TEMPERATURE
2017, VOL. 4, NO. 2, 187-197
https://doi.org/10.1080/23328940.2017.1301851

Taylor & Francis
Taylor & Francis Group

3 OPEN ACCESS

‘ W) Check for updates ‘

RESEARCH PAPER

Improving rational thermal comfort prediction by using subpopulation
characteristics: A case study at Hermitage Amsterdam

Rick Kramer?, Lisje Schellen®<, Henk Schellen?, and Boris Kingma®

Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands; "Department of Human Biology and
Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht,
The Netherlands; “Avans University of Applied Sciences, Tilburg, The Netherlands; “Department of Energy Technology, Eindhoven University of
Technology, Eindhoven, The Netherlands

ABSTRACT

This study aims to improve the prediction accuracy of the rational standard thermal comfort model,
known as the Predicted Mean Vote (PMV) model, by (1) calibrating one of its input variables
“metabolic rate,” and (2) extending it by explicitly incorporating the variable running mean outdoor
temperature (RMOT) that relates to adaptive thermal comfort. The analysis was performed with
survey data (n = 1121) and climate measurements of the indoor and outdoor environment from a
one year-long case study undertaken at Hermitage Amsterdam museum in the Netherlands. The
PMVs were calculated for 35 survey days using (1) an a priori assumed metabolic rate, (2) a
calibrated metabolic rate found by fitting the PMVs to the thermal sensation votes (TSVs) of each
respondent using an optimization routine, and (3) extending the PMV model by including the
RMOT. The results show that the calibrated metabolic rate is estimated to be 1.5 Met for this case
study that was predominantly visited by elderly females. However, significant differences in
metabolic rates have been revealed between adults and elderly showing the importance of
differentiating between subpopulations. Hence, the standard tabular values, which only
differentiate between various activities, may be oversimplified for many cases. Moreover, extending
the PMV model with the RMOT substantially improves the thermal sensation prediction, but thermal
sensation toward extreme cool and warm sensations remains partly underestimated.
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Introduction
reflects a heat balance model that predicts the Predicted

A museum is a public space visited by subpopulations
that vary widely in characteristics such as age, gender,
socio-cultural and socio-economic background, and
also thermal expectations. The indoor climate of
museums is primarily important for collection preser-
vation. However, a museum also aims to provide a
thermally comfortable indoor environment for its
visitors.

Current guidelines and specifications for the design
and operation of the indoor environment of buildings
are formulated in standards such as ASHRAE Standard
55 and EN-ISO 7730."* These standards provide a
rational methodology to assess the indoor thermal envi-
ronment of buildings. The standards contain two dis-
tinct thermal comfort models. One of the models

Mean Vote (PMV) based on the follo-wing physical
characteristics: human metabolic heat production,
clothing level, external work, air temperature, mean
radiant temperature, relative air humidity, and air
speed.” The percentage people dissatisfied (PPD) is cal-
culated by the PMV, and a building is considered to
provide sufficient thermal comfort when the PPD
remains below 10%, ie., a PMV between —0.5 and
+0.5. The application of the PMV-PPD model typically
results in a constant indoor environment with a little
variation other than a winter and summer scenario to
account for seasonal clothing adjustments. The other
model is data driven, involving data from 160 buildings
including 21,000 data sets from across the globe and is
called the adaptive comfort model.* This model
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implicitly includes the ability of people to adapt both
physiologically and psychologically to climate zones
and seasonal changes in outdoor climate.” The major
outcome of the adaptive model is that especially for nat-
urally ventilated (NV) buildings, comfortable indoor
temperatures are higher when the running mean out-
door temperature (RMOT) is higher and vice versa.”®
Although the PMV model does allow taking into
account behavioral adaptations (e.g., changes in physical
activity or clothing), it does not allow us to include
physiologic (e.g., acclimatization) and psychologic
adaptations (e.g., expectations). Various studies have
shown that hybrid PMV-Adaptive models, thus
including seasonal adaptations, and adaptive effects
on expectations and the metabolic rate can improve
the thermal sensation prediction. For a recent over-
view, see Refs. 5 and 7.

