
Functional proteogenomics reveals biomarkers and
therapeutic targets in lymphomas
Delphine C. M. Rollanda,1, Venkatesha Basrurb,1, Yoon-Kyung Jeonc,1, Carla McNeil-Schwalmd, Damian Ferminb,
Kevin P. Conlonb, Yeqiao Zhoua, Samuel Y. Nge, Chih-Chiang Tsoub, Noah A. Brownb, Dafydd G. Thomasb,
Nathanael G. Baileyb, Gilbert S. Omennf,g,h, Alexey I. Nesvizhskiib,h, David E. Rooti, David M. Weinstocke,i,
Robert B. Faryabia,j, Megan S. Lima,2, and Kojo S. J. Elenitoba-Johnsona,j,2

aDepartment of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104; bDepartment of
Pathology, University of Michigan Medical School, Ann Arbor, MI 48109; cDepartment of Pathology, Seoul National University Hospital, Seoul National
University College of Medicine, Seoul, South Korea; dDepartment of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109; eDepartment
of Medical Oncology, Dana–Farber Cancer Institute, Harvard Medical School, Boston, MA 02215; fDepartment of Internal Medicine, University of Michigan
Medical School, Ann Arbor, MI 48109; gDepartment of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109; hDepartment of
Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109; iThe Broad Institute of Massachusetts
Institute of Technology and Harvard Medical School, Boston, MA 02142; and jCenter for Personalized Diagnostics, University of Pennsylvania
Perelman School of Medicine, Philadelphia, PA 19104

Edited by Louis M. Staudt, National Cancer Institute, NIH, Bethesda, MD, and approved May 2, 2017 (received for review January 23, 2017)

Identification of biomarkers and therapeutic targets is a critical goal
of precision medicine. N-glycoproteins are a particularly attractive class
of proteins that constitute potential cancer biomarkers and therapeu-
tic targets for small molecules, antibodies, and cellular therapies. Using
mass spectrometry (MS), we generated a compendium of 1,091
N-glycoproteins (from 40 human primary lymphomas and cell lines).
Hierarchical clustering revealed distinct subtype signatures that in-
cluded several subtype-specific biomarkers. Orthogonal immunological
studies in 671 primary lymphoma tissue biopsies and 32 lymphoma-
derived cell lines corroborated MS data. In anaplastic lymphoma
kinase-positive (ALK+) anaplastic large cell lymphoma (ALCL), integra-
tion of N-glycoproteomics and transcriptome sequencing revealed
an ALK-regulated cytokine/receptor signaling network, including
vulnerabilities corroborated by a genome-wide clustered regularly
interspaced short palindromic screen. Functional targeting of
IL-31 receptor β, an ALCL-enriched and ALK-regulated N-glycoprotein
in this network, abrogated ALK+ALCL growth in vitro and in vivo.
Our results highlight the utility of functional proteogenomic ap-
proaches for discovery of cancer biomarkers and therapeutic targets.
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The discovery of biologically relevant biomarkers and therapeutic
targets is a critical goal of precision medicine. Integrative strat-

egies combining multiple large-scale analyses, such as genomics,
transcriptomics, and proteomics, offer complementary opportuni-
ties for the elucidation of novel pathogenic insights and discovery of
functional modules and networks that are dysregulated in disease.
Although the genomic aberrations associated with major types of
primary cancer are being extensively characterized, the proteomic
signatures of many cancers, including lymphomas, are unknown.
Protein glycosylation is one of the most common posttranslational

modifications (PTMs) and plays important roles in many biological
processes. N-glycosylation occurs on the amine group of asparagine
residues (1, 2) and facilitates protein trafficking to membranes and
secretion into the extracellular environment (3). N-glycoproteins are
already used as diagnostic/prognostic biomarkers in clinical practice.
The N-glycoproteins include many cluster of differentiation (CD)
proteins that define hematopoietic subpopulations, as well as he-
matopoietic neoplasms (4). Many of these proteins have been
found to represent useful targets for therapeutic antibodies, im-
munotoxins, and chimeric antigen receptor T cells (5–8). Thus,
large-scale characterization of N-glycoproteins is appealing for
discovering biomarkers and therapeutic targets.
To identify novel biomarkers and therapeutic targets in lym-

phomas, we performed agnostic mass spectrometry (MS)-based
profiling of N-glycoproteins of 13 distinct subtypes of lymphomas.
Orthogonal immunophenotypic studies in primary lymphoma
samples corroborated MS-based results and revealed several

biomarker candidates. We focused on anaplastic lymphoma
kinase-positive (ALK+) anaplastic large cell lymphoma (ALCL)
to obtain a more complete view of the “regulome” controlled by
oncogenically activated ALK. To this end, we integrated RNA
sequencing (RNA-seq) with N-glycoproteomic data to reveal
ALK-regulated functional signaling networks. We functionally
validated the expression and oncogenic role of selected com-
ponents as being biologically relevant therapeutic targets in
ALK+ALCL. Recently, large-scale analysis of cancer susceptibility
genes has been greatly facilitated by using the bacterial clustered
regularly interspaced short palindromic (CRISPR) system in com-
bination with genome-wide, single-guide RNA (sgRNA) libraries to
identify genes essential for cancer cell survival (9). Accordingly, we
integrated the results of a genome-wide, CRISPR-Cas9–mediated
vulnerability screen, which confirmed several susceptible thera-
peutic targets, including proteins in the signaling axes identified by
proteogenomic integration. Our findings demonstrate the advantages
of integration of multiomics data for the discovery of novel cancer
biomarkers.

