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Abstract

Respiratory signals are required for image gating and motion compensation in minimally invasive 

interventions. In X-ray fluoroscopy, extraction of a respiratory signal can be challenging due to 

characteristics of interventional imaging, in particular injection of contrast agent and automatic 

exposure control. We present a novel method for respiratory signal extraction based on 

dimensionality reduction that can tolerate these events. Images are divided into patches of multiple 

sizes. Low-dimensional embeddings are generated for each patch using illumination-invariant 

kernel PCA. Patches with respiratory information are selected automatically by agglomerative 

clustering. The signals from this respiratory cluster are combined robustly to a single respiratory 

signal.

In the experiments, we evaluate our method on a variety of scenarios. If the diaphragm is visible, 

we track its superior-inferior motion as ground truth. Our method has a correlation coefficient of 

more than 91% with the ground truth irrespective of whether or not contrast agent injection or 

automatic exposure control occur. Additionally, we show that very similar signals are estimated 

from biplane sequences and from sequences without visible diaphragm. Since all these cases are 

handled automatically, the method is robust enough to be considered for use in a clinical setting.
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I. Introduction

Catheter-based interventions are minimally invasive procedures to diagnose and treat a wide 

array of diseases. These include cardiovascular interventions to treat structural heart disease 

and cardiac rhythm disorders, as well as interventional radiological procedures such as 

transarterial chemoembolization to treat liver tumors. Catheterization is commonly guided 

using X-ray fluoroscopy images acquired with a C-arm system. Fluoroscopy visualizes 

interventional devices and bones well, but soft tissue has poor contrast. Injection of 

iodinated contrast agent can help to visualize anatomic structures. However, contrast agent 

in high doses is potentially harmful and is applied sparingly, especially during pediatric 

procedures. Another approach to visualize soft tissue is augmented fluoroscopy. Structures 

of interest are segmented in a 3-D modality, e.g., MR or CT, and overlaid in realtime on top 

of the fluoroscopic images [1], [2]. These overlays are usually static, but newer approaches 

try to compensate for patient motion by animating the overlays according to the motion 

visible in the X-ray images, in particular respiratory motion [3], [4], to increase accuracy 

and reduce procedure times.

To realize this motion compensation in augmented fluoroscopy, motion modeling is a 

promising approach [5]. Motion models require a respiratory surrogate signal, which could 

be provided by the proposed method. There are other situations when it is highly desirable to 

automatically extract the respiratory state of the patient from fluoroscopic images. For 

example, even if only a static overlay is used, it is only accurate in a single phase of the 

respiratory cycle, which can be detected and highlighted using the respiratory signal. 

Furthermore, for registration between the X-ray coordinate system and the 3-D modality 

used for overlay creation, the respiratory state should be the same in all the involved images. 

Motion estimation in X-ray images also benefits from respiratory information [6]. Another 

potential clinical application of our method is radiation therapy in the lung or abdomen, 

where tumors are affected by respiratory motion. Image-based surrogate signals could be 

used in a motion model to predict the tumor motion and to adapt the treatment beam 

accordingly [7].

External devices to measure respiratory signals are available, for example spirometer [8], 

belts with pressure sensors [9], or range imaging devices [10]. These devices require 

additional setup time and must be synchronized or registered with the X-ray system. 

Consequently, they are not commonly used. Image-based estimation of the respiratory signal 

does not have these drawbacks, but has to face multiple challenges in fluoroscopy. First of 

all, the contrast of soft tissue is low. Thus, it might be hard to detect the respiratory state, 

especially if collimation is used. No assumptions about C-arm angulation, table position, or 

imaging parameters should be made, as the physician or the system can vary them during the 

intervention and the respiratory signal estimation should work in all cases. In particular, 

automatic exposure control (AEC) changes the brightness of the images, which invalidates 

many assumptions on intensity. Other challenges are injection of contrast agent and 

movement of interventional devices, which cause strong local intensity changes in the image 

that are not related to respiratory motion.
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In the literature, several algorithms for respiratory signal extraction have been proposed. The 

intensity changes of a region of interest (ROI) over time can constitute a respiratory signal 

[11], but the ROI must be chosen manually for each C-arm and table position. A popular 

idea is diaphragm tracking, e.g., [3], [4], [12], [13], but it is problematic in X-ray due to 

collimation and varying C-arm angulations. The above methods have some built-in 

assumptions about the X-ray images that are often violated. In recent years, manifold 

learning has been the dominating paradigm for respiratory signal extraction from medical 

images, for example in MR [14], ultrasound [14], SPECT [15], [16], and X-ray [17], [18], 

[19]. In the domain of X-ray fluoroscopy, Fischer et al. applied incremental manifold 

learning to extract the respiratory signal in realtime [17]. As this method depends on global 

intensity comparisons, it is not robust to automatic exposure control or contrast agent 

injection. Panayiotou et al. extracted tubular regions from fluoroscopic images before 

dimensionality reduction [18]. According to their experiments, the technique is robust to 

contrast agent. However, it is designed and evaluated only for retrospective gating, i.e., its 

performance is unclear for realtime motion compensation. In contrast to [18], Ma et al. 

suppressed tubular structures before applying principal component analysis (PCA) [19], and 

showed that it gives better results.

In this article, we propose a new method for respiratory signal extraction from X-ray 

fluoroscopy images. It is based on unsupervised learning and designed to be robust and 

widely applicable for the challenging case of interventional imaging, where fluoroscopic 

images are acquired with different and small fields of view, C-arm angles, and AEC. 

Additional challenges result from interactions of the physician, for example injection of 

contrast agent and insertion and movement of interventional devices. To handle this variety, 

we propose to extract many respiratory signals from each image using a patch-based 

approach. Two unsupervised learning methods are combined for respiratory signal 

extraction, namely dimensionality reduction and clustering. Dimensionality reduction, in 

particular kernel PCA, creates a set of proposal signals from the patches. We show that 

intensity variations occur frequently in fluoroscopic images and make kernel PCA invariant 

to these changes. The proposal signals from all the patches are clustered to find the 

respiratory information and to combine the information from all the patches such that 

outliers can be tolerated. Finally, we evaluate the method extensively on clinical X-ray 

sequences. We compare the performance on contrasted and non-contrasted images, different 

zoom levels, and biplane acquisitions. We show that our method performs robustly and 

accurately in these cases and that it is fast enough for interventional use.