The physical input variables of the PMV model,
e.g., humidity and operative temperature, are, in
general, well defined and measured accurately.
However, the human metabolic rate and clothing
level often lack accuracy, because these are too
hard to measure.® For that reason, specialists rely
on standard tables providing values for separate
garments from which a clothing ensemble can be
constructed indicating the mean clothing level (e.g.,
male business suit ~0.155 m*> K/W = 1 clo). Also,
tables are used for metabolic heat production that
links the activity type to metabolic rate (e.g., light
office work ~58-70 W/m? = 1-1.2 Met). However,
applying a single equivalent metabolic heat produc-
tion rate for a specific activity to the entire popula-
tion may be oversimplified with respect to the
actual biologic variation.” Variation in human rest-
ing metabolic rate is mainly explained by differen-
ces in body composition and size.'"” Average body
composition and size differ among subpopulations.
For example, females have, in general, less total
mass and relatively more fat mass than males, and
elderly have increased fat mass relative to the
younger adults. These differences contribute to var-
iation in body heat production; however, this is
currently not reflected in the standard tables for
the metabolic rate.

To provide a more accurate estimation of meta-
bolic rate, empirical equations exist to estimate the
basal metabolic rate of a subpopulation based on
their characteristics. For example, the Harris and

Benedict equation revised by Roza and Shizgal'' is
used to calculate the basal metabolic rate (BMR [W])
according to

BMR femates = 0.0484(13.397W + 4.799H — 5.677A
+88.362) (1)

BMR pa1es = 0.0484(9.247W + 3.098H — 4.330A
+447.593) (2)

in which 0.0484 is the conversion factor from kcal/day
to J/s, W is the body weight [kg], H the body height
[cm], and A the age [y]. The basal metabolic rate
(~0.8 Met) differs from the resting metabolic rate (~1
Met) as it is measured in supine position, fasted state,
and in a thermoneutral environment. Equation (2)
predicts that the heat equivalent of a 1-Met activity
level is equal to 58 W/m? for an 81 kg, 1.80 m, 20 y
old male (body surface area calculated from the
Dubois equation), which is equal to what the ASHRAE
standard table notes. However, for a 69 kg, 1.74 m, 20-
y old female, Equation (1) predicts 51 W/m? that is
considerably lower than her male counterpart. Table 1
presents the subpopulation’s average height and
weight for Dutch adults and elderly males and
females.'” Based on equations (1) and (2), the expected
resting metabolic rate of older adults is on average 9%
lower than that of mid-aged adults.

Thus, based on physiologic characteristics, the
metabolic rate of older adults is expected to be
than that of adults. Consequently, we
hypothesize that if the metabolic rate is calibrated,
by fitting the predicted thermal sensation (PMV-
model) to the actual thermal sensation (measure-
ments), a similar difference between age groups
will be observed. Moreover, in line with the previ-
ous literature on adaptive behavior, the second

lower

Table 1. Average height and weight for two age categories in the
Dutch population.'

Male Female

30-40[y] 65-75[y] A [%] 30-40[y] 65-751y] A [%]

Height [cm] 1825 1773 —3 1689 1649 -2
Weight [kg] 83.2 84.5 2 699 714 2
Surface area [m?]  2.05 2.02 -2 18 1.78 -1
Met. rate [W/m?] 552 50 -9 493 45 -9

Note: Body surface area is calculated using the Dubois equation. The meta-
bolic rate is calculated using the Harris and Benedict equation and scaled to
1 Met (original output is basal metabolic rate and assumed at 0.8 Met).
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Figure 1. (A) Aerial view of Hermitage Amsterdam museum. (B) One of two main exhibition rooms with a large glass roof. (C) The
entrance stairway from the lobby to the main exhibition room with an air curtain to reduce air exchange. (D) A cross section of one side
of the building showing the main exhibition room and adjacent cabinets. Figure source: Ref. 14.

hypothesis is that predicted thermal sensation can
be improved by including the RMOT.

