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Abstract

The prokaryotic phage defense CRISPR/cas-system has developed into a versatile

toolbox for genome engineering and genetic studies in many organisms. While many efforts

were spent on analyzing the consequences of off-target effects, only few studies addressed

side-effects that occur due to the targeted manipulation of the genome. Here, we show that

the CRISPR/cas9-mediated integration of an epitope tag in combination with a selection cas-

sette can trigger an siRNA-mediated, epigenetic genome surveillance pathway in Drosophila

melanogaster cells. After homology-directed insertion of the sequence coding for the epitope

tag and the selection marker, a moderate level of siRNAs covering the inserted sequence and

extending into the targeted locus was detected. This response affected protein levels less

than two-fold and it persisted even after single cell cloning. However, removal of the selection

cassette abolished the siRNA generation, demonstrating that this response is reversible. Con-

sistently, marker-free genome engineering did not trigger the same surveillance mechanism.

These two observations indicate that the selection cassette we employed induces an aberrant

transcriptional arrangement and ultimately sets off the siRNA production. There have been

prior concerns about undesirable effects induced by selection markers, but fortunately we

were able to show that at least one of the epigenetic changes reverts as the marker gene is

excised. Although the effects observed were rather weak (less than twofold de-repression

upon ago2 or dcr-2 knock-down), we recommend that when selection markers are used dur-

ing genome editing, a strategy for their subsequent removal should always be included.

Introduction

The CRISPR/cas-system has become an indispensable method to manipulate genomes with

comparably little effort and few side effects. It allows for the generation of mutant chromo-

somal loci as well as epitope tag knock-ins. Concerns were raised about possible off-target

effects and their consequences on experimental results [1, 2]. In contrast, we know little about

how organisms deal with the on-target manipulation once it is in place. Do the cells “recog-

nize” inserted sequences and respond to these foreign elements?

The artificial manipulations bear similarities with transposable elements (TEs), which are

naturally occurring insertion events that threaten genomic stability. TEs code for enzymes that

mobilize and re-insert them in new genomic locations. Cells have developed several defense
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strategies to suppress transposition [3]. For example, in somatic cells of Drosophila melanoga-
ster, the RNA interference (RNAi) pathway is responsible for the posttranscriptional silencing

of TEs. Double-stranded RNA (dsRNA) precursors, which derive e.g. from transcription

events of structured loci or convergent transcription, are processed by the endonuclease

Dicer-2 (Dcr-2) into 21 nt long siRNAs [4–10]. These small RNAs are then loaded into Argo-

naute 2 (Ago2) and direct this RNA-induced silencing complex (RISC) to mRNAs bearing

perfect complementarity. Ago2 cuts the mRNA, which is then degraded [11].

To address the question how the cells deal with genetic manipulations using the CRISPR/

cas9-mediated genome editing approach, we used Drosophila melanogaster S2 cells as a model

system and the epitope tag knock-in protocol of our lab that is based on homologous recombi-

nation (HR) donors generated by PCR with short homology arms [12, 13]. We were able to

show that bona fide siRNAs are generated upon insertion of homologous recombination

donors with selection cassettes. These siRNAs target predominantly the inserted sequence but

also spread to adjacent transcribed region. Importantly, this siRNA response disappears upon

removal of the selection cassette and marker free tagging circumvents siRNA production alto-

gether. Despite the downside of triggering ectopic siRNA production, selection cassettes

greatly facilitate the enrichment of cells carrying the desired genome modification. Fortu-

nately, the undesired RNAi response can be fully reversed by excision of the selection cassette.

It is thus possible to benefit from the use of selection markers, but nonetheless avoid at least

some of the associated liabilities.

Materials& methods

Cell culture, genome editing and cloning

Drosophila melanogaster Schneider cells (laboratory stock) were cultured in Schneider’s

medium (Bio&Sell, Germany) containing 10% fetal bovine serum (Biochrom, Germany).

