
Effects of paclitaxel on the development of neuropathy and 
affective behaviors in the mouse

Wisam Tomaa,†,*, S. Lauren Kytea,†,*, Deniz Bagdasb, Yasmin Alkhlaifa, Shakir D. Alshararic, 
Aron H. Lichtmana, Zhi-Jian Chend, Egidio Del Fabbroe, John W. Bigbeef, David A. 
Gewirtza, and M Imad Damaja

aVirginia Commonwealth University, School of Medicine, Department of Pharmacology and 
Toxicology, Richmond, VA, 23298, USA

bUludag University, Experimental Animals Breeding and Research Center, Faculty of Medicine, 
Bursa, Turkey

cKing Saud University, College of Pharmacy, Department of Pharmacology and Toxicology, 
Riyadh, Kingdom of Saudi Arabia

dVirginia Commonwealth University, School of Medicine, Department of Neurology, Richmond, 
VA, 23298, USA

eVirginia Commonwealth University, School of Medicine, Department of Internal Medicine, 
Richmond, VA, 23298, USA

fVirginia Commonwealth University, School of Medicine, Department of Anatomy and 
Neurobiology, Richmond, VA, 23298, USA

Abstract

Paclitaxel, one of the most commonly used cancer chemotherapeutic drugs, effectively extends the 

progression-free survival of breast, lung, and ovarian cancer patients. However, paclitaxel and 

other chemotherapy drugs elicit peripheral nerve fiber dysfunction or degeneration that leads to 

peripheral neuropathy in a large proportion of cancer patients. Patients receiving chemotherapy 

also often experience changes in mood, including anxiety and depression. These somatic and 

affective disorders represent major dose-limiting side effects of chemotherapy. Consequently, the 

present study was designed to develop a preclinical model of paclitaxel-induced negative affective 

symptoms in order to identify treatment strategies and their underlying mechanisms of action. 

Intraperitoneal injections of paclitaxel (8 mg/kg) resulted in the development and maintenance of 

mechanical and cold allodynia. Carboplatin, another cancer chemotherapeutic drug that is often 

used in combination with paclitaxel, sensitized mice to the nociceptive effects of paclitaxel. 
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Paclitaxel also induced anxiety-like behavior, as assessed in the novelty suppressed feeding and 

light/dark box tests. In addition, paclitaxel-treated mice displayed depression-like behavior during 

the forced swim test and an anhedonia-like state in the sucrose preference test. In summary, 

paclitaxel produced altered behaviors in assays modeling affective states in C57BL/6J male mice, 

while increases in nociceptive responses were longer in duration. The characterization of this 

preclinical model of chemotherapy-induced allodynia and affective symptoms, possibly related to 

neuropathic pain, provides the basis for determining the mechanism(s) underlying severe side 

effects elicited by paclitaxel, as well as for predicting the efficacy of potential therapeutic 

interventions.

1. Introduction

Various neoplastic diseases, such as breast, lung, and ovarian cancer, are commonly treated 

with paclitaxel, a chemotherapeutic drug in the taxane class. The anti-tumor effect of 

paclitaxel is mediated through its binding to microtubules of the cytoskeleton and 

enhancement of tubulin polymerization, thereby resulting in cell cycle arrest, and ultimately 

apoptotic cell death (Jordan and Wilson, 2004). Although paclitaxel effectively increases 

both progression-free survival and overall survival in cancer patients, it also produces 

painful sensory and emotional deficits (Dranitsaris et al., 2015; Seretny et al., 2014). 

Specifically, paclitaxel causes chemotherapy-induced peripheral neuropathy (CIPN), a result 

of peripheral nerve fiber dysfunction or degeneration, acutely in 59–78% of cancer patients 

and chronically in 30% of cancer patients (Beijers et al., 2012). CIPN is characterized by 

sensory symptoms such as numbness, tingling, cold and mechanical allodynia, as well as an 

overall decrease in quality of life. In addition, cancer patients receiving chemotherapy 

experience behavioral symptoms including fatigue, anxiety, and depression. For example, 

approximately 58% of cancer patients suffer from depression, while anxiety is prevalent in 

approximately 11.5% of the cancer patient population (Massie, 2004; Mehnert et al., 2014). 