Methods

The analyses were performed with data from a
1-y-long case study undertaken at Hermitage Amster-
dam museum in the Netherlands. The resulting data-
base comprises surveys (n = 1121), outdoor climate
measurements, and indoor climate measurements. The
methodology for constructing the underlying database
used in this study has been published before in Ref. 13.
Therefore, here only a brief overview is provided.

Case study: Museum Hermitage Amsterdam

Hermitage Amsterdam (Fig. 1) is a sister museum of
the State Hermitage museum in St. Petersburg, Russia.
The museum is located in Amsterdam, the Nether-
lands, and is housed in a late 17th-century building.
The most recent renovation dates from 2007 to 2009
when the building was transformed into a state-of-
the-art museum (see Fig. 1). The historic building
envelope was conserved and insulated from the inside.
An all-air heating, ventilation, and air-conditioning
system was installed to condition the exhibition areas.
The indoor climate specifications used under normal
operating conditions are 21 £ 0.5 °C and 50 £ 1%
RH without seasonal adjustments. For the current

study, the indoor temperature has been varied to cover
a range of operative temperatures (19.5-24 °C) over
the year while maintaining relative humidity at 50%.

Figure 1A shows the layout of the building. The
building has a symmetric floor plan: Two identical
exhibition wings can be recognized by their glass sky-
lights on the left and right side roofs. This study
focuses on “de Keizersvleugel,” the exhibition wing
shown on the right side of Figure 1A. The exhibition
area consists of the main hall (Fig. 1B) and adjacent
cabinets (Fig. 1D). Visitors enter the exhibition area
via a stairway from the foyer (Fig. 1C). The ceiling of
the main exhibition hall consists in part of a large glass
roof with interior sunblinds that are almost perma-
nently closed.

The museum is opened 7 days/week from 10 to 17 h
and has welcomed 7,000-11,000 visitors per week
depending on the exhibition. Most individuals visited
the museum on Sunday, Tuesday, and Wednesday,
whereas the least number came on Monday.

Data acquisition

The current study was conducted from February 2015
to December 2015. Data acquisition comprised sur-
veys (subjective), and indoor and outdoor climate
measurements (objective). Surveys were conducted on
Wednesdays and Thursdays between 11 h and 14 h,
because during these time slots most visitors were
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Thermal Sensation Survey

1. Sex
O male O Female (1)
2. What is your birth year?

3. What was your time of arrival in the museum?

4. What do you think about the thermal environment (the temperature)?

O Acceptable (1) O Unacceptable (0)

5. How do you feel at this moment?

-3 2 -1 [1]

6. How do you perceive this?

+2 +

7. What would you prefer at the moment?

-3 -2
8. Would you change the temperature?
O ves () O o (o)

9. What are you wearing?
O undershirt O sleeve O sleaveless
O blouse O shortsleeve (O long
O sweater O thin O thick
O vest O thin O thick
O blazer [ colbert
O skit O thin O thick
[ long panls O thin O thick
O shor pants
O tghts
O panties
O socks O thin O thick
O shoes O open O bools O closed (ankle height)
O winter jacket or O summer jacket, because.
O couldn't find wardrobe
O chilly in foyer
O other reason
O Other clathing

Figure 2. The used survey including numerical transcription used for statistical analysis.

welcomed. At least 30 surveys were collected each sur-
vey day. The survey and measurement location in the
museum was always in the cabinets on the second
floor in “de Keizersvleugel,” see Figure 1D. This loca-
tion was best suitable since most museum visitors had
spent more than 30 min inside upon reaching this
location. Indoor climate measurements on a measure-
ment grid showed that the indoor climate throughout
the museum was very stable and homogeneous, verify-
ing that the indoor climate conditions on the location
of the surveys were representative for the rest of the
museum. Surveys were provided in both Dutch and
English. Figure 2 shows the survey including the
numerical transcription used for the statistical
analysis.

The survey included nine questions concerning gen-
der, age, time in the museum, acceptability of the ther-
mal indoor environment, thermal sensation, thermal
comfort, thermal preference, desire to change the tem-
perature, and clothing level. Besides, the time when
each survey was conducted was noted. The clothing
level was determined based on participants’ responses

Table 2. Specification of instruments used for indoor climate
measurements.