II. Methods

An overview visualization of our method is given in Fig. 2. The images are divided into non-

overlapping patches. On each patch, dimensionality reduction is applied to compute a low-

dimensional embedding. Using clustering and robust combination of signals, a joint 

respiratory signal is created from the low-dimensional embeddings. Each of these steps is 

detailed in the following sections.

The notation in this paper is as follows: lower case and upper case letters denote scalar 

values (e.g., p, T, ε), bold lower case letters represent vectors (e.g., y, e), and bold upper case 
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letters denote matrices (e.g., K). Upper case calligraphic letters are sets (e.g., ). Upper 

indices in parentheses select a certain point in time from a set of variables (e.g., y(t)). Upper 

indices in brackets indicate the patch number (e.g., ρ[p]) and upper indices in braces indicate 

the eigenvalues or eigenvectors (e.g., λ{i}, e{i}) of a matrix. Lower indices denote a vector 

component, (e.g., si).

A. Background

Respiratory signal extraction is generally divided into two phases, the learning phase and the 

application phase. In the learning phase, a set of training images y(t), t ∈ {1, …, T} is used to 

learn the mapping from the image space to the respiratory signal s(t) ∈ ℝDs, where Ds is the 

dimension of the respiratory signal. In the application phase, the respiratory signal is 

estimated from newly acquired images using the previously learned mapping in realtime. 

Some authors only consider the learning phase, which can be used without the application 

phase for retrospective analysis of image sequences.

Dimensionality reduction is an approach that is well-suited for respiratory signal extraction. 

The main intuition is that the high-dimensional image data actually lies on a smooth, low-

dimensional subspace. This is well justified for medical imaging, because the images are 

acquired in a controlled environment. In particular for interventional fluoroscopic images, 

the main sources of variation are cardiac and respiratory motion. For respiratory signal 

extraction, dimensionality reduction is usually applied directly to the vectorized X-ray 

images y ∈ ℝDy. For an image of size Du×Dv, the dimension of the vectorized representation 

is Dy = Du · Dv. Potentially, the images are processed [19] or masks are applied [18] before 

vectorization. A mapping, specific to the C-arm angulation, the table position, and the 

patient, is learned from the image data itself in an unsupervised manner.

B. Kernel PCA

Our respiratory signal extraction method uses kernel PCA (KPCA) [20], which is a 

nonlinear extension of PCA. It is based on the kernel matrix K, where the entries of the 

matrix are defined as Kij = k(y(i), y(j)). The function k is a Mercer kernel, such that it 

corresponds to the dot product in a feature space. If k is linear, the result of kernel PCA is 

identical to conventional PCA and the feature space is the image space. Learning of the 

mapping involves computing the eigendecomposition of the kernel matrix

(1)

where λ{i} are the eigenvalues and e{i} the eigenvectors of K, sorted by decreasing 

eigenvalues. To map training samples or previously unseen samples y to the principle 

component i, the projection on the respective eigenvector is computed
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(2)

where s ∈ ℝDs is a Ds-dimensional embedding signal. The division by λ{i} normalizes the 

variance of each component i to 1. Respiratory motion is represented in one of the first 

dimensions of s, since it is one of the major sources of intensity variation.

C. Correlation Kernel

Most dimensionality reduction methods depend on the magnitude of the input data, e.g., by 

computing intensity differences [21], [22] or by reconstructing intensities of a sample from 

its neighbors [23] or from the low-dimensional embedding (PCA). This is susceptible to 

intensity variations caused by automatic exposure control. The same is true for common 

kernels used in kernel PCA, e.g., radial basis function, polynomial, or sigmoid kernel. For 

robustness against intensity variations, we use a normalized cross-correlation (NCC) kernel

(3)

where ȳ is the mean and σy is the standard deviation of y. The output of kNCC is normalized 

between [−1, 1]. This correlation kernel is identical to the linear kernel with input images 

normalized to ȳ = 0 and σy = 1. This enables to choose PCA or kernel PCA for 

dimensionality reduction, depending on the problem setup. The complexity of kernel PCA is 

dominated by the number of training samples T, while PCA is dominated by the image 

dimensionality Dy. For images, T is usually much smaller than Dy. However, if 

dimensionality reduction is applied to small patches, then T ≈ Dy and it might be faster to 

use conventional PCA. For sake of simplicity, we always use kernel PCA in this paper.

D. Patch-based Processing

The correlation kernel provides global intensity invariance. However, AEC also leads to 

local intensity variations. AEC employs vendor-specific criteria to stabilize the intensity 

distribution in a certain region of interest. It is triggered by a change in the average 

attenuation in this region due to motion or contrast agent. This leads to intensity changes 

outside the region of interest which are not related to motion, as illustrated in Fig. 3. Both 

images are approximately in the same respiratory state, but one of them contains contrast 

agent. In the histograms, the contrast agent is visible as an additional peak of low image 

intensities. In addition, the remaining histogram is shifted to the right, because AEC 

increases the X-ray tube power. Global intensity normalization is challenging in this case 

due to the additional peak caused by the contrast agent.

With patch-based processing, even local illumination variations can be tolerated. To use as 

much information from the images as possible, we extract patches at multiple resolutions. A 
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minimal patch size Q × Q is specified as a parameter of the method. The number of 

resolutions R is determined automatically by increasing the patch size by factors of 2 until 

the patch is too big to fit in the image Q · 2R−1 > min (Dv, Du). Non-overlapping patches ρ 
are extracted from the images y at each resolution. For an image of size Du × Dv, this leads 

to  patches ρ[p], p ∈ {1, …, P }. Kernel PCA is 

applied to each patch independently.