Importantly, patients with comorbidities of depression and anxiety suffer from increased 

severity of symptoms and experience delayed recovery, which may interfere with positive 

outcomes (Massie, 2004). In comparison, 34% and 25% of the general population of patients 

experiencing neuropathic pain report respective feelings of depression and anxiety (Gustorff 

et al., 2008).

It is clear that there is a critical need to determine the mechanisms underlying these 

behavioral symptoms elicited by cancer chemotherapy drugs, as well as to identify new 

targets to prevent or treat these side effects. A necessary requisite to accomplish these aims 

is to establish relevant preclinical models of chemotherapy-induced side effects. However, to 

our knowledge there are presently no published preclinical studies that have characterized 

paclitaxel-induced affective-like behaviors. Thus, the objectives of the current study were to 

develop a mouse model of paclitaxel-induced side effects. Multiple assessments of 

nociceptive and affective-related behaviors were performed in mice treated with one cycle of 

paclitaxel (i.p., every other day for a total of four injections). After determining the dose-

response curve and time-course of paclitaxel-induced mechanical and cold allodynia 

following systemic administration in mice, the impact of paclitaxel was assessed on multiple 

affective behavioral phenotypes in individual cohorts of mice, such as nest building, anxiety- 
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(light/dark box test, novelty suppressed feeding), depression- (forced swim test), and 

anhedonia- (sucrose preference test) related behaviors. In addition, studies investigated the 

nociceptive effect of carboplatin treatment alone and in combination with paclitaxel due to 

the use of the carboplatin-paclitaxel combination in the clinic.

2. Methods

2.1. Animals

Adult male C57BL/6J mice (8 weeks at beginning of experiments, 20–30 g) were purchased 

from The Jackson Laboratory (Bar Harbor, ME). A total of 197 mice were used, with 84 

used to assess nociceptive effects and 113 used to assess affective-like behaviors. Mice were 

housed in an AAALAC-accredited facility in groups of four, then individually housed for the 

duration of the nesting, novelty suppressed feeding (NSF), and sucrose preference assays in 

order to accurately assess the ability of each individual mouse to nest, and to measure the 

food or sucrose consumed by each individual mouse. Mice were group-housed for all other 

behavioral assays. Food and water were available ad libitum, except when under the food 

restrictions of the NSF assay. The mice in each cage were randomly allocated to different 

treatment groups. All behavioral testing on animals was performed in a blinded manner; 

behavioral assays were conducted by an experimenter blinded to the treatment groups. 

Experiments were performed during the light cycle (7:00 am to 7:00 pm) and were approved 

by the Institutional Animal Care and Use Committee of Virginia Commonwealth University 

and followed the National Institutes of Health Guidelines for the Care and Use of Laboratory 

Animals. Animals were euthanized via CO2 asphyxiation, followed by cervical dislocation. 

Any subjects that showed behavioral disturbances unrelated to chemotherapy-induced pain 

were excluded from further behavioral testing. Animal studies are reported in compliance 

with the ARRIVE guidelines (Kilkenny et al., 2010).

2.2. Drugs

Paclitaxel and carboplatin were purchased from Tocris (Bristol, United Kingdom). Paclitaxel 

was dissolved in a mixture of 1:1:18 [1 volume ethanol/1 volume Emulphor-620 (Rhone-

Poulenc, Inc., Princeton, NJ)/18 volumes distilled water]. Carboplatin was dissolved in 0.9% 

saline. All injections were administered intraperitoneally (i.p.) in a volume of 1 ml/100 g 

body weight.

2.3. Induction of CIPN model

In the clinic, low-dose paclitaxel therapy consists of administering 80 mg/m2 intravenously 

once every week; the duration of treatment is dependent upon disease progression and 

limiting toxicity (Seidman et al., 2008). To mimic this low-dose regimen, our studies 

involved i.p. injections of 2, 4, or 8 mg/kg paclitaxel every other day for a total of four 

injections (1 cycle), resulting in a cumulative human equivalent dose of 28.4–113.5 mg/m2 

(Reagan-Shaw et al., 2007). A low-dose regimen (8 mg/kg, 1 cycle) results in long-term 

mechanical allodynia, which better represents the clinical manifestation of peripheral 

neuropathy, and allows for affective-related behavioral measures to not be obscured by 

severe motor deficits and weight loss. When referring to the time at which affective 
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behavioral assays were conducted, “post-paclitaxel injection” refers to the time after the first 

of four paclitaxel injections.