Variable Range Accuracy Sensor
Air temperature [°C] —80-150 +0.10 NTC type DC95
Radiant temperature [°C] —55-80 +0.05 NTC U-type

Air relative humidity [%] 0-100 +3.00 Humitter® 50YX

Airspeed [m/s] 0.05-5.00 0.02 +1.5% SensoAnemo 5132SF

to the survey. The transcription to Clo-value was based
on numerical values provided by ASHRAE.

Indoor measurements consisted of air temperature,
globe temperature, relative air humidity, and airspeed.
Table 2 provides specifications concerning the mea-
surement instruments used. ASHRAE' recommends
to perform the measurements at the following heights
for standing subjects: 0.1 m, 1.1 m, and 1.7 m. The
limited number of sensors available meant that meas-
urements could be taken only at a single height. It was
deemed suitable to position the instruments at head/
neck level helping to better monitor the thermal con-
ditions at the level of face and neck, which, because of
being continually exposed, could be most vulnerable.
Therefore, the measurement height was 1.7 m. The

140 —
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80 1

count [-]
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40 1

20 1 1

0

0 10 20 30 40 50 60 70 80 90 100
age [y]

Figure 3. Number of males and females per age group.



Table 3. Number of respondents of the subpopulations used for
further analysis.

Age [y] N males [—] N females [—]
30-40 60 50
65-75 128 224

sampling interval for the indoor measurements was
1 s. The indoor operative temperature was used for
further analysis and calculated as the mean of the air
temperature and the radiant temperature. This is con-
sidered valid since airspeed remained below 0.2 m/s.
Outdoor air temperature and relative air humidity
were acquired from the museum’s weather station via
the building management system. The sampling inter-
val for the outdoor measurements was 16 min.

Analysis procedure

Step 1: The database comprises 1,248 samples. Sam-
ples including erratic values or missing values and
samples of respondents who were in the museum for
less than 20 min were excluded resulting in a total of
1,121 samples that were used for analysis. Figure 3
shows the number of males and females categorized
by age. The museum’s visitor population consists pre-
dominantly of older females, followed by older males.

As mentioned in Introduction, the metabolic rate of
older adults (65-75 y) is expected to be 9% lower than
that of younger adults (30-40 y). Table 3 shows the
number of respondents in these age categories in the
current data set. This subset consists mostly of elderly,
particularly older females.

Step 2: The standard procedure for PMV has
been used as a reference allowing us to compare
the prediction performance. The standard PMV
was calculated using the input variables as shown
in Table 4. The variable “metabolism” is unknown
from either objective measurements or subjective
survey responses. Thus, for the standard PMV

Table 4. Input variables of the PMV model and methods of
determination.

Input parameter Determination

Metabolism [W/m?] Unknown
External work [W/m?] 0

Radiant temperature [°C] Measured
Air temperature [°C] Measured
Relative air humidity [—] Measured
Clothing level [clo] Transcription from survey responses
Air speed [m/s] Measured
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model, a constant metabolic rate (Met) was chosen
from tabular values: The heat equivalent of 1 Met
is defined as 582 W/m>.'> The standard input
value for a museum environment is a priori
assumed to be 1.5 Met, i.e., the mean of standing
relaxed (1.2 Met) and walking around (1.7 Met),'
rounded to one decimal place. The prediction accu-
racy was determined by calculating the PMV for
each survey day, including daily mean values for
the input parameter Clo and the daily measured
environmental variables, and using 1.50 Met for
the metabolic rate. The PMVs of the survey days
have been compared with the actual mean votes
(AMVs), which are the daily means of the TSVs
and the general prediction accuracy was assessed
using linear regression between actual versus pre-
dicted measurements (Actual = a; Predicted + ay).
The prediction accuracy is determined by the com-
bination of explained variance (R*-value) and inter-
cept (ap) and slope of the regression line (a;): A
perfect prediction accuracy implies 100% explana-
tion of the variance (R* = 1), zero bias (a, = 0),
and a slope equal to the line of identity (a; = 1).
Step 3: The PMV model has been applied to
every individual respondent, and the metabolic rate
of each individual was calibrated to make an exact
fit of the PMV to the individual TSV of that
respondent. Hence, in total 1,121 unique values for
metabolic rates have been estimated using the local
optimization solver “fminsearch” in MATLAB
release 2015b."” This method naively assumes that
all residuals are caused by metabolic rate. However,
individual thermal sensation is determined by
many other factors such as adaptation, personal
preference, and cultural background.'® These other
influences are not explicitly defined in the PMV
model. Therefore, any variance introduced by other
factors than the metabolic rate will be discounted
in this procedure and may cause a significant error
in the estimation of individual metabolic rates.
Given the large sample size, the influence of non-
metabolic rate variables is assumed to be equally
distributed over the entire population. Nevertheless,
the error introduced by other factors may result in
extremely low and high metabolic rates. To reduce
the influence of extreme values on the analysis, the
non-parametric ~ Wilcoxon-rank-sum  test was
applied to test whether the distribution of esti-
mated metabolic rates differed between the age
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Figure 4. Mean operative temperatures + SD during the survey
days as a function of the running mean outdoor temperature
(RMOT) according to Equation (3).