Significance

An important goal in precision oncology is the identification of
biomarkers and therapeutic targets. We identified and anno-
tated a compendium of N-glycoproteins from diverse human
lymphoid neoplasia, an attractive class of proteins with po-
tential to serve as cancer biomarkers and therapeutic targets.
In anaplastic lymphoma kinase-positive (ALK+) anaplastic large
cell lymphoma (ALCL), integration of N-glycoproteomics and
transcriptome sequencing revealed an underappreciated and
targetable ALK-regulated cytokine/receptor signaling network
highlighting the utility of functional proteogenomics for dis-
covery of cancer biomarkers and therapeutic targets.
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Results
Unbiased Analysis of N-Glycoproteomes of Human Lymphomas. We
performed solid-phase extraction of glycoproteins (SPEG) (10),
followed by identification of PNGase-F deglycosylated peptides
using liquid chromatography (LC)-tandem MS (MS/MS) (Fig.
S1A). Label-free spectral counting (11) was used to quantify the
relative abundance of N-glycoproteins in 32 human cell lines
representing 13 subtypes of lymphoma (Figs. S1B and S2A). The
data have been deposited to the ProteomeXchange Consortium
(proteomecentral.proteomexchange.org/cgi/GetDataset) via the
PRIDE (PRoteomics IDEntifications database) partner reposi-
tory (12) with the dataset identifier PXD003469. In total,
1,091 unique N-glycoproteins were identified. The list of
N-glycoproteins and their observed spectral counts is provided
in Dataset S1. Overall, 69.5% of the identified N-glycoproteins
were assigned to membrane compartments, of which 52.3%
could be localized to the plasma/integral to membrane fraction.
The endoplasmic reticulum, Golgi, and lysosome membranes
were also highly represented (20.3%), whereas 10.1% were an-
notated as secreted proteins (Fig. S2B). Using the SOSUI
transmembrane domain (TMD) prediction algorithm (13), we
noted that 64.6% of the membrane proteins contained one to
two TMDs. Using the MotifX algorithm (14), we confirmed that
the most significantly enriched motif in all N-glycoproteins was
the classical N-glycosylation sequence: N-!P-[S/T]. Another sig-
nificantly enriched motif was a subset of the N-!P-S motif, where
Y at the −1 position was overrepresented. Finally, gene set en-
richment analysis identified proteins involved in “cell adhesion,”
“signal transduction,” “immune response,” and “receptor activity”
as significantly represented in our dataset (Fig. S2 C and D).

N-Glycoproteomic Profiles Classify Lymphomas According to Lineage,
Cell of Origin, and Subtype. Unsupervised clustering using 751
unique N-glycoproteins that met stipulated criteria (Methods) dis-
criminated T/NK (natural killer)-cell neoplasia and B-cell lym-
phomas (Fig. 1A). Within the T/NK-cell group, all seven ALCL cell
lines, all three NK-cell lymphoma cell lines and the two cutaneous
T-cell lymphoma cells lines formed distinct clades. Similarly, in the
B-cell lymphoma group, classical Hodgkin lymphoma (cHL) and
non-Hodgkin lymphoma (NHL) cell lines formed two distinct
clades. Among the B-cell NHLs, cell lines representative of pre-
germinal (pre-GC) center lymphoid proliferation [mantle-cell
lymphoma (MCL)] grouped together, whereas GC-derived cell
lines [Burkitt lymphoma (BL), transformed follicular lymphoma
(t-FL), and diffuse large B-cell lymphoma (DLBCL)] formed a
distinctive subgroup. The data show that pre-GC and GC-
derived B-lymphomas have distinct N-glycoproteomic profiles.
To assess the diagnostic validity of this approach, we performed

N-glycoproteomic profiling on eight primary lymphoma samples
in a blinded fashion and evaluated the correlation of their
N-glycoprotein profile with the cell lines. The glycoproteomic
profiles of clinical samples of patients (P)1–P4 highly correlated
with MCL cell lines, whereas the profiles of clinical samples P5–
P8 matched with GC-derived NHL cell lines (Fig. 1B). These
observations were in complete agreement with the clinical diagnosis
rendered for these samples; clinical samples P1–P4 represented well-
characterized cases of MCL, and clinical samples P5–P8 represented
well-characterized cases of FL (Table S1). These data indicate that
N-glycoproteomic profiles can accurately cluster primary lymphoma
specimens into appropriate diagnostic categories.