The major advantage of patch-based processing is that many respiratory signals are 

estimated from a single image. This allows to combine the signals intelligently and to 

tolerate outliers. Even if some of the patches are corrupted, for example due to contrast 

agent or interventional devices, a good signal can still be generate from the remaining 

patches. Global methods do not have such a recovery mechanism if the single global signal 

that they estimate is incorrect due to local corruptions of the image.

E. Signal Combination

From the previous steps, we have P signals s[p], each Ds-dimensional. It is unknown which 

dimensions or which patches contain respiratory information. In addition, the sign of 

corresponding signals might be flipped relative to each other. These ambiguities of sign and 

ordering are inherent in dimensionality reduction and must be removed in the learning 

phase.

To remove the ambiguity of ordering, we use clustering. The input samples for clustering are 

the 1-D signals from all possible patches and dimensions, S = P ·Ds overall. A matrix M ∈ 
ℝS×T is defined as the input of clustering

(4)

where each of the S rows is an input sample to clustering, containing the T time points as 

features. We use agglomerative clustering to find clusters of similar signals. Agglomerative 

clustering is a variant of hierarchical clustering, where samples are recursively agglomerated 

until all samples are combined. This results in a tree representation, where the root contains 

all samples and the leafs single samples. Clusters of varying size appear on intermediate 

levels of the tree. There are different ways to build the tree and extract clusters, for details 

see [24]. We use average linkage, where the distance between clusters is defined as the 

average of all sample distances. A nice property of hierarchical clustering is that the number 

of clusters does not need to be specified a priori. Instead, all clusters with an average 

distance smaller than ε are extracted from the tree. ε is a cluster similarity threshold, i.e., 
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two clusters are combined if the average distance between the samples of the clusters are 

below ε. In our implementation, we additionally require that the largest cluster contains at 

least Δ number of samples. This ensures that the respiratory signal is supported by multiple 

patches. If this is not the case, ε is doubled until a sufficiently large cluster is found. 

However, for high values of ε, less similar signals end up in the same cluster, which might 

deteriorate the respiratory signal. Depending on the clinical application, it might be 

preferable to notify the user that a proper respiratory signal could not be found.

Hierarchical clustering works with all kinds of distance measures. To be tolerant w.r.t. to the 

possible sign flip in the signals, our distance measure is based on the normalized cross 

correlation between the signals

(5)

where a, b are two arbitrary 1-D signals, i.e., rows of M. With this normalized distance 

measure, it is easy to set a generally applicable ε.

The result of the clustering are C clusters c, c1 ∩ c2 = ∅, , i.e., each 

row index of M is part of exactly one cluster. The clusters are sorted by decreasing cluster 

size. Note that not all signals from step (b) in Fig. 2 contribute to the signal in (c), because 

only one respiratory cluster is selected. Additionally, the signal in (c) does not necessarily 

have the same color, representing the dimension of the component, or sign as the 

corresponding signal in (a), which shows that the ordering and sign ambiguities are removed 

during clustering.

After clustering, we can compute a prototype signal for each cluster. All the signals assigned 

to a cluster are aligned using the sign of the NCC, which removes the sign ambiguity. The 

aligned signals are combined using the median

(6)

to yield a global C-dimensional surrogate s(t). Each time point t of  is the median over 

multiple rows of M. The median operator is robust to outliers and fast to compute. This 

robustness is necessary because outliers can occur in the application phase due to events like 

injection of contrast agent or usage of interventional devices, which are common in 

interventional fluoroscopy. The mean and mode operator were also investigated to perform 

this signal combination. The mean is not robust enough. The mode would have a similar 

robustness, but is slower because it does not have a closed-form solution. In addition, we 

tried to reject outlier signals based on the appearance of the patches. Even though most 

outliers can be detected this way, the resulting signals are similar. In our experience, the 

number of outliers is small enough to have little impact after the median operator. However, 

the algorithm would have been slower and more complex.
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F. Selection of Respiratory Dimension and Normalization

The dimension with respiratory information must be selected from the global surrogate 

signal , c ∈ {1, …, C} computed in Eq. (6). The criteria for selection are two general 

properties of respiratory motion. The first criterion is the breathing frequency, which is 

assumed to be above 0.1 Hz and below 1 Hz. Dimensions of  with a peak frequency 

outside of this range are removed. The second criterion exploits that respiratory motion 

affects large parts of the torso, which means it is visible in many patches. Thus, the 

remaining dimensions of  are sorted by cluster size and the largest is chosen.

We normalize the respiratory signal to the interval [0, 1] based on the median of the minimal 

and maximal peaks of the signal in the learning phase. By convention, 0 corresponds to full 

exhalation and 1 to full inhalation. Due to the sign ambiguity of dimensionality reduction, 

this is not guaranteed automatically. The issue of global sign is commonly neglected in the 

literature [14], [15], [17], [18], [19], [25], [26], with the exception of [16], because it does 

not affect the commonly used correlation measures for evaluating algorithm performance. To 

determine the sign, we use a heuristic that is based on the intuition that more time is spent in 

exhalation than in inhalation [16]. As the mean value of the unnormalized respiratory signal 

is close to 0, the absolute maximum value is ensured to be larger than the absolute minimum 

value. However, to apply the algorithm in a clinical setting, a more robust method to 

determine the global sign would be required.

G. Application Phase

The application phase involves fewer steps than the learning phase and all of them can be 

computed efficiently. Only patches that contribute to the respiratory cluster are processed. 

Kernel PCA is applied to each of them, i.e., a simple projection onto the eigenvectors that 

were computed in training. The signals can be aligned quickly, because any sign changes are 

known from the learning phase. Then the median operator is applied to combine all the 

signals from the cluster, see Eq. (6).