groups (adults of 30-40 y versus older adults of
65-75 ). Statistical significance was assumed when
p < 0.05.

Step 4: The PMV has been calculated for each survey
day using the median metabolic rate, further referred to
as PMV,,. The PMV . were compared with the
AMV's and linear regression was used to assess the pre-
diction performance as explained in Step 2.

Step 5: The Pearson correlation coefficient r was
calculated between the residuals (AMV - PMV,..)
and all other variables from the database. Following
the recommendation of Kenny for studies involving
subjective human responses, only correlations > 0.3
were further analyzed and discussed.'” If a relevant
correlation was found, linear regression was applied to
describe the linear relation between the residuals and
the specific variable and the PMV, . model was
extended using that linear relation.

The reference outdoor temperature RMOT was cal-
culated according to

Toi+0.8Te; 1 +0.4Te; 2 +02Te; 3
2.4

RMOT =

(3)

where T,; is the average outdoor temperature of the
survey day, T.;, the average of the day before, etc.
The average is the arithmetic mean of the minimum
and maximum outdoor temperature of the given day.
This reference outdoor temperature has been pro-
posed by van der Linden et al.*® and is an implementa-

tion of the exponentially weighted RMOT by Nicol.*'

08r
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PMV

Figure 5. AMV versus PMV using an assumed metabolic rate of
1.5 Met and the line of identity (dashed).

Results
Indoor climate conditions

The indoor temperature was varied over the year to
include a range of indoor operative temperatures,
while maintaining relative air humidity at 50%.
Figure 4 shows the operative temperatures during the
survey days as a function of the RMOT. The indoor
temperatures range from 19.5 °C to 24 °C. The small
standard deviations indicate that temperature was
accurately controlled.

Step 1: Standard value for metabolic rate

Figure 5 shows the prediction accuracy of the PMV
model using a standard input of 1.50 Met and using
the daily means for the rest of the measured input
parameters. The prediction performance of the PMV
model is described by the following linear regression:
AMV = 1.584 PMV - 0.034, R* = 0.75, p < 0.01. The
PMV model provides a good explanation of the vari-
ance; however, the slope differs significantly from the
line of identity (95% confidence interval of a;: 1.284-
1.884) that indicates that there is a clear underestima-
tion of the thermal sensation toward more extreme
AMVs (—0.5 < AMV < 0.5).

Step 2: Calibrating metabolic rates

Figure 6A shows the calibrated metabolic rates of the
museum visitors found by minimizing the error
between the AMVs and the PMVs. The calibration of
the metabolic rates was successful for each individual
respondent: The remaining prediction errors (¢ = TSV
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Figure 6. (A) All identified metabolic rates. (B) Identified metabolic rates of adults and elderly. The age groups 30-40 y and 65-75 y
were chosen because information on these groups was available from the database of the Dutch central bureau for statistics (CBS)

shown in Table 3.