N-Glycoproteomic Analysis Accurately Identifies All Clinically
Relevant CD Proteins. Of the 417 CD proteins listed by the Hu-
man Cell Differentiation Molecules consortium (www.hcdm.org/),
we identified 194 (46.5%) CD proteins in our N-glycoproteomic
dataset (Dataset S1). We identified between 52 and 102 CD pro-
teins per WHO subtype (average of 79) (Fig. S3A). Importantly,
we detected virtually all CD proteins currently used for diag-
nostic evaluation of lymphomas. Pan–B-cell markers (CD19,
CD22, CD79a, and CD79b) were appropriately identified in cell
lines representative of MCL, t-FL, DLBCL, primary mediastinal

B-cell lymphoma (PMBL) and nodular lymphocyte predominant
Hodgkin lymphoma (NLPHL), but not in cell lines with T/NK-
cell origin or cell lines representative of cHL, which typically lack
expression of these markers. In addition, CD10 was identified in
BL-, DLBCL-, PMBL-, and t-FL–derived cell lines but not in any
other B-cell neoplasia or in any cell lines from T/NK-cell origin
(Dataset S1). Furthermore, CD30 was also detected as expected
in cell lines representative of cHL, PMBL, ALCL (ALK+ and
ALK−), Sézary syndrome, mycosis fungoides, and aggressive NK-
cell leukemia (15) (Fig. S3B). Moreover, the spectral counts for
CD30 were consistent with the relative intensities observed by
Western blot analysis of cHL, PMBL, and ALK+ALCL cell lines
(15). As frequently observed in T/NK-cell neoplasia, the pan–
T-cell markers (CD2, CD3, CD4, CD5, and CD7) were frequently
singly or combinatorially undetected in T/NK-cell–derived lym-
phoma cell lines (16). CD56 was detected in two of the three ag-
gressive NK-cell lymphoma cell lines (Dataset S1). Correspondingly,
the primary lymphoma samples uniformly showed expression of the
pan–B-cell markers CD79a and CD79b. Notably, CD10 was detected
exclusively in the FL samples and not in the MCL samples, in keeping
with the expected immunophenotypic profiles of the two B-cell lym-
phoma subcategories. Taken together, our analysis of N-glycoproteins
represents a compendium of CD proteins expressed in lymphomas.
The expression patterns of the vast majority of these proteins have not
previously been described in the diverse lymphoma subtypes. Their
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Fig. 1. N-glycoproteomic profiles classify lymphomas according to lineage,
cell of origin, and WHO subtype. (A) Thirty-two cell lines included in this
study are accurately classified according to their lineage (B or T/NK cells), cell
of origin (pre-GC– and GC-derived B cells), and WHO subtypes. (B) Clustering
of eight blinded primary B-cell lymphoma samples based on their Pearson’s
correlations with the 32 cell lines accurately designated the profiles of clin-
ical samples P1 to P4, which are highly correlated to MCL cell lines, whereas
clinical samples P5 to P8 are highly correlated to t-FL cell lines. NLPHL, nodular
lymphocyte predominant Hodgkin lymphoma; MF, mycosis fungoides; SS,
Sézary syndrome; T-ALL, T-lymphoblastic leukemia/lymphoma.
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identification in this study offers opportunities for their exploration as
diagnostic biomarkers and therapeutic targets.

Immunophenotypic Validation of Selected N-Glycoproteins in Primary
Clinical Samples. For further orthogonal validation, we selected
three proteins whose expression is underexplored in mature
B-cell lymphomas and were observed by MS to be differentially
expressed between t-FL–, BL-, and MCL-derived cell lines:
CD44, Paraoxonase 2 (PON2), and CD276 (Fig. S4A). CD44 was
identified in all MCL cell lines but absent or largely negative in
BL and t-FL cell lines. These observations were confirmed by
Western blotting and flow cytometry analyses (combined Fisher’s
P value < 1e-10; Fig. S4 A and B). PON2 was also identified
consistently in all MCL cell lines, although its expression was
more limited in other lymphomas. Western blot analysis and
spectral counts of PON2 demonstrated expression in MCL
among the B-cell lymphomas and in ALCL cell lines (Fig. S4A).
PON2 protein expression in lymphomas has not received notable
attention in the literature, although differential expression of
PON2 mRNA has been suggested in a single report (17). We
further analyzed the expression of CD44 and PON2 by immu-
nohistochemistry on lymphoma tissue microarrays containing
34 clinical biopsy specimens and revealed that 91.2% of MCL
expressed CD44 and 58.8% of MCL expressed PON2 (Fig. S4C).
As shown in Fig. S4A, CD276 was expressed in a subset of MCL
and ALK+ALCL cell lines but not in GC-derived lymphomas,
such as t-FL and BL. We observed significant concordance
(combined Fisher’s P value < 1e-9) between spectral counts,
Western blot analysis, and flow cytometric analysis for CD276
(Fig. S4D). This observation was corroborated by the immuno-
histochemistry of primary lymphoma tissue biopsies (n = 644),
which showed that 35.3% of MCL and 18.8% of ALK+ALCL
expressed CD276, whereas only rare cases of other lymphomas
demonstrated CD276 expression (P < 1e-4; Fig. S4E).
Taken together, our MS-based profiling of N-glycoproteins

identified several potential biomarkers of which a subset was
further orthogonally validated in a large cohort of primary lym-
phoma tissue biopsies. Some of these potential biomarkers
demonstrated highly selective expression in some subtypes of
lymphoma. Using ALK+ALCL as a model, we investigated
whether restricted expression may be linked to the pathogenesis
of these subtypes, and performed functional studies to assess the
candidacy of a selected protein as a vulnerability target.