2.3.1. Immunohistochemistry and quantification of intra-epidermal nerve 
fibers (IENFs)—The staining procedure was based on a previously described method of 

Bennett et al., 2011 with modifications. The glabrous skin of the hind paw was excised, 

placed in freshly prepared 4% paraformaldehyde in 0.1 M PBS (pH 7.4), and stored 

overnight at 4°C in the same fixative. The samples were embedded in paraffin and sectioned 

at 25 μm. Sections were deparaffinized, washed with PBS, and incubated at room 

temperature for 30 min in blocking solution (5% normal goat serum and 0.3% Triton X-100 

in PBS). Sections were incubated with a 1:1000 dilution of the primary antibody, PGP9.5 

(Fitzgerald - cat# 70R-30722, MA, USA) overnight at 4°C in a humidity chamber. 

Following PBS washes, sections were incubated for 90 min at room temperature with a 

1:250 dilution of goat anti-rabbit IgG (H+L) secondary antibody conjugated with Alexa 

Fluor® 594 (Life Technologies - cat# A11037, OR, USA). Sections were mounted in 

Vectashield (Vector Laboratories, Burlingame, CA, USA) and examined using a Zeiss Axio 

Imager A1 – Fluorescence microscope (Carl Zeiss, AG, Germany). Sections were examined 

in a blinded fashion under 63× magnification. The IENFs in each section were counted in a 

blinded fashion and the density of fibers is expressed as fibers/mm. An individual cohort 

consisting of 6 mice per group was used.

2.3.2. Cycles of paclitaxel—To investigate the impact of paclitaxel treatment on 

peripheral sensitization following repeated cycles, we used the lowest paclitaxel dose in this 

study for a total of two cycles. Mice were injected with vehicle or paclitaxel (2 mg/kg) for 

each cycle. Mechanical thresholds were evaluated between the days of injection and 

subsequently once per week. The second cycle of treatment began one week after the first 

cycle. An individual cohort consisting of 6 mice per group was used.

2.3.3. Carboplatin-paclitaxel treatment—In this study, we first investigated if 

carboplatin, which is often used in combination with paclitaxel for chemotherapeutic 

intervention, would induce allodynia in mice on its own after systemic administration. To 

explore the effect of carboplatin on changes in nociceptive behavior, mice were injected with 

carboplatin (0, 5, or 20 mg/kg) for 1 cycle and tested for 7 days. In a separate experiment, 

we studied the impact the carboplatin treatment on paclitaxel-induced allodynia using the 

sequence of carboplatin-paclitaxel administration. Mice were first injected with carboplatin 

(5 mg/kg, 1 cycle), then another cycle of injections was administered with a low dose of 

paclitaxel (1 mg/kg). The second cycle of treatment (paclitaxel, 1 mg/kg) began one week 

following the first cycle (carboplatin, 5 mg/kg). Mechanical thresholds were evaluated 

between the days of injection. An individual cohort consisting of 6 mice per group was used.

2.4. Assessment of nociceptive behavior

An individual cohort consisting of 6 mice per group was used for the assessment of 

mechanical and cold allodynia; the mice had a resting period of 24 hours between assays. 

An additional cohort consisting of 6 mice per group was used for the locomotor activity test 

to assess potential paclitaxel-induced motor deficits.
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2.4.1. Mechanical allodynia evaluation (von Frey test)—Mechanical allodynia 

thresholds were determined using von Frey filaments according to the method suggested by 

Chaplan et al. (1994) and as described in our previous report (Bagdas et al., 2015). The 

mechanical threshold is expressed as log 10 (10 £ force in [mg]).

2.4.2. Cold allodynia evaluation (acetone test)—This test was conducted as 

previously described (Otrubova et al., 2013), but with slight modifications. Briefly, mice 

were placed in a Plexiglas cage with mesh metal flooring and allowed to acclimate for 30 

min before testing. 10 μl of acetone was projected via air burst from the pipette onto the 

plantar surface of each hind paw. Time spent licking, lifting, and/or shaking the hind paw 

was recorded by a stopwatch over the course of 60 s.