— PMV) are all smaller than 1 x 107>, The histogram
shows a multimodal distribution for the entire popula-
tion that is indicative for the existence of subgroups
with distinct metabolic rates. Figure 6B shows the fitted
metabolic rates of the subpopulations adults (30-40 y)
and elderly (65-75 y) showing a shift between both
subpopulations’ maximum metabolic rates. For the
next step, the median value of the distribution is used
to represent the majority of the population.

Figure 7 shows the calibrated metabolic rates of
four subpopulations categorized with respect to age
and gender equal to the introduced subpopulations in
Table 1. The median metabolic rate is 10.3% higher in
adult males compared with elderly males (97 W/m>

240 f
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160 ! £ :
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100 | —]
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40 + — S0 i

4
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W+ H

metabolic rate [W
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AULED

30-40y 65-75y
females

30-40y 65-75y
males

Figure 7. Calibrated metabolic rates of males and females for dif-
ferent age categories. The age groups 30-40 y and 65-75 y were
chosen because information on these groups was available from
the database of the Dutch central bureau for statistics (CBS)
shown in Table 3.

vs. 87 W/m?, p < 0.01) and on average 9.7% higher
for adult females compared with elderly females
(93 W/m? vs. 84 W/m?, p < 0.01). The a priori estima-
tion of activity level (1.50 Met) appears appropriate
for this case study (median is 1.51 Met), especially for
the elderly. However, the metabolic rates of the mid-
aged adult subpopulations deviate substantially from
this a priori value (1.67 Met for adult males, 1.50 Met
for older males, 1.60 Met for adult females, and 1.44
Met for older females). Moreover, Figure 7 shows that
the calibrated metabolic rates vary considerably
among the individual respondents.

Then, the median of the calibrated metabolic rates
(1.51 Met) was used as input for the PMV model
instead of the a priori standard value (1.50 Met), and
the daily means of the measured variables were used
for the rest of the inputs. There is no significant
change or improvement, which is to be expected since
the a priori assumed metabolic rate (1.50 Met) is very
close to the actual metabolic rate (1.51 Met).

Step 3: Extending the PMV model
The prediction errors of the PMV model, i.e., the resid-

uals (AMV — PMV,.), show relevant correlations

Table 5. Relevant correlations between prediction residuals and
the variables RMOT (running mean outdoor temperature), Clo
(clothing insulation), and RH; (indoor air relative humidity).

RMOT Clo RH;
Pearson r —0.54 0.38 —0.32
p <0.01 0.03 0.06
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Figure 8. AMV versus PMV* and the line of identity (dashed).

with several variables indicating that the unexplained
variance may be partly explained by including addi-
tional inputs. Table 5 presents the Pearson correlation
coefficients and their p-values. From all variables in the
database, the RMOT, the clothing (Clo), and the indoor
air relative humidity (RH;) reveal relevant correlations,
of which RMOT shows the strongest correlation. The
correlations of RMOT and Clo are significant, whereas
RH;’s correlation is not significant.

The influence of RMOT is included in the extended
PMV model, further referred to as PMV™, by applying
linear regression to the residuals (AMV — PMV,..,) and
RMOT. Hence, PMV™ may be calculated according to

PMV* =PMV,¢ —0.024 RMOT +0.264 (4)

Figure 8 shows the prediction accuracy of the
PMV* model. The prediction performance of the
PMV™ model is described by the following linear
regression equation: AMV = 1.272 PMV* + 0.020, R*
= 0.80, p < 0.01. The PMV™ model provides a better
explanation of the variance and the prediction of the
thermal sensation toward more extreme AMVs has
improved.

Table 6 shows the correlations between the new
residuals (AMV — PMV™) and the aforementioned var-
iables (see Table 5). Since the information of RMOT is
included in the PMV* model, the correlation has

Table 6. Correlations between prediction residuals and the varia-
bles RMOT (running mean outdoor temperature), Clo (clothing
insulation), RH; (indoor air relative humidity).