Integrative Transcriptomics and Proteomics Reveal ALK-Activated
Cytokine Receptor Network in ALCL. To identify novel biologically
relevant N-glycoproteins that play critical roles in the pathogenesis
of ALK+ALCL, we used an integrative N-glycoproteomics and
transcriptomics RNA-seq strategy. N-glycoproteomic analysis of
ALK+ALCL identified several proteins with “cytokine receptor”
activity, including inflammatory cytokine receptors [IL-1 receptor
1 (IL-1R1), IL-1R2, and IL-1RAP), Th1 cytokine receptors (IL-2Rα
and IL-18R), Th2 cytokine receptor (IL-4Rα), and Th17 cytokine/
cytokine receptors (IL-17, IL-17Rα, IL-22, IL-6Rα, IL-6Rβ, IL-31Rα,
and IL-31Rβ) (Dataset S1]).
To determine whether the expression of the cytokine receptor

signaling network is regulated by ALK activity, we performed
N-glycoproteomic profiling of two ALK+ALCL cell lines (Karpas
299 and SU-DHL-1) with or without treatment for 9 h with CEP-
26939 (300 nM), an ALK inhibitor (ALKi). We observed that
65 and 90 N-glycoproteins exhibited decreased expression in Karpas
299 and SU-DHL-1, respectively, upon treatment, whereas 11
N-glycoproteins decreased in both cell lines, including interleukin
receptors, such as IL-31Rβ (Fig. S5). These results indicate that
expression of these glycoproteins is regulated by ALK activity.
We also performed RNA-seq analysis of these two ALK+ALCL

cell lines treated with crizotinib (100 nM), a US Food and Drug
Administration-approved ALKi (18). The RNA-seq data were
deposited in the Gene Expression Omnibus (19) with the acces-
sion number GSE81301. We observed that 1,244 transcripts were
altered by ALK inhibition in both cell lines, with 400 transcripts

being induced and 844 being repressed (Fig. S6A). In either cell
line, the ALK-induced transcripts were significantly enriched for
members of cytokine/receptor-STAT signaling pathways (Fig. S6 B
and C). Furthermore, gene set enrichment analysis (GSEA) (20)
revealed that transcripts involved in IL-2–STAT5, IL-6–STAT3
and TNF-α signaling pathways were significantly down-regulated
after ALK inhibition, suggesting up-regulation of these pathways
in ALK+ALCL (Fig. S6 D and E).
Integration of N-glycoproteomic and transcriptomic datasets

revealed both corroborative and complementary information
about the pathobiology of ALK+ALCL. The Spearman’s corre-
lations between the steady-state mRNA and N-glycoprotein
abundance were 0.50 and 0.49 in Karpas 299 and SU-DHL-1,
respectively, which is comparable to previous reports (21) and
suggests that RNA-seq and N-glycoproteomic dataset analyses
may yield complementary results. Approximately 13% of the
gene products were only measured at the N-glycoprotein level
(Dataset S2), whereas more than 34% of the CD genes measured
by either method were not detected by N-glycoproteomics, suggesting
the importance of multiomic approaches for comprehensive analyses
of cellular processes (Dataset S2). Despite these differences, in both
Karpas 299 and SU-DHL-1, the N-glycoproteins induced by ALK
were enriched in the ALK-regulated transcripts, indicating con-
cordance between transcriptional and N-glycoproteomic levels
[false discovery rate (FDR) < 1e-2; Fig. 2 A and B].
Integrative unsupervised clustering of N-glycoproteomic and tran-

scriptomic datasets of both cell lines revealed 36 gene products that
were concordantly decreased as a result of ALK inhibition in tran-
scriptomic and glycoproteomic data of both cell lines (Fig. 2C). Sev-
eral of these gene products are members of cytokine/receptor families,
such as IL-1R1, IL-1R2, IL-2Rα, IL-4R, IL-18R1, and IL-31Rβ and
STAT signaling networks (IL-6–STAT3 and IL-2–STAT5) (Fig. 2D).
Reconstruction of the protein interaction network of these cytokine
receptors revealed that several key effectors, such as STAT3, STAT1,
JAK1/2, and STAT5B, are also induced by ALK in ALCL (Fig. 2E).