III. Experiments

A. Experimental setup

The images were acquired on flat-panel X-ray C-arm systems (Artis, Siemens Healthcare, 

Forchheim, Germany) from multiple sites. The dataset comprises ventilated pigs, pigs with 

manual ventilation, and humans. All experiments were approved by institutional review 

board (for humans) or animal care and use committee (for animals). Overall, our 

experiments contain 60 sequences of a length of 53 – 587 images. The mean sequence length 

is 214 images and the median length 199 images. The framerate is 10 – 15 Hz and the pixel 

spacing is 0.154 – 0.432 mm. The original image size is 512 × 512 – 1024 × 1024, but we 

downsample the images by multiples of 2 to have a size close to 128 × 128 pixels since 

methods based on dimensionality reduction do not require a high resolution and the runtime 

is reduced drastically. Subsets of these images are used for each experiment depending on 

their properties, e.g., all sequences with contrast agent are used in Section III-C and all 

images with biplane imaging are used in Section III-D.
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We implement several methods as comparison to our proposed method, which we call Multi-

Resolution KPCA in the experiments. The most basic method is the application of PCA to 

the images. This is related to the approach of Ma et al., except that we do not apply 

morphological closing before PCA because our images do not contain coronaries [19]. It is 

also similar to the methods of Panayiotou et al., but without focus on tubular structures [18]. 

As a representative of manifold learning, we use Isomap [14], [17]. Additionally, we 

implement the two major contributions of this article individually, specifically, patch-based 

processing (Multi-Resolution PCA) and illumination-invariant kernel PCA (KPCA). Thus, 

we can analyze the impact of each step individually. Furthermore, we try our method 

without multi-resolution information, i.e., only patches at the specified patch size Q are 

extracted (Patch KPCA). The post-processing of Section II-F is applied to all methods to 

avoid a bias towards our method. Instead of clusters and their size, the embedding 

dimensions and their explained variances are used in Isomap, PCA, and KPCA for selection 

of the respiratory dimension.

The methods are trained on the first 45 images of each sequence if not stated otherwise. 

With the framerates of our dataset, this corresponds to 3–4.5 s, which is sufficient for 1–2 

breathing cycles. The hyper-parameters for all methods were determined visually. The same 

parameters are used for all experiments. The patch size for patch-based methods is Q = 16. 

The dimensionality of the surrogate signals is Ds = 3. The cluster similarity threshold is ε = 

0.05, while the minimum number of samples in a cluster is set to Δ = 8. The number of 

neighbors for building the neighborhood graph in Isomap is 10.

All the methods are implemented in Python using its scientific libraries. In particular, kernel 

PCA and Isomap are based on scikit-learn [27]. The implementation only uses the CPU, i.e., 

the GPU is not used for acceleration. The experiments are executed on a consumer notebook 

with an Intel Core i7-3720QM CPU and 8 GB of RAM.

B. Comparison to Diaphragm Tracking

For quantitative evaluation, the diaphragm motion in superior-inferior direction is used as 

ground truth. It is a good surrogate of the respiratory state because it corresponds to internal 

breathing motion. Diaphragm tracking itself is not a practical method for respiratory signal 

estimation in fluoroscopy since the visibility of the diaphragm cannot be guaranteed under 

all circumstances. To track the diaphragm, we apply template matching with manual 

corrections where necessary, which is appropriate since it only serves as the ground truth. 

The correlation coefficient is used to compare the outputs of the investigated methods with 

the ground truth signal. The experiment is performed on 25 sequences, all without injection 

of contrast agent.

C. Influence of Contrast Agent

We conduct special experiments to investigate the effect of contrast agent injection. Again, 

the estimated respiratory signals are compared to the superior-inferior motion of the 

diaphragm. 21 sequences comprising contrast agent injection in the left ventricle (6), 

pulmonary arteries (10), coronaries (2), and aorta (3) are processed. On average, 55% of the 

frames are contrasted in these sequences. In the first version of the experiment, the methods 

Fischer et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



learn on a subsequence without contrast agent and are applied to the subsequence in which 

contrast agent is injected. In the second version, the subsequences for learning and 

application are reversed. If the signal extraction should be universally applicable without 

requiring special attention by the physician, both cases are important.

D. Comparison of Biplane Signals

In biplane imaging, the C-arm systems has two X-ray sources and detector planes (plane A 

and B) and is able to alternately acquire images from two views, see Fig. 1a. As both views 

show the same patient, the estimated respiratory signals should be identical. In practice, 

plane B often has a smaller detector. Additionally, it does not show the patient in anterior-

posterior projection, thus the image content and the motion directions are different. In this 

experiment, we check the similarity of the respiratory signals from both views for the 

investigated methods using the correlation coefficient on 2·10 biplane sequences. Exemplary 

biplane images are shown in Fig. 4.

E. Evaluation of Zooming

For X-ray images with a large field of view, respiratory signal extraction is easy. If the 

diaphragm is visible, many methods explicitly track the diaphragm or implicitly make use of 

the high-contrast structure that moves according to respiratory motion. However, there are 

many circumstances where the diaphragm is not in the field of view. In particular, 

collimation and zooming are used heavily by physicians to reduce the radiation exposure of 

the patient. Here, we evaluate the tolerance w.r.t. smaller fields of view. A region of interest 

(ROI) that excludes the diaphragm is defined. We can still use the diaphragm motion 

extracted from the full images as a reference signal. In addition, we compare the respiratory 

signal that each method estimates from the full image with the respiratory signal from the 

ROI using the correlation coefficient. The same 25 sequences as in Section III-B are used.

F. Runtime Measurement

The runtime of the methods is important because the usefulness of retrospective respiratory 

signal extraction is limited in an interventional setting. The duration of the learning phase 

and the duration of application phase is measured separately. Learning needs to be executed 

only once per C-arm angulation and table position. The accumulated duration of processing 

all the T training images is reported. The application phase is more time-critical, since it is 

executed once for each newly acquired X-ray image. The time for processing a single image 

is given. Additionally, the runtime of each step of our proposed algorithm is analyzed in 

more detail. The experiment is conducted for the same 25 sequences used in Section III-B.

G. Influence of Patch Size

The patch size is an important parameter of this algorithm. It potentially has a large 

influence on the robustness, accuracy, and runtime. Therefore, we perform the experiments 

on diaphragm tracking (Section III-B) and runtime (Section III-F) for varying patch sizes (Q 
∈ {8, 16, 24, 32, 64}). For the patch size 64, only 5 patches per image are available. Thus, 

we reduced the minimum cluster size Δ to 2 for this case. To determine the contribution of 
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the multi-resolution approach, we perform the experiment for Patch KPCA and Multi-

Resolution KPCA.