RMOT Clo RH;
Pearson r <0.01 —0.08 0.01
p-value 1 0.63 0.95
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Figure 9. AMV compared with PMV**. Regression analysis shows
the relation is very close to the line of identity (dashed): AMV =
0.997 PMV**-0.0002.

diminished. Moreover, the correlations between the
residuals and the variables Clo and RH; are negligible
indicating that the clothing behavior and indoor RH
correlate with RMOT. Although RH; was controlled by
humidification and dehumidification in the museum,
RH;’s correlation with RMOT may be explained by sea-
sonal adjustments in the system set point for RH;.

Further analysis shows that the residuals (AMV —
PMV™) are not significantly explained by Gender (r =
—0.19, p = 0.08) or any other variable but are strongly
correlated with the variable thermal preference (r =
—0.88, p < 0.01). Linear regression has been used to
extend the PMV™ model with the inclusion of thermal
preference votes. The resulting PMV™ model is esti-
mated according to

PMV** =PMV* — 0.742 Preference +0.035 (5)

The equation indicates a substantial contribution of
thermal preference to the thermal sensation prediction.
Figure 9 shows the prediction performance of the
PMV™ model. Inclusion of the thermal preference does
explain the underestimation of the PMV™ model toward
more extreme AMVs: The new slope is nearly identical
to the line of identity but does not improve the
explained variance (R*-value remains 0.8).

Discussion and conclusions

This study presents a case study at Hermitage Amster-
dam museum differentiating the metabolic rate for
different age groups and accounting for the outdoor
temperature (RMOT) to improve the rational predic-
tion of thermal sensation.



The inputs of Fanger’s Predicted Mean Vote (PMV)
model comprise both environmental variables (tem-
perature, RH;, and airspeed) and personal variables
that may vary among individuals (metabolic rate and
clothing level). Earlier studies have shown that in
many cases AMV and PMV do not correlate strongly
and that this may be explained by inaccurate values
for input parameters such as for metabolic rate.” Fur-
thermore, thermal expectation has also been shown to
skew the relation between AMV and PMV in warm
environments.” An extensive review of the PMV
model identified that improved prediction of thermal
comfort can be achieved through improving the valid-
ity of the PMV model, better specification of the mod-
el's input variables, and accounting for outdoor
thermal conditions and special groups.*

The metabolic rates of 1121 respondents in a
museum case study have been estimated using the
PMV model. The variable metabolic rate has been cal-
ibrated by minimizing the difference between the
respondent’s TSV and the predicted thermal sensation
vote (PMV), ie., the residuals. This implies the
assumption that the residuals are only caused by the
variable metabolic rate. However, individual thermal
sensation is determined by many other factors such as
adaptation, personal preference, culture, or back-
ground difference.'® Consequently, the identified met-
abolic rates (Fig. 6a) cover a wide range including few
extreme values, i.e., values lower than 70 W/m? and
higher than 150 W/m?”. These extreme values are likely
to be unrealistic. The median has been used for further
analysis instead of the mean to minimize the effect of
the extreme values. Although the individual metabolic
rates need to be interpreted with extreme care, the dif-
ferences in median metabolic rates between different
subpopulations are considered to be meaningtul.

The median calibrated metabolic rates of various
subpopulations differ significantly: The results show
that the metabolic rate of elderly appears to be 10%
lower compared with the metabolic rate of adults (p <
0.01). This difference is consistent with what could be
expected based on physiologic data (see Table 1).*
Noteworthy is that the results show a substantial vari-
ation among individual respondents (Fig. 7).

The a priori assumed metabolic rate for physical
activity in a museum environment (1.5 Met) appears to
be close to the median of the estimated metabolic rates
(1.51 Met). This may be explained by the fact that the
visitors’ population was dominated by older females

TEMPERATURE (&) 195

(1.44 Met) in this case study as shown in Figure 3.
However, given that the metabolic rates appear to differ
significantly among subpopulations, the a priori
derived metabolic rate may be significantly off in other
cases. For example, museums visited predominantly by
younger people require a different assumption for the
metabolic rate (1.6—-1.7 Met). Hence, we conclude that
the tabular values, e.g., in Ref. 16 may not be appropri-
ate for specific subpopulations in an environment in
which humans generally have an elevated activity level
compared with an office environment, such as a
museum.

