trauma centers. While the early administration of cryoprecipitate 

to trauma patients has been shown to be feasible, a mortality benefit has yet to be realized 

(91). One reason may be that cryoprecipitate can only restore traumatic hypofibrinogenemia 

and improve clot strength when given in high concentrations, but it is often given in limited 

quantities and provided late during resuscitation (92). A review of cryoprecipitate use in 

major trauma centers in the United States revealed that its median time from admission to 

first cryoprecipitate unit was 2.7 hours, and that more than 70% of those who died from 

hemorrhage in the first six hours did not receive any cryoprecipitate (93).

Fresh whole blood and cold stored whole blood have reemerged as an approach to providing 

holistic resuscitation that can simultaneously address the three components of blood failure; 

oxygen debt, endotheliopathy, and coagulopathy. The Early Whole Blood Investigators 
reported a comparison of coagulation status after administering modified whole blood 

(platelet and leukodepleted) or components (PRBC’s + Plasma) as the initial trauma 

resuscitation fluid to trauma patients (94). They found that the type and timing of transfusion 

were both important to coagulation status and that there was an improvement in platelet 

function in the whole blood group. The same group also reported previously from the same 

cohort that those receiving whole blood received less total transfusions at 24 hours after 

subjects with traumatic brain injury were excluded (95). There is also evidence that fresh 

whole blood transfusion is associated with increased survival for combat-related injuries 

(96).

Due to logistical considerations and the need for far-forward resuscitation of blood failure, 

there has been increased interest from militaries in using fresh whole blood via “walking 

blood banks” for resuscitation during prehospital trauma care (97). The “walking blood 

bank” concept is advantageous because it appears to be technically feasible and reduces the 

need for prolonged blood transport and storage in austere settings (98). In addition, cold 
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stored leukoreduced whole blood was found to retain its hemostatic function after 14 days of 

austere storage aboard a naval vessel comparably to components containing 5-day warm 

stored platelets (99). Blood donation of 450ml also appeared to be safe and had minimal 

detrimental effects on the physical performance of donors who were highly trained Special 

Forces personnel and are expected to return to vigorous combat activity after donation (100). 

Fresh or cold-stored whole blood appears to be not only logistically advantageous, but also 

feasible for use during resuscitation of traumatic hemorrhagic shock. However, more direct 

study of the effects of whole blood transfusion as a treatment of hemorrhagic blood failure is 

needed. In particular, the dose required to restore the vital functions of the blood after it has 

failed.

Conclusion

Blood and endothelium interact to provide coordinated physiological functions, thus 

encouraging us to view blood and the vascular system as a single dynamic organ system. 

This interconnectedness is highlighted by the effect of accumulating oxygen debt after 

traumatic blood loss that eventually leads to a multifactorial pathological syndrome that we 

call hemorrhagic blood failure. Examining blood as an organ during traumatic hemorrhagic 

shock not only provides a useful perspective on the pathophysiology of traumatic 

hemorrhagic shock and coagulopathy, but also suggests potential treatment strategies that 

may be useful to rescue those afflicted. Successful treatment would simultaneously 

counteract key pathological processes involved in blood failure, including endotheliopathy 

and proteolysis, and also provide holistic replacement therapies. Moving forward, future 

trials should view blood as an organ system and begin to combine targeted therapies with 

more holistic replacement therapies, such as fresh whole blood.
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Figure 1. 
Schematic representing the components of hemorrhagic blood failure.
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Figure 2. 
Schematic of key linkages between oxygen debt, cellular dysfunction, and coagulopathy 

during hemorrhagic blood failure.
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Figure 3. 
Schematic summarizing the effects of individual blood products on the three components of 

hemorrhagic blood failure. PRBC= packed red blood cells, Cryo= cryoprecipitate
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Table 1

Proteolytic targets of Plasmin. Superscripted numbers represent the corresponding reference numbers used to 

support the claim.

Inactivation Activation

Fibrinogen54 Factor XII58

Fibrin54 Bradykinin58,59

Fibronectin62

Laminin61

Vitronectin60

von Willebrand Factor62

Platelet PAR1, PAR263

Factor XIIIa57

Factor Va55

Factor VIII56
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