H. Influence of Minimum Cluster Size

The behavior of clustering depends on the minimum cluster size Δ and the cluster similarity 

threshold ε. Jointly, they influence how many samples are clustered and how similar they 

need to be. The starting value of ε = 0.05 is small such that in the ideal case, the samples are 

very similar. In this experiment, we vary the minimum cluster size (Δ ∈ {4, 8, 16, 32, 64}) to 

analyze how the algorithm performance varies due to clustering. The experiments are 

conducted on the same data as Section III-B.

I. Analysis of Irregular Respiration

A common assumption is that respiration is periodic, which is valid for the 47 sequences of 

pigs on an automatic ventilator. These pigs have a constant breathing depth and frequency. In 

many interventions, the subjects are not on a ventilator, which leads to an increased 

variability in respiration. In our datasets, there are 8 sequences of manually ventilated pigs 

and 5 sequences of free-breathing humans. Out of the 47 sequences of ventilated pigs, the 

diaphragm is only visible in 33 sequences, which are used here because we can extract the 

ground truth signal. We analyze the behavior of our algorithm in these two cases 

quantitatively and qualitatively.

J. Analysis of Algorithm Statistics

The proposed method has an adaptive behavior mainly due to clustering. We report and 

analyze statistics on this adaptivity. For example, the clustering selects a subset of patches 

from different resolutions and selects one of the Ds dimensions of the low-dimensional 

embedding signal. For clustering itself, we are interested in the cluster size, which reflects 

the spatial support of the respiratory signal. In addition, we measure how often an increase 

in ε is required to get a sufficiently large respiratory cluster. The statistics are calculated on 

67 sequences from Section III-B and Section III-C. Note that the sequences from Section III-

C are used twice with different subsequences for training.

IV. Results

The results of the experiments that compare to a ground truth signal based on diaphragm 

tracking are summarized in Table I, while the correlation coefficient between different 

versions of the same sequence are given in Table II.

A. Comparison to Diaphragm Tracking

All methods have a high correlation coefficient of more than 0.9 with the diaphragm 

tracking signal, see the left column of Table I. The global methods PCA with 0.96, Isomap 

with 0.97, and kernel PCA with 0.97 are better than the patch-based methods. Exemplary 

respiratory signals are shown in Fig. 5. As indicated by the high correlation, all methods 

visually agree well with diaphragm tracking.
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B. Influence of Contrast Agent

If respiratory signal extraction is trained on uncontrasted images and applied to contrasted 

images, most methods still perform well quantitatively. The reason is that the contrast agent 

rarely overlaps with the diaphragm, which is the main indicator for the respiratory signal. In 

addition, the amount of injected contrast agent is often sufficiently low such that AEC does 

not heavily change the intensities. The highest correlation coefficient is observed for KPCA 

with 0.97 and for Patch and Multi-Resolution KPCA with 0.97 and 0.98, respectively. For 

these methods, the results are at least as good as for the experiment without contrast agent. 

The correlation of Isomap and Multi-Resolution PCA decreases considerably. If the 

mapping is trained on contrasted images, previous methods track the contrast agent inflow 

instead of respiration. The correlation coefficient of the state-of-the-art methods PCA and 

Isomap is only 0.83 and 0.75, respectively. Multi-Resolution PCA deteriorates to 0.66 and 

kernel PCA to 0.91. Only the proposed combination of patches and kernel PCA still has an 

unchanged high correlation coefficient of 0.98. The possible effect of contrast agent on the 

respiratory signals is visualized in Fig. 6. In this sequence, contrast agent is injected in the 

left ventricle, which is such a large structure that it triggers AEC. The methods based on 

absolute intensity values are heavily disturbed by the resulting global change of image 

intensities. Quantitatively, the correlation coefficient in Fig. 6a is 0.78 for Isomap, 0.84 for 

PCA, 0.71 for Multi-Resolution PCA, 0.98 for KPCA, and 0.99 for Multi-Resolution KPCA. 

The effect is even worse when the injection happens during the learning phase, see Fig. 6b.

C. Comparison of Biplane Signals

The correlation coefficient between signals from plane A and plane B is over 0.95 for all 

methods except Multi-Resolution PCA and Isomap. Multi-Resolution PCA has a correlation 

coefficient of only 0.92. The main reason for this low correlation is that some of the biplane 

sequences contain contrast agent, which Multi-Resolution PCA and Isomap do not tolerate 

well. With 0.98, the best correlation coefficient is achieved using our proposed Multi-

Resolution KPCA. The quantitative results are summarized in the left column of Table II. A 

qualitative example for biplane signals is shown in Fig. 7a from a sequence without contrast 

agent injection. All methods have similar signals for plane A and B, except for Multi-

Resolution PCA.

D. Evaluation of Zooming

As listed in the zoom column of Table I, the average correlation coefficient of the output of 

all methods with the diaphragm is in a relatively small range. The worst result is achieved by 

Multi-Resolution PCA with 0.89 and the best result by Multi-Resolution KPCA with 0.92. 

For the relative comparison of signals from the full image and the zoomed image, all 

methods agree very well. In all cases, the average correlation coefficient is above 0.95. For 

the patch-based methods, the signals are nearly identical and the average correlation 

coefficient is above 0.98. The quantitative results are summarized in the right column of 

Table II. In Fig. 7b, the signals from the full image and the zoomed image excluding the 

diaphragm can be seen for an exemplary sequence. The main differences between the full 

and the zoomed signals are the level of noise or small baseline drifts. For the patch-based 

methods, these effects cannot be observed. Note that in Fig. 7, Multi-Resolution PCA is 
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better than the baseline methods in Fig. 7b and KPCA is better in Fig. 7a, but Multi-

Resolution KPCA combines the advantages of both.