Identification of Selective Expression of IL-31Rβ in ALK+ALCL,
Regulation by ALK Activity, and Contribution to ALK–Mediated
Oncogenesis. To investigate the validity of novel biomarkers
identified by N-glycoproteomic and transcriptomic studies
further, we investigated IL-31Rβ, a cytokine receptor we
noted to be exclusively expressed in ALK+ALCL cell lines by
N-glycoproteomics (Dataset S1) and regulated by ALK through
transcription. Western blotting and flow cytometry results con-
firmed the selective expression of IL-31Rβ in all ALK+ALCL cell
lines (Fig. 3A and Fig. S7A). Immunohistochemistry on 56 ALCL
biopsies (ALK+ and ALK−) revealed that 100% of ALK+ALCL
expressed IL-31Rβ, whereas only 40% of ALK−ALCL was pos-
itive (χ2 = 20.6, P < 1e-3; Fig. 3B). Given the selectivity of its
expression in ALK+ALCL, we sought to assess its regulation by
ALK. Pharmacological inhibition of ALK by two inhibitors
(crizotinib and CEP-26939) decreased IL-31Rβ protein expres-
sion in a dose- and time-dependent manner (Fig. 3C and Fig. S7
B and C). To substantiate the effect of ALK activity on IL-31Rβ
expression further, we ectopically expressed nucleophosmin–
anaplastic lymphoma kinase (NPM-ALK) and its kinase-dead
mutant NPM-ALK K210R into HeLa cells. As shown in Fig.
S7D, NPM-ALK, but not the kinase-dead mutant K210R, in-
duced IL-31Rβ expression, confirming the regulation of IL-31Rβ
expression by ALK. Using quantitative real-time PCR, we con-
firmed that ALK regulates IL-31Rβ expression at the transcrip-
tional level (Fig. S7 E and F). We also demonstrated that the
transcriptional expression of oncostatin M (OSM), the ligand of
IL-31Rβ, is dependent on ALK activity (Fig. 2E and Fig. S6A)
and corroborated at the protein level by Western blotting (Fig. 3C).
Interestingly, OSM partially rescued the phosphorylation of STAT3,
indicative of its activation when ALK was inhibited (Fig. S7G). This
observation suggests that the OSM/IL-31Rβ/STAT3 signaling axis
(22) might function as a positive regulatory loop to maintain
consistent STAT3 activation in ALK+ALCL (23) (Fig. S7H).
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To determine if IL-31Rβ is a functionally relevant target in
ALK+ALCL, we silenced IL-31Rβ using lentivirus-mediated RNAi
in a DEL cell line. IL-31Rβ silencing (Fig. 3D) resulted in de-
creased clonogenicity of ALK+ALCL cells (Fig. 3E). Additionally,
tumor growth in a xenograft model was abrogated in ALK+ALCL
depleted of IL-31Rβ by RNAi, suggesting that this protein is a
functionally relevant therapeutic target in ALK+ALCL (Fig. 3F).

CRISPR-Cas9 Screen Reveals Vulnerabilities in Cytokine Receptor
Signaling Pathways in ALK+ALCL. Although IL-6–STAT3 and IL-
2–STAT5 signaling pathways are identified to be significantly
down-regulated by ALK inhibition (Fig. 2D), this finding does
not establish that they represent therapeutic vulnerabilities in
ALK+ALCL. To address this question, we performed a genome-
wide functional screen using a lentiviral sgRNA library (9) that
targets 14,250 genes in the human genome with an average cov-
erage of three to four sgRNAs per gene in two ALK+ALCL cell
lines (SUP-M2 and Karpas 299). Monte Carlo analysis assessing
major ALK-dependent signaling pathways in aggregate revealed
that the IL-6–STAT3 and IL-2–STAT5 pathways are significant
sensitivity targets in ALK+ALCL (Fig. S8A). The sgRNA screen
showed that members of these pathways, such as OSM (the ligand
for IL-31Rβ) and STAT3, are susceptible targets (Fig. S8B).

Discussion
The advent of large-scale technologies has dramatically advanced
the understanding of cancer pathogenesis. However, most studies

involve single-platform profiling approaches that provide a unidi-
mensional view of the pathobiological mechanisms intrinsic to
disease states. In contrast, integrative approaches, such as proteo-
genomics, offer the opportunity to understand better the complex
biological networks that underlie the pathogenesis of higher order
biological processes, such as cancer. Beyond large-scale annotation
of genomic, transcriptomic, and proteomic profiles, the ability to
undertake large-scale genetic screens of lethal phenotypes using
the CRISPR system greatly facilitates the identification of critical
functional genes that could be exploited for precision therapeutics.
We used an MS-based approach to generate a compendium of

N-glycoproteins expressed in human lymphomas. Our study
revealed a large number of proteins (>1,000) involved in various
cellular functions. Importantly, numerous candidate biomarkers
and therapeutic targets were identified, and selected candidates
were orthogonally and functionally validated.
Unsupervised clustering of the N-glycoproteomic data readily

segregated the 32 cell lines based on lineage of origin and re-
spective subtype of lymphoma. Importantly, primary clinical
samples were appropriately classified with cell lines representa-
tive of their respective cell of origin and lymphoma subtypes
based on N-glycoprotein profiles. In all, the N-glycoproteomic
signatures were robust and discriminated a wide range of closely
related tumor subtypes and yielded several candidate biomarkers
for distinct subtypes of lymphomas.
To gain insights into the relationship between RNA expression

and N-glycoproteomic profiles and to identify candidate diagnostic

D

yes no
Identified:

A B

IL4R
IL18R1
IL2RA
TNFRSF21
IL1R2
IL1R1
IL31RB
ALCAM
ADAM19
TNFRSF8
ICAM1
PLAUR
PVR
GZMB
PRF1
IFI30
CD274
COL6A3
SCARB1
CA12
NOTCH1Inflam

m
atory response

A
llograft rejection

Interferon gam
m

a response
E

M
T

H
ypoxia

C
holesterol hom

eostasis
Interferon alpha response
C

om
plem

ent

TN
FA

 signalling via N
FK

B

******

IL6-JA
K

-S
TAT3 signaling

IL2-S
TAT5 signaling

P
53 pathw

ay

negatively regulated positively regulated

tne
mhcirn

E
er ocs

-0.1
-0.2
-0.3
-0.4
-0.5

0.0

NES -2.141
FDR q-value < 1E-4

SU-DHL-1

negatively regulated positively regulated

down-regulated
no change

N-glycoproteomics

not measured

RNA-seq

-3 1

E

C

−2
0
2 N-glycoproteomics

RNA-seqz-score

SU-DHL-1 

Karpas 299

E
nr

ic
hm

en
t

 s
co

re
0.0
-0.1
-0.2
-0.3
-0.4
-0.5

NES -1.877
FDR q-value < 0.002

Karpas 299

Hits
Enrichment profile

CD4
IL2RA

IL4
JAK2

IL2RB
CD8A

MAP4K4

IL1R2

IL1RN

TOLLIP

MYD88

IRAK2

TICAM2

IL1RAP
TRAF6

IRAK4

IL1B

PELI1SOCS5

IL2

IRS1

IL7

SHC1

IRS2

IL31RB

FES

JAK1

JAK3

INPP5D

IL18

IL4
IL31

IFNG
IL18R1

IL6
IL1A

IL6ST
OSM

IL1R1
PIK13R1

STAT6
FOXP3

IL31RA1IL31
IL2RG

STAT3STAT5B

***FDR: < 1E-5

** < 1E-2

* < 0.05

Hits
Enrichment profile

Fig. 2. Integration of N-glycoproteome and transcriptome. (A and B) GSEA shows enrichment of the ALK+ regulated N-glycoproteins in genes whose
transcription decreases after ALK inhibition. NES, normalized enrichment score. (C) Integrative unsupervised clustering identifies 36 genes (dashed-line box)
with a concomitant decrease in transcriptional and protein expression levels after ALK inhibition in both cell lines. (D) Association of genes identified in Bwith
pathways. EMT, epithelial–mesenchymal transition. (E) Integration of N-glycoproteome and transcriptome identifies the ALK-driven cytokine network. Using
cytokine receptors with ALK-dependent N-glycosylation as seeds, their protein-to-protein interaction network is constructed. Node color depicts the log2-fold
change of transcripts. The gold-colored node border shows the N-glycoproteins with significant depletion after ALK inhibition.

6584 | www.pnas.org/cgi/doi/10.1073/pnas.1701263114 Rolland et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701263114/-/DCSupplemental/pnas.201701263SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701263114/-/DCSupplemental/pnas.201701263SI.pdf?targetid=nameddest=SF8
www.pnas.org/cgi/doi/10.1073/pnas.1701263114


biomarkers, we focused on ALCL harboring chimeric fusions in-
volving the ALK. We integrated RNA-seq and N-glycoproteomic
data to investigate changes mediated by oncogenic ALK activity.
This approach highlighted a number of signaling modules regu-
lated by ALK activity, including the inflammatory and IFN-γ and
IFN-α responses, as well as pathways regulating hypoxia adapta-
tion. In particular, the top-ranking pathways were the cytokine/
receptor regulatory network involving several interleukins, their
receptors, and the JAK-STAT signaling axis. Members of this
network, including STAT3, were identified by CRISPR suscep-
tibility screens as vulnerability targets in ALK+ALCL.
To validate the cytokine/receptor-STAT pathway functionally in

ALK+ALCL, we followed up on our MS observation of restricted
expression of IL-31Rβ in ALK+ALCL N-glycoproteomes. The
expression of IL-31Rβ, a cytokine 6 receptor family member (24),
was confirmed by immunohistochemistry of primary ALK+ALCL
tissues. Further, we showed that IL-31Rβ is regulated by ALK
activity and that IL-31Rβ plays an important role in its pathogen-
esis and may be used as biomarker for ALK+ALCL.
In conclusion, we demonstrated that integration of proteomics

and functional genomic analyses yields complementary information
that informs our understanding of complex biological processes.
Additionally, the N-glycoproteomic data presented herein represent
a compendium of candidate biomarkers and a valuable resource for
the investigation of the biological roles and functional significance of
specific glycoproteins in lymphomas. Taken together, these results
suggest a model wherein NPM-ALK–driven signaling promotes an

autocrine–paracrine network through induction of cytokines and their
receptors via activation of STAT family transcription factors. Our
data suggest that several glycoproteins demonstrate characteristic and
unique expression signatures in clinicopathologically distinct forms
of human lymphomas. Overall, our results indicate that integration
of multidimensional data of cancer cells offers opportunities for
novel biomarker discovery and identification of therapeutic targets.