Earlier studies show that occupants of air-condi-
tioned office buildings (HVAC-buildings) are barely
influenced by the RMOT and that the adaptation pro-
cess is more prominent in NV office buildings.* How-
ever, this study shows that the prediction errors of the
PMV model are
the RMOT in a fully air-conditioned museum envi-

significantly ~correlated with
ronment. Correcting the PMV model’s prediction by
including RMOT improves the explained variance of
predicted versus AMVs and brings the linear regres-
sion slope closer to the line of identity: slopepyy =
1.58 and slopepyy- = 1.27 (slope = 1 if PMV and
AMYV are exactly equal). Hence, it has been demon-
strated that the prediction accuracy may be improved
by extending the PMV model by additionally includ-
ing the variable RMOT.

Although the new slope of PMV™ is closer to the
line of identity, it still results in underestimation of
the AMV at the progressively cool (AMV < —0.5)
and warm (AMYV > 0.5) sides of the thermal sensation
spectrum. The remaining variance and bias could not
be explained further by clothing level as the significant
correlations between the residuals (AMV — PMV™)
and clothing level (Table 5) were no longer present
after inclusion of RMOT in PMV™ (Table 6). This is
consistent with earlier findings on the relation
between outdoor temperature and clothing level as
well as other factors that change with RMOT, e.g,
behavior, expectation, and acclimatization.?*

Further analysis revealed that the remaining resid-
uals (AMV — PMV"™) strongly correlate with the vari-
able thermal preference. Thermal preference is, in
general, not a variable that is known beforehand and is
therefore of little practical importance in a predictive
model. Nevertheless, including thermal preference has
explained the underestimation of the PMV™ model
toward more extreme AMVs: The new slope is nearly
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identical to the line of identity (see Fig. 9), but the
explained variance has not improved (R*-value remains
0.8). The reason why thermal preference seems to
remove most of the prediction bias may be twofold: (1)
thermal preference may be interpreted as being the
inverse of thermal sensation, and hence, it may relate
strongly to the actual thermal sensation: People that feel
cold indicate they prefer a warmer environment,” or
(2) visitors expected a neutral environment and were
more critical to any deviation toward warmer or cooler
environments. The latter is in line with thermal expec-
tation, which has been shown to improve thermal sen-
sation prediction in NV buildings.”

In conclusion, the Hermitage Amsterdam museum
was used as a case study on thermal sensation of its
visitors. The museum is a public space visited by peo-
ple that vary widely in age and with increasing age
comes a decreasing metabolic rate. A metabolic rate is
one of the key parameters that is used in the predic-
tion of thermal sensation based on physical heat bal-
ance. This study investigated what value for the
metabolic rate would best suit the prediction of ther-
mal sensation. Furthermore, the added value of
including information on the outdoor temperature
(RMOT) has been explored.

The results show that

1. The optimal metabolic rate for thermal sensation

prediction using the PMV model was 1.51 Met
for a museum environment that was predomi-
nantly visited by elderly females. The optimal
value is very close to the a priori selected value of
1.50 Met; however, this a priori selected value
may be substantially off in other cases, for exam-
ple, in museums mostly visited by younger people.

2. Significant differences in metabolic rate were

revealed between adults and elderly subpopula-
tions (1.67 Met for adult males vs. 1.50 Met for
elderly males, and 1.60 Met for adult females vs.
1.44 Met for elderly females), which are in line
with what would be expected based on empirical
models that predict metabolic rate. Hence, the
results show the importance of differentiating
between subpopulations when determining the
metabolic rate. The standard tabular values,
which only differentiate between various activi-
ties, may be oversimplified for many cases.

3. Extending the PMV model with the variable

RMOT significantly improved the thermal sen-
sation prediction, but the thermal sensation

toward extreme cool and warm sensations
remained partly underestimated.

Abbreviations

AMV actual mean vote

ASHRAE American society of heating refrigerating
and air-conditioning engineers

PMV predicted mean vote

PPD percentage people dissatisfied

RMOT running mean outdoor temperature

TSV thermal sensation vote
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