E. Runtime Measurement

For the learning phase, the runtime is in an acceptable range for all methods. Isomap with 

0.05 s and KPCA alone with 0.01 s are very fast, since their runtime depends mostly on the 

number of training images T and not the dimensionality Dy. The patch-based methods are 

quite slow with 0.12–0.36 s. The reason is that P PCAs or kernel PCAs are performed 

instead of 1. For the application phase, all methods can handle typical X-ray framerates of 

up to 15 Hz. Multi-Resolution KPCA is slowest with 8.4 ms per image, while PCA is fastest 

with 0.3 ms. All runtimes are summarized in Table III.

We analyze the runtime of the proposed Multi-Resolution KPCA in more detail. During 

training, preprocessing of the images and alignment and normalization of the respiratory 

signal are negligible with less than 1% each. Patch extraction from the images takes 14% of 

the time and clustering 10%. With 73%, the majority of the time is spent to compute the 

kernel PCA for each patch. During the application phase, the distribution of the runtime is 

more balanced. Approximately 50% of the time is needed to extract the patches, and the 

other 50% to compute the projection onto the kernel PCA eigenvectors. The time spent for 

preprocessing the images, and combining the signals from the patches is negligible. To sum 

up, the operations that must be performed for each patch have the largest share of the 

runtime. For an image size of 128 × 128 and a patch size of Q = 16, for example, P = 85 

patches are extracted and as many kernel PCAs are required.

F. Influence of Patch Size

The correlation with the diaphragm only changes slightly with the patch size Q. For Multi-

Resolution KPCA, it is 0.94 for Q = 8, 0.93 for Q = 16, 0.94 for Q = 24, 0.91 for Q = 32, 

and 0.92 for Q = 64. For Patch KPCA, the correlation for small patch sizes has similar 

values. It is 0.93 for Q = 8, 0.92 for Q = 16, and 0.94 for Q = 24. For the larger patch sizes 

of Q = 32 and Q = 64, the correlation drops to 0.87. For both methods, smaller patch sizes 

below Q = 32 are better. The multi-resolution approach is more stable w.r.t. changed patch 

sizes or larger patches. In general, larger patches can capture respiratory motion more 

accurately, since they are less affected by structures moving in or out of the patch. However, 

the brightness correction due to kernel PCA is less local, and the extracted signals become 

less robust.

The runtime of the method decreases with increasing patch size and with decreasing image 

size. For Q = 8, the runtime is 22 ms per image in the application phase on average. This is 

reduced to 4.4 ms per image in the application phase for Q = 32. For the whole learning 

phase, 0.08 – 0.81 s are required, which is slightly worse than other methods.

G. Influence of Minimum Cluster Size

There is little dependence of the result on the minimum cluster size Δ. For Δ ∈ {4, 8, 16}, 

the correlation coefficient is always 0.93. The reason is that Δ only affects the result if the 

largest cluster is smaller than Δ, which never occurred for these values of Δ in the 25 

Fischer et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequences of this experiment. For Δ = 32, the correlation coefficient increases slightly to 

0.94. For Δ = 64, it deteriorates to 0.88, which indicates that patches uncorrelated to the 

diaphragm are included in some sequences due to the mechanism that increases ε.

H. Analysis of Irregular Respiration

On the ventilated sequences, the average correlation coefficient for the proposed method is 

0.95 ± 0.05. For manual ventilation or free-breathing data, the correlation coefficient is 

0.96±0.05. Irregular breathing does not have a negative effect on the quantitative results.

Qualitative plots of all 13 non-ventilated sequences are shown in Fig. 8. Multiple breathing 

frequencies and changes in breathing frequency are handled well. Changes in breathing 

depth are only represented well if the breathing amplitude is lower in the test data than in the 

training data, e.g., sequence 5, 8, and 9. In contrast, increasingly deep inhalations as in 

sequences 10, 11, and 13 are not tracked sufficiently in the respiratory signal.

I. Analysis of Algorithm Statistics

There are Ds = 3 possible dimensions of the low-dimensional embeddings that can be 

selected for each patch as explained in Section II-E. The first dimension is chosen 99% of 

the time. In the remaining cases, the second dimension is chosen. The first and second 

component of the same patch are never in the same cluster due to the orthogonality 

constraint of the PCA. The dimensions of the low-dimensional embeddings are sorted by 

eigenvalues. This sorting corresponds to the amount of variation in the patches that is 

explained by the dimension. Thus, if a patch contains respiratory information, it is the most 

important source of variation in that patch with a large probability.

Since patches can be selected from multiple resolutions, i.e., patch sizes, it is interesting how 

often each resolution is actually used. In all but one sequence, there are 4 resolutions. The 

smallest patch size of Q = 16 constitutes 71% of the patches used for respiratory signal 

extraction. The next larger patches of size 32 × 32 pixels are responsible for 22% of the 

selected samples, and the patches of size 64 × 64 for the remaining 7%. The full image is 

never used. An overview of the patch size distribution is given in  in Fig. 9. This bias 

towards smaller patches is caused by the higher number of small patches compared to larger 

patches. When related to the total number of patches per resolution, see the  bars in Fig. 

9, the proportion is similar for the three small patch sizes. This proportion also reflects, for 

each resolution, how much of the image is covered with patches that contribute to the final 

respiratory signal. Overlapping patches from different resolutions quite often contribute to 

the same cluster. For a patch in the respiratory cluster, on average 2.3 out of the possible 4 

contained patches from the next smaller size are also included in the cluster.

The number of used patches that support the respiratory signals is directly related to the size 

of the respiratory cluster. The size of this cluster ranges from 9 to 80. The mean and standard 

deviation is 36 ± 18. Note that the maximum cluster size for 4 resolutions is 255, which 

would include all of the 3 low-dimensional signals from all 85 patches. The minimum 

possible cluster size is 8 due to the constraint imposed by Δ. This lower threshold was 

enforced in 3 out of the 67 sequences by increasing ε to 0.1.
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V. Discussion

Our experiments show that dimensionality reduction in general is a prudent approach to 

respiratory signal extraction. It does not rely on tracking of high-contrast structures like 

catheters or the diaphragm, which are not always available. It is applicable independent of 

the field of view or C-arm angulation, as shown by our experiments on biplane and zoomed 

images. The learning phase to train the mapping from image space to signal space is a 

drawback. It is a comprehensible requirement, since it is hard to tell at which position in the 

respiratory cycle an image was acquired if a full cycle has not yet been observed. However, 

it is not necessary to acquire additional images for training. The respiratory signal is just not 

available before enough images are acquired in a new C-arm position. This creates the 

requirement for a short learning phase, since it must be repeated for each C-arm angulation 

and table position. It is possible to reuse previously learned mappings if the same C-arm 

position is used in a later stage of the procedure.