2.5. Locomotor activity test

The test was performed as described previously in Bagdas et al. (2015). Briefly, mice were 

placed into individual Omnitech (Columbus, OH) photocell activity cages (28 × 16.5 cm) 

containing two banks of eight cells each. Interruptions of the photocell beams, which assess 

walking and rearing, were then recorded for the next 30 min. Data are expressed as the 

number of photocell interruptions.

2.6. Assessment of affective behaviors

2.6.1. Nesting procedure—The nesting procedure was adapted as previously described 

by Negus et al. (2015) with some modifications. Briefly, mice were housed individually in 

cages containing corn cob bedding and all previous nesting material was removed from the 

home cage prior to conducting the nesting assay. For each cage, one compressed cotton 

nestlet was weighed and cut into 6 rectangular pieces of equal size. The mice were then 

relocated to a quiet, dark room. After an acclimation period of approximately 30 min, the 

nestlet pieces were then placed on top of the wire cage lid, parallel to the wire and evenly 

spaced. The mice were allowed 120 min to nest, after which the weight of the nestlet pieces 

remaining on the cage lid and the nest quality (0–2; 0 = no nest formed, 1 = some nesting 

activity, 2 = established nest) was recorded. The percentage of animals that did nest, the 

amount of nesting material acquired (percent weight used), and the ability to participate in 

innate murine nesting behavior (nest quality) were determined. The nesting assay was 

conducted with three individual cohorts of mice: one at 1 week (n = 6 per group), one at 2 

weeks (n = 6 per group), and another at both 8 and 11 weeks (n = 6 Veh, n = 7 PAC) post-

paclitaxel (8 mg/kg, i.p) or vehicle injection. These specific cohorts were used for both the 

nesting and NSF assays, since nesting is not thought to be a stress-inducing task. The mice 

had a resting period of one week between assays.

2.6.2. Novelty suppressed feeding (NSF)—The NSF test measures a rodent’s aversion 

to eating in a novel environment. It assesses stress-induced anxiety by measuring the latency 

of an animal to approach and eat a familiar food in an aversive environment (Bodnoff et al, 

1988). Mice were housed individually in cages with wood-chip bedding and were deprived 

of food for 24 h. At the end of the deprivation period, the mice were relocated to a quiet, 

dark room. After an acclimation period of approximately 30 min, the mice were allowed 

access to an unused, pre-weighed food pellet in a clean test cage containing fresh wood-chip 
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bedding, which was placed directly under a bright light. Each mouse was placed in a corner 

of the test cage, and a stopwatch was immediately started. The latency to eat (s), defined as 

the mouse sitting on its haunches and biting the pellet with the use of forepaws, was 

recorded. The amount of food (g) consumed by the mouse in 5 min was measured, serving 

as a control for change in appetite as a possible confounding factor. The NSF assay was 

conducted with two individual cohorts of mice, one at 3 weeks (n = 6 per group) and another 

at both 9 and 11 weeks (n = 6 Veh, n = 7 PAC) post-paclitaxel (8 mg/kg, i.p.) or vehicle 

injection. These specific cohorts were used for both the nesting and NSF assays, since 

nesting is not thought to be a stress-inducing task. The mice had a resting period of one 

week between assays.

2.6.3. Light/dark box (LBD) test—The light/dark box test is based upon a conflict 

between the innate aversion to brightly illuminated areas and spontaneous exploratory 

activity (Crawley and Goodwin, 1980). The test was adapted as previously described 

(Wilkerson et al., 2016) with minor modifications. Briefly, the LDB apparatus consisted of a 

small, enclosed dark box (36 × 10 × 34 cm) with a passage way (6 × 6 cm) leading to a 

larger, light box (36 × 21 × 34 cm). The mice were acclimated to the testing room for 30 min 

prior to testing. Mice were placed in the light compartment and allowed to explore the 

apparatus for 5 min. The number of entries into the light compartment and the total time 

spent (s) in the light compartment were recorded for 5 min by a video monitoring system 

and measured by ANY-MAZE software (Stoelting Co., Wood Dale, IL). Individual cohorts 

of mice (n = 6 per group) were tested at 3, 6, and 9 weeks post-paclitaxel (8 mg/kg, i.p.) or 

vehicle injection.