Methods
Cell Lines. All cell lines were grown in RPMI 1644 media supplemented with
10% FBS except for Hut-78, which was grown in Iscove’s modified Dulbecco’s
medium (IMDM) supplemented with 10% FBS.

Clinical Samples. Tumor cells were enriched from peripheral blood of eight
patients using an immunomagnetic bead negative selection mixture (EasySep;
StellCell Technologies). A total of 671 primary tumor biopsies were selected,
and representative areas of different lymphomas were included in tissue
microarrays, followed by immunohistochemistry studies. This study was ap-
proved by the Institutional Review Board of the University of Michigan
(HUM00023256). No informed consentwas required for this retrospective study.

N-Linked Glycopeptide Enrichments and LC-MS/MS Analysis. The SPEG protocol
previously described was used to isolate N-glycosylated peptides fromwhole-
cell lysates (10). An LTQ OrbitrapXL (ThermoFisher) in-line with Paradigm
MS2 HPLC (Michrom BioResources, Inc.) was used for acquiring high-
resolution MS and MS/MS data. Each cell line was analyzed in biological
replicate format until at least three biological replicates with a glycocapture
efficiency of ≥90%, defined as the percentage of identified peptides having
at least one deamidated Asn residue, were obtained.

Proteomic Database Searches. RAW files were converted to mzXML using the
ReAdW conversion tool from the Trans-Proteomic Pipeline (25) and then
searched against the human UniProt database (release 15.15). Searches were
carried out using X!Tandem with a k-score plug-in and the following pa-
rameters: (i) precursor parent and daughter ion mass tolerance windows
were set to 50 ppm and 0.8 Da, respectively; (ii) maximum of two missed
cleavages; and (iii) variable modifications: oxidized methionine, carbamido-
methyl cysteine, and +0.9840 Da on Asn (reflecting conversion of glycosylated
Asn to Asp upon PNGaseF-mediated deglycosylation). X!Tandem results were
postprocessed using PeptideProphet and ProteinProphet (26, 27).

Extraction of Spectral Counts. Adjusted spectral counts were extracted using
Abacus with the following parameters: (i) PeptideProphet probability ≥ 0.8,
(ii) combined file probability ≥ 0.7, and (iii) only consider peptides con-
taining modified Asn residue (11). Normalization was performed using a
modified version of the normalized spectral abundance factor (NSAF) (28).
Our version of NSAF (which we term gNSAF) normalized protein spectral counts
to a protein’s glycopeptide length. A protein’s glyco-length is defined as the
length of all its tryptic peptides that contain the glycosylation motif Nx[S/T/C].

Hierarchical Clustering. Throughout the analysis, the R (v3.2.3) (29) package
hclust was used for hierarchical clustering and pheatmap was used for gener-
ating heat maps. Hierarchical clustering of cell lines was conducted on the log2-
transformed gNSAF values using Euclidean distance and ward.D2 linkage. Given
the ordered cell lines, protein expressions were clustered using the Euclidean
distance and average linkage. To minimize the influence of low-level signals in
the nomination of biomarker candidates, hierarchical clustering was performed
with N-glycoproteins with spectral count sums across all cell lines that were
greater than the average spectral counts among all the cell lines. A total of 751
N-glycoproteins met this criterion. Pearson correlation between the log2-
transformed gNSAF values of each patient sample and 32 cell lines was calcu-
lated and used for clustering based on average linkage of Euclidean distance.

RNA-Seq. Pair-ended RNA-seq reads were aligned to a human reference se-
quence (February 2009, GRCh37/hg19) using STAR (v2.4.2a) (30). Uniquely
mapped reads were quantified by Subread (v1.5.0) and normalized to calculate
fragment(s) per kilobase per million reads (FPKM). The log2-fold change was
calculated as the log2 ratio of CEP-26939 and DMSO-treated samples with a
pseudocount of 0.01 after removing the genes with less than 1 FPKM ex-
pression. The enrichment of the Hallmark gene sets fromMSigDB (v5.1) (20) in
the genes with a log2-fold change lower than −0.8 after ALK inhibition was
computed and reported with a FDR q-value cutoff of 0.05. A GSEA preranked
tool (v2.2.1) with 10,000 permutations was used with a ranked gene metric of
log2-fold change and the Hallmark gene sets.
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Fig. 3. IL-R31β is selectively expressed in ALK+ALCL cells, is regulated by ALK
activity, and contributes to NPM-ALK oncogenesis. (A) Selective expression of
IL-31Rβ in ALK+ALCL cell lines was confirmed by Western blotting. (B) IL-31Rβ
expression in a well-characterized cohort of ALCL patient samples (n = 56)
demonstrated a statistically significant correlation between ALK and IL-31Rβ
expression. (C) Western blot results demonstrated that ALK inhibition decreased
IL-31Rβ and OSM expression in a time-dependent manner after treatment with
crizotinib at 100 nM. The asterisk indicates nonspecific bands. (D) Western blot
results show IL-31Rβ knockdown in the DEL cell line. (E) Stable knockdown of
IL-31Rβ in the DEL cell line caused a statistically significant reduction of colony
formation after 14 d (mean ± SD, n = 3). ***P < 0.001. (F) Percentages of tumor
growth after mice were xenografted with the modified DEL cell lines.
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Normalization of N-Glycoproteomics Data for ALK-Inhibitor Treatment Experiments.
For each cell line, the normalized spectral count of N-glycoproteomics was cal-
culated based on the total spectral count after addition of a pseudocount 1. The
normalized spectral count of CEP-26939 versus DMSO treatment was used to
calculate the log2-fold change.