It is not surprising that the global methods have the best results in the basic diaphragm 

tracking experiment (Section IV-A). This experiment is a best-case scenario, where the 

diaphragm is visible as a high-contrast structure for guiding the respiratory signal extraction 

and there are no confounding disturbances from other high-contrast structures. This high-

contrast structure has a big influence on the objective functions of Isomap, PCA, and KPCA. 

Consequently, the respiratory signals of these methods follow the diaphragm motion 

accurately. Patch-based methods on the other hand are not dominated by the diaphragm 

because they average information from at least Δ patches. The root cause of the lower 

correlation of the patch-based methods is a small phase shift relative to the ground truth, 

which occurs in some sequences. There are two empirical indications to support these 

claims. First, in Section IV-D, the same sequences as in Section IV-A are processed on a 

ROI excluding the diaphragm. The advantage of the global methods disappears completely. 

Second, if a phase shift of up to 3 images is allowed in Section IV-A, the average correlation 

of PCA and the patch-based methods is above 0.97 as well. What is more, it indicates that 

there is a temporal offset of the respiratory motion in different regions of the thorax. This is 

also visible in Fig. 10.

The averaging behavior is also the reason why the patch-based methods have better results in 

the relative zooming experiments. The patch-based methods did not focus so much on the 

diaphragm for the full images, so the extracted respiratory signal is not much different if the 

diaphragm is not visible. In Fig. 10, the patch locations that contribute to the respiratory 

signal are shown for Patch KPCA. The  color identifies the largest cluster, the second 

largest cluster is shown in . The patches are overlaid onto the first image of the processed 

sequence for the full image and the zoomed version. In both versions and for both clusters, 

similar patches are chosen by clustering. The corresponding respiratory signals for each 

cluster are shown below the images. The  signal is delayed by ~ 133 ms relative to the 

 signal, corresponding to the phase shift mentioned in the previous paragraph. 

Incidentally, the patches at the diaphragm border are not in the largest cluster, i.e., they do 

not contribute to the respiratory signal used in the quantitative evaluation.
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We experimentally evaluated the sensitivity of the proposed method w.r.t. parameter 

changes. For the patch size Q (Section IV-F) and the minimum cluster size Δ (Section IV-G), 

the method was found to have a small sensitivity. Even though there are a multiple 

parameters that can be adapted, the exact values are not crucial to achieve good results.

The biggest differences between the state of the art and the proposed method is visible for 

the experiments involving contrast agent (Section IV-B). If contrast agent is present during 

training, the performance of the state-of-the-art methods deteriorates heavily. The reason is 

that the flow of contrast agent changes pixel intensities drastically and the dimensionality 

reduction methods focus on that variation. This effect is suppressed by patch-based 

processing, since the contrast agent only appears in parts of the image. If contrast agent is 

injected during the application phase, the performance degradation is not as bad. On many 

sequences, the baseline methods still provide reasonable respiratory signals. However, if the 

contrast agent happens to appear in a region that showed high respiratory motion during 

training or if strong exposure changes are made by AEC, the signals will be destroyed, see 

Fig. 3. Only the combination of patch-based processing and brightness invariance is robust 

to large local variations in signal intensity. Sequences containing contrast agent cannot be 

neglected in the analysis. Although one goal of augmented fluoroscopy is to reduce the use 

of contrast agent, contrast agent is still often necessary to confirm the clinical outcome. It is 

also a way to validate the overlay and its motion compensation. When injecting contrast 

agent, physicians can see the structure of interest in X-ray and in the overlay. The motion 

compensation would appear unreliable if these two representations do not align or worse if 

sudden atypical motions occur in the overlay. Additionally, there are other high-contrast 

structures that are frequently used in minimally-invasive interventions, such as catheters, 

needles, and stents, which would have a similar effect on respiratory signal extraction 

methods. In general, robustness is relevant for image analysis methods to avoid unexpected 

behavior during clinical use.

Besides dimensionality reduction, there are some other relationships to previous respiratory 

signal extraction methods. One previous method based on hierarchical manifold learning 

[28] also combines multiple signals computed from patches [25]. Our method has some 

important differences. It is invariant to intensity variations due to the correlation kernel. Not 

all of the image patches are used, but only those that carry respiratory information as chosen 

by clustering. Together with using the median instead of the mean to combine multiple 

signals, this greatly improves the robustness against outliers. In our experiments, there is 

little difference in accuracy between Patch KPCA, where only patches of small size are 

used, and Multi-Resolution KPCA, where all patches are used. However, there is a large 

difference to Multi-Resolution PCA, which does not include brightness invariance. This 

shows that the use of multiple resolutions, as in hierarchical manifold learning, is not as 

important as local brightness invariance. A disadvantage of our method is that the signals of 

the patches are not aligned intrinsically. However, the choice of patch size is not critical and 

the signals are aligned automatically during clustering. Of course, hierarchical manifold 

learning could be improved as well w.r.t. brightness invariance and outlier robustness.

Another related idea occurs in the masked PCA method of Panayiotou et al. [18]. It also 

selects only parts of the images to extract the respiratory signal. Their assumption is that 
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tubular structures carry respiratory information, which are identified using vesselness 

filtering. There is no further justification for this assumption, and it could not be confirmed 

by other authors [19]. We speculate that the tubular structures are only helpful for cardiac 

signal extraction, which is estimated additionally in [18]. This coincides with the finding in 

[18] that hierarchical manifold learning and masked PCA are not significantly different for 

respiratory gating. In our method, the patch selection is driven by clustering, i.e., the size of 

the clusters. This assumes that respiratory motion affects many patches and is a dominant 

source of variation.