CRISPR/cas9-mediated genome editing with 60 nt homology PCR products was performed as

previously described [12, 13]. Primer sequences are provided in S1 Table. For single cell clon-

ing, cells were seeded at 10,000 / ml in 25% conditioned medium and plated in serial dilutions

(1:2). Single cell colonies were picked and cultured for further analyses. Please note that we

provide a detailed experimental protocol for the generation of genome-edited S2-cells in our

2016 G3 (Bethesda) publication [13].

Reporter assay

Cells were treated for 7 days with previously with validated in vitro transcribed dsRNA to

induce gene specific knock-downs [4, 14, 15]. For quantification of GFP fluorescence, 100 μl

of cells were resuspended in 500 μl of FACS Flow, then measured in a Becton Dickinson

FACSCalibur flow cytometer as previously published [12]. The data was analyzed using Flow-

ing Software version 2.5.1 (http://www.flowingsoftware.com), subsequent calculations were

done in Microsoft Excel.

Library generation, deep sequencing and data analysis

sRNA libraries were generated essentially as previously described [16]. However, the ZR small

RNA PAGE Recovery Kit (Zymo Research, USA) was used after PAGE-purification of the

small RNAs. Deep sequencing was performed on an Illumina HiSeq instrument by LAFUGA

(Gene Center, LMU Munich, Germany) and the sequences were analyzed using custom Gal-

axy, bowtie, perl and R scripts (available upon request). The original sequencing data has been

deposited at the European Nucleotide Archive with the accession number PRJEB20499.
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Fig 1. GFP-based reporter assay can detect siRNA mediated repression after genome engineering. (A) PCR-based

tagging workflow using CRISPR/Cas9 in Drosophila Schneider cells. After introducing a DSB at the act5C locus by the Cas9
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Results and discussion

Functional siRNAs target integrated epitope-tag cassettes

We previously developed a CRISPR/cas9-mediated genome editing workflow for Drosophila
cell culture to introduce epitope tags adjacent to the coding sequences of genes at their chro-

mosomal loci (Fig 1A and 1B). After enrichment of positive cells by antibiotic selection, the

resistance marker can be removed via the Flp/FRT system [12, 13]. In order to study the poten-

tial of modified loci to trigger siRNA generation, we introduced a C-terminal GFP-tag at the

act5C and rtf1 loci in S2 cells. If these foreign sequences are targeted by siRNAs, then the GFP-

fusion proteins should be de-repressed upon inactivation of the RNAi pathway. Although it

may seem counter-intuitive at first, depletion of siRNA biogenesis factors is possible via RNAi

itself as first demonstrated in C. elegans [17, 18]. We thus monitored GFP expression of the

RNAi-treated, genome-edited cells with flow cytometry. Knockdown of the siRNA biogenesis

enzyme Dcr-2 as well as the effector protein Ago2 with previously validated RNAi triggers

[4, 14, 15] resulted in derepression of the Act5C-GFP and Rtf1-GFP fusion proteins. This effect

was less than two-fold, already visible in the cell population after one split into selective me-

dium and remained after clonal selection. Even after prolonged cultivation (12 weeks) of these

cell lines without selection pressure, the effect did not vanish (Fig 1C, stages 1 and 2). This

argues for a stable situation that is not transiently triggered by the induced DNA double-strand

break.

We sequenced the small RNA profile of the genome-engineered cell lines and mapped the

reads back to the modified loci. This provided direct evidence for the presence of small RNAs

in sense and antisense orientation targeting the act5C locus (Fig 2) or the rtf1 locus in cells of

the drug-selected population as well as single cell clones. We first examined the size distribu-

tion of the reads that were mapped to the locus. They showed a clear peak of 21 nt long reads

in sense and antisense orientation (Fig 3). Together with their Dcr-2 and Ago2 dependent

activity, this argues for bona fide siRNAs.

Since sense matching reads can also be mRNA degradation products, we quantified the

strength of the siRNA response by summing up only antisense reads mapping to either the

HR integrate (= the HR donor after integration), the upstream sequence or the downstream

sequence of this locus (Figs 4 and 5). The majority of siRNAs derived from the HR integrate,

but reads also mapped upstream of the integration site. In particular, we found reads in anti-

sense orientation that span the junction between the HR integrate and the act5C host gene (Fig

2D). This suggested that the dsRNA precursor of the siRNAs extends beyond the inserted

sequence and excludes off-target integration events as being the predominant source of those

siRNAs. The strength of the siRNA response decreased after clonal selection compared with

the initial drug-selected population after genome editing. Nevertheless, the measurement of