Integration of RNA-Seq and N-Glycoproteomics. A GSEA preranked tool (v2.2.1)
with 10,000 permutationswas usedwith a ranked genemetric of log2-fold change
from RNA-seq and the set of genes with log2-fold change lower than −0.8 in
N-glycoproteomics. The log2-fold changes from RNA-seq and N-glycoproteomics
for Karpas 299 and SU-DHL-1 were standardized by the column-wise mean and
SD. Hierarchical clustering of genes with Euclidean distance and ward.D2 linkage
identified the subgroup of genes simultaneously down-regulated by ALK in-
hibition in RNA-seq and N-glycoproteomics. The enrichment of the Hallmark gene
sets from MSigDB and this subgroup were computed and reported with an FDR
cutoff of 0.05. To reconstruct the protein interaction network of cytokine re-
ceptors in this set (IL-4R, IL-18R1, IL-1R1, IL-1R2, IL-2RA, and IL-31RB), the STRING
database (v10) (31) was used in a Cytoscape (v3.3.0) (32) environment with an
interaction confidence cutoff of 0.95.

sgRNA. The result of sgRNA screening was processed with ATARiS (33) to
calculate the gene-level vulnerability score in each sample. The minimum of
the sgRNA scores in SUP-M2 and Karpas 299 cell lines was assigned to the
14,250 genes included in the screen. For the gene members of the IL-2–
STAT5 and the IL-6–STAT3 signaling pathways as defined by MSigDB Hall-
mark gene sets (34), the sgRNA scores were ranked and plotted alongside
the corresponding log2 FPKM expression level in the DMSO-treated sample.
The pathway cumulative vulnerability score of a pathway was defined as the
sum of the sgRNA scores of its members. To assess the negative effect of a
pathway on cell survivability, Monte Carlo simulation on the population of
the sgRNA scores of human genes as defined by the HUGO Gene Nomencla-
ture Committee (35) was performed. In each permutation, a random pathway
with the same cardinality of the pathway of interest was constructed and a
cumulative pathway vulnerability score was calculated. The distribution of the
pathway cumulative vulnerability score of 1E6 permutations was presented
and compared with the observed value for the pathway of interest.

Western Blot Analysis. The following primary antibodies were obtained from
Cell Signaling Technology: CD44 (clone 156-3C11), anti-ALK (cloneC26G7), p-ALK
(Y1604; polyclonal), STAT3 (clone 79D7), and p-STAT3 (Y705; clone M9C6). Pri-
mary antibodies against CD276 (clone 6A1) and PON2 (clone AF3E6) were
purchased from Abcam. Primary antibodies against gp130 (clone M-20) were
obtained from Santa Cruz Biotechnology. The antibody against IL-31Rβ was
obtained from R&D Systems. The loading quality was assessed using antibodies
against GAPDH (clone 6C5; Millipore) or β-actin (clone AC-74; Sigma–Aldrich).

Flow Cytometry Analysis. Flow cytometry analyses were performed using a
FACSCanto II (BD Biosciences) flow cytometer, and results were analyzed with
FlowJo software. Labeled antibodies were FITC–anti-CD19 (clone SJ25C1; BD
Pharmingen), phycoerythrin (PE)–Cy7–anti-CD19 (clone HIB19; BD Pharmin-
gen), PE–Cy7–anti-CD44 (clone G44-26; BD Pharmingen), FITC–anti-CD276
(clone FM276; MiltenyiBiotec GmbH), and APC–anti-IL-31Rβ (clone AN-V2;
eBioscience).

IL-31Rβ Knockdown. IL-31Rβ was knocked down in the DEL cell line using the
pLKO.1 lentiviral shRNA (TRCN0000289933) from Sigma–Aldrich. A scramble
pLKO.1 lentiviral shRNA was used as a control. IL-31Rβ knockdown was
assessed by Western blotting.

Colony Formation Assay. DEL cells transformed with scramble shRNA or IL-31Rβ
shRNA were incubated for 14 d in methylcellulose-based media (MethoCult;
Stem Cell Technology). Colonies were stained with iodonitrotetrazolium chloride
overnight and then counted under a microscope. Each assay was performed
in triplicate.

Mouse Xenograft. SCID-Beige mice (Charles River Laboratories) were injected
s.c. with 10 × 106 cells in the flank (100-μL injection volume containing 50%
Matrigel; Becton Dickinson). All animal studies were performed under the
compliance of the University of Michigan Committee on the Use and Care of
Animals (protocol PRO00003289).
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