VI. Conclusion and Outlook

We have presented a method for robust respiratory signal extraction from fluoroscopic 

sequences. We extended state-of-the-art methods based on dimensionality reduction with 

patch-based processing and brightness invariance. With the contributions presented in this 

paper, we can increase the robustness against many disturbances occurring in interventional 

imaging, such as contrast agent injection, automatic exposure control, and interventional 

devices. Only unsupervised learning is necessary to achieve a patient-specific respiratory 

signal, which can be extracted in realtime after a short learning phase.

Three main drawbacks still remain for methods based on dimensionality reduction. Firstly, 

the learning phase delays the availability of the respiratory signal. Incremental learning 

might be an option to shorten it [17]. Secondly, the mapping is only valid for a single C-arm 

and table position. This restricts the applicability, e.g., rotational scans as in C-arm CT are 

not feasible. Local PCA has already been proposed to circumvent this problem [26]. Some 

fluoroscopy-guided interventions frequently change the C-arm and table position, so 

mappings must be stored for each position or relearned each time. Thirdly, the global sign of 

the respiratory signal is undetermined. Heuristics as used here only work for some 

applications, e.g., if the learning phase is long [16] or for ventilated patients. Possible 

solutions for this problem could be manual indication of the global sign by the physician, or 

a binary classification approach based on supervised learning. Future work will be to handle 

these problems and apply the respiratory signal for motion compensation in augmented 

fluoroscopy.
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Fig. 1. 
A biplane X-ray system used for interventional applications (Fig. 1a) and an X-ray image of 

a pig with contrast agent injection in the pulmonary arteries (Fig. 1b).
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Fig. 2. 
Illustration of the proposed respiratory signal estimation. From the medical image, non-

overlapping patches are extracted at multiple resolutions (a). Kernel PCA is applied to each 

patch leading to a set of low-dimensional embeddings, where each color represents a 

different dimension. Hierarchical clustering, represented by a dendrogram, finds similar 

signals (b). The respiratory cluster is identified and the corresponding signals are combined 

and normalized to give the respiratory signal (c).
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Fig. 3. 
Comparison of images with and without contrast agent. The contrast agent strongly 

attenuates the X-rays, which is visible as an additional peak at intensity 75 in the histogram 

Fig. 3d. In consequence, AEC increases the X-ray tube power, which shifts the rest of the 

histogram to the right.
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Fig. 4. 
Simultaneously acquired biplane images from an X-ray system as in Fig. 1a should lead to 

identical respiratory signals.
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Fig. 5. 
The reference respiratory signal created from diaphragm tracking (–) and the output of each 

method ( ) are shown. For this simple sequence without contrast agent injection, all 

methods deliver good results. The gray background indicates the learning phase. The vertical 

axis is normalized to 0–1. Best viewed in color.
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Fig. 6. 
Respiratory signals extracted by all methods ( ) for an exemplary sequence with contrast 

agent injection. The gray background indicates the learning phase. In Fig. 6a, the contrast 

agent is injected in the application phase and in Fig. 6b in the learning phase. Diaphragm 

tracking is shown as a reference signal (–) in each plot. Best viewed in color.
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Fig. 7. 
In Fig. 7a, signals from plane A ( ) and plane B ( ) are juxtaposed. In Fig. 7b, the 

signals are extracted from the full image ( ) and a region of interest that excludes the 

diaphragm ( ). The gray background indicates the learning phase. Best viewed in color.
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Fig. 8. 
Respiratory signals extracted by the proposed methods ( ) on free-breathing humans (top 

5 sequences) and manually ventilated pigs (bottom 8 sequences). The gray background 

indicates the learning phase. Diaphragm tracking is shown as a reference signal (–) in each 

plot. Best viewed in color.
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Fig. 9. 
Average number of patches used in the respiratory cluster for each patch size ( ). For 

comparison, the total number of available patches in each image is given for each patch size 

( ). Best viewed in color.
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Fig. 10. 
Patches automatically selected by clustering (largest cluster , second largest cluster ). 

On the left, the complete images are processed. On the right, a ROI without the diaphragm is 

used. Almost the same patches are chosen to contain respiratory information.
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TABLE I

Comparison to Diaphragm Tracking on Fluoroscopic Images (Mean of NCC in % ± Standard Deviation)

No Contrast Zoom Apply Contrast Learn Contrast

Isomap 97 ± 3.6 91 ± 8.0 93 ± 6.3 75 ± 25

PCA 96 ± 8.6 92 ± 4.8 95 ± 4.1 83 ± 17

Multi-Resolution PCA 91 ± 7.5 89 ± 7.1 86 ± 13 65 ± 28

KPCA 97 ± 1.6 92 ± 5.0 97 ± 2.2 91 ± 13

Patch KPCA 92 ± 5.6 90 ± 7.6 97 ± 2.6 95 ± 6.5

Multi-Resolution KPCA 93 ± 5.5 92 ± 4.9 98 ± 1.9 98 ± 2.0
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TABLE II

Comparison of Respiratory Signals on Corresponding Images (Mean of NCC in % ± Standard Deviation)

Biplane Zoom

Isomap 93 ± 10 97 ± 1.7

PCA 96 ± 8.2 95 ± 9.0

Multi-Resolution PCA 92 ± 9.6 99 ± 3.2

KPCA 97 ± 7.1 97 ± 2.3

Patch KPCA 98 ± 1.8 98 ± 3.4

Multi-Resolution KPCA 98 ± 1.4 99 ± 1.6
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TABLE III

Runtime of Respiratory Signal Extraction (Mean ± Standard Deviation)

Learning time [s] Application time [ms]

Isomap 0.05 ± 0.00 1.52 ± 0.91

PCA 0.08 ± 0.06 0.32 ± 0.03

Multi-Resolution PCA 0.36 ± 0.05 1.70 ± 1.06

KPCA 0.01 ± 0.00 6.09 ± 0.17

Patch KPCA 0.12 ± 0.01 4.92 ± 1.29

Multi-Resolution KPCA 0.25 ± 0.03 8.43 ± 1.90
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