GFP fusion protein levels after Dcr-2 and Ago2 knock-down proved the potential of the

remaining siRNAs to act as repressors (Fig 1C). It depends on the particular situation if these

small changes in expression levels can interfere with experimental results and introduce biases

enzyme, the HR donor (consisting of homology regions, the GFP coding sequence and the resistance cassette) integrates and

GFP-positive cells can be eriched by drug selection (number 1) and cloned (number 2). The recombinase mediates the FlpOut

of the resistance cassette and subsequent single cell cloning results in FlpOut clones (number 3). (B) Marker-free tagging of the

act5C locus with GFP. Similar to (A), the act5C locus can be tagged without an selection marker. Single cell cloning resulted in

homogeneous cell lines (number 4). (C) GFP-based reporter assay detecting the presence of functional siRNAs in several cell

lines. Knockdown of Dcr-2 and Ago2 as key players of the RNAi pathway leads to derepression of the GFP fluoresence in the

twoAct5C-GFP and Rtf1-GFP cell lines. Fluorescence levels (FL1 channel) were normalized to control knockdown (Rluc). Error

bars represent standard deviation (n = 3). Significant differences were calculated though an unpaired t-test (unequal variance)

on the data (* p < 0.05).

https://doi.org/10.1371/journal.pone.0180135.g001
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Fig 2. Profiling of siRNAs after genome editing by deep sequencing at the act5C locus. The siRNA distribution along the modified act5C locus

was determined bat single nucleotide resolution and normalized to the number of genome-matching reads in each library. The graphs depict the sense

(black) and antisense (red) matching reads as reads per million of genome matching 19–25 nt reads in the respective library. Shown are the sequencing

traces for the initial drug-selected population (A), the single cell clone E9 (B) and the respective FlpOut clone E9-5 (C) as representive examples. The

functional regions of the locus (drawn to scale) are depicted at the top; the HR donor is annotated in red. Reads derived from the copia promotor

sequence were removed prior to mapping the remaining reads on the construct. Thus, the corresponding region is “masked”. The box (D) shows the

magnification of the transition between the endogenous sequence and the HR integrate (annotated red bar). Junction-spanning siRNA reads in sense

(red) and antisense (blue) orientation can be detected.

https://doi.org/10.1371/journal.pone.0180135.g002

Reversible perturbations of gene regulation after genome editing in Drosophila cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0180135 June 28, 2017 5 / 11

https://doi.org/10.1371/journal.pone.0180135.g002
https://doi.org/10.1371/journal.pone.0180135


to studies. Nevertheless, they may be an indicator that further epigenetic changes may have

occurred at the modified locus.

Excision of the selection cassettes removes the siRNA trigger

We then tested whether specific parts of the introduced sequence were responsible for trigger-

ing the siRNA generation. To this end, we used Flp recombinase to remove the FRT-flanked

selection cassette, which consists of the copia promotor and the Blasticidin resistance gene (see

Fig 1A, stage 3). The “Flp-out” of the selection cassette resulted in loss of small RNAs repress-

ing the fusion protein, observed both in the GFP-based expression assay and by small RNA

sequencing (Fig 1C, Fig 4). The remaining small RNAs were predominantly sense oriented

and did not show an accumulation of 21 nt long reads; most likely, they represent mRNA deg-

radation products (Fig 3A, clone D10-2).

To further validate the hypothesis that the resistance cassette is the trigger for siRNA bio-

genesis, we generated GFP-tagged act5C clones after marker-free genome editing (Fig 1B). We

employed the same template plasmid but a different homology-containing antisense primer to

generate HR donor PCR products that only contained the GFP coding sequence and the

homology arms. After transfecting our Cas9-expressing cell line with the sgRNA expression

construct and the HR donor, we established Act5C-GFP positive cell lines by single cell clon-

ing and visual screening. From the initial 93 hand-picked clones, two lines had the desired

act5C-GFP modification. The Act5C-GFP fusion protein neither showed Dcr-2 and Ago2

dependent repression (Fig 1C, stage 4), nor did we detect any corresponding siRNA reads by

small RNA sequencing (Fig 4). Thus, it is not the tagging process per se that is responsible for

the siRNA response, but rather the selection cassette comprising a promoter and resistance

gene. The copia promoter, which drives expression of the Blasticidin resistance in our cassette,

has sequence identity with an endogenous transposable element that is constitutively targeted

by siRNAs (note that we excluded this region in our siRNA sequencing analysis). It is conceiv-

able that these siRNAs serve to nucleate a response that then spreads into the surrounding

sequence analogous to siRNA-directed heterochromatin formation in fission yeast [19, 20].

However, since the cassette excision completely reverts the siRNA generation, we favor the

hypothesis that a low-level of antisense transcription activity of the copia promoter causes con-

vergent transcription with the host gene and thus the generation of dsRNA at the site of

Fig 3. Read length distribution of act5C (A, C) and rtf1 (B) locus matching reads in sense and antisense orientation of representative cell lines.

Data is presented as fraction of total siRNAs mapping to the construct. (Actin5C D10 = clone, D10-2 = FlpOut clone; Rtf1E6 and E7 = clones; Actin5C A7

and A12 = marker-free tagged clones).

https://doi.org/10.1371/journal.pone.0180135.g003

Reversible perturbations of gene regulation after genome editing in Drosophila cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0180135 June 28, 2017 6 / 11

https://doi.org/10.1371/journal.pone.0180135.g003
https://doi.org/10.1371/journal.pone.0180135


Fig 4. Quantification of the siRNA strength at the act5C locus for different cell lines. Sequenced siRNAs were mapped to the modified loci and

antisense reads (only) mapping either to the upstream or downstrem region of the integrated sequence or the HR donor were summed up and

normalized to genome matching reads and length of the sequence region. (mf = marker-free tagged cell lines, FlpOut = FlpOut cell lines).

https://doi.org/10.1371/journal.pone.0180135.g004
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integration. Whatever the precise molecular mechanism may be, we recommend implement-

ing strategies for removal of selection cassettes where possible.

Integration of the HR donor is a prerequisite for the generation of siRNAs

In higher eukaryotes, defense mechanisms target linear dsDNA in a context of DNA virus

infection [21, 22] and RNA polymerase III can serve as a sensor for cytoplasmic DNA [23]. We

thus tested if the introduction of a linear PCR product, the HR donor used for GFP-tagging at

the act5C locus, without a corresponding Cas9-mediated cut in the DNA is sufficient to trigger

Fig 5. Quantification of the siRNA strength at the rtf1 locus for different cell lines. Sequenced siRNAs

were mapped to the modified loci and antisense reads mapping either to the upstream or downstrem region of

the integrated sequence or the HR donor were summed up and normalized to genome matching reads and

length of the sequence region.

https://doi.org/10.1371/journal.pone.0180135.g005
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the generation of siRNAs. Small RNAs were sequenced two and six days after transfection and

the sense and antisense reads mapping to the PCR product were quantified. In contrast to the

robust response we detected at a comparable time point for the productively genome modified

Act5C-GFP cell population (~680 reads per million genome matching sequences, rpm), the

response was approximately 15-fold weaker (40 rpm) when the HR-stimulating site-specific

DNA cut was omitted (Fig 4). Together with our observation that siRNAs repress the targeted

locus even after prolonged culture, when all non-replicated sequences have been lost, this

argues against a major contribution of episomal DNA to the siRNA pool.

Conclusions

We describe the induction of an siRNA response after genome editing in cultured Drosophila
cells. This response is elicited by the selection cassette, which serves to enrich for cells with the

desired modification. Fortunately, removal of the FRT-flanked cassette with FLP recombinase

abolished this response. The same result was obtained when genome editing was performed

without selectable markers. Our measurements of GFP-fusion protein levels argue that the

quantitative extent of siRNA-mediated repression is less than two-fold. This may compare to

the effect of a heterozygous, recessive loss-of-function mutation. To insert a C-terminal tag,

the marker cassette truncates the endogenous 3’-UTR; for N-terminal tags a surrogate pro-

moter for expression of the fusion protein must be provided. It can be expected that gene

expression is more heavily affected by the ensuing disturbance of transcriptional or post-tran-

scriptional regulation than by the concomitantly induced siRNAs. There are thus several rea-

sons why removal of the selection cassette is a “best practice” to follow if the least invasive

genome modification is the aim. Our finding that in cultured cells even the epigenetic phe-

nomenon of RNA interference can be reversed is an encouraging observation: It may be

possible to benefit from the advantages of marker selection without inducing irreversible

changes in gene expression. Nonetheless, perturbations of the targeted protein’s stability and/

or functionality by the appended epitope tag remain a concern that should be experimentally

addressed.
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