2.6.4. Forced swim test (FST)—The forced swim test was performed as described 

previously by Damaj et al. (2004), the common method for assessing depression-like 

behavior in mice (Bogdanova et al., 2013). Briefly, mice were gently placed into individual 

glass cylinders (25 × 10 cm) containing 10 cm of water, maintained at 24°C, and left for 6 

min. Immobility was recorded (s) during the last 4 min. A mouse was considered to be 

immobile when floating in an upright position and only making small movements to keep its 

head above water, but not producing displacements. An individual cohort of mice (n = 6 per 

group) was tested throughout the FST study at 1, 2, 3, and 4 weeks post-paclitaxel (8 mg/kg, 

i.p) or vehicle injection.

2.6.5. Sucrose preference—The sucrose preference test is used as a measure of 

anhedonia-like behavior (Thompson and Grant, 1971). Mice had access to two, 25 ml sipper 

tubes, one containing normal drinking water and the other containing a 2% sucrose solution. 

Mice were housed individually, with access to food, water, and 2% sucrose 24 h per day. 

Mice were acclimated to the cages with sipper tubes for 3 days prior to injection (days 1–3), 

during which baseline measurements were taken. Paclitaxel (8 mg/kg, i.p.) or vehicle 

injections started on day 4. Water and sucrose intake were measured on days 1, 2, 3, 4, 5, 

and 6, as well as on days 10, 11 and 12. The location of both sipper tubes was switched daily 

to avoid place preference. Sucrose preference was calculated as a percentage of the volume 

of 2% sucrose consumed over the total fluid intake volume. An individual cohort of mice (n 

= 8 per group) was tested during the vehicle/paclitaxel treatment.
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2.7. Statistical analyses

In the current study, a power analysis calculation was performed with the Lamorte’s Power 

Calculator (Boston University Research Compliance) to determine the sample size of 

animals for each group (Charan and Kantharia, 2013). For assessing the nociceptive 

behaviors, the calculation showed that an n of 5 was required to achieve a power of 90% 

with an alpha error of 0.05; we used 6 mice per group. For the behavioral assays, the 

calculations showed that an n of 5 for novelty suppressed feeding, an n of 5 for nesting, an n 

of 8 for the light/dark box test, an n of 6 for the forced swim test, and an n of 8 for sucrose 

preference was required to achieve a power of 90% with an alpha error of 0.05; we used 6 to 

8 mice per group. The data were analyzed with GraphPad Prism software, version 6 

(GraphPad Software, Inc., La Jolla, CA) and are expressed as mean ± SEM. Before 

conducting statistical analyses, normality and variance tests were performed; normality of 

residuals was determined by the Shapiro-Wilk test for n > 6 or the Kolmogorov-Smirnov test 

for n ≤ 6, and equal variance was determined by the F test. Data that did not pass the 

normality test were analyzed by non-parametric tests, and data that did not have equal 

variance were analyzed without the assumption of equal standard deviations. Data were 

normalized to initial vehicle measurements when appropriate. Unpaired t tests were 

performed to compare behaviors of vehicle- and paclitaxel-treated mice at a single time 

point. Two-way repeated measure analysis of variance (ANOVA) tests were conducted, and 

followed by the Bonferroni post hoc test, when behavioral outcomes of vehicle- and 

paclitaxel-treated mice were being compared over multiple time points. Differences were 

considered to be significant at P < 0.05.

3. Results

3.1. Paclitaxel induced changes in nociceptive behaviors in mice

Initial experiments determined the effect of paclitaxel on the development of mechanical and 

cold allodynia as a function of the drug dose. As anticipated, increased nociceptive 

responses and duration of effects were related to dose of paclitaxel. However, no significant 

changes in body weight gain or spontaneous activity were observed. As seen in Figures 1A 

and B, paclitaxel induced both mechanical allodynia [Fdose × time (21, 105) = 9.481, P < 

0.0001] and cold allodynia [Fdose × time (9, 45) = 14.76, P < 0.0001] in dose- and time-

related manners, respectively. At 8 mg/kg paclitaxel, mechanical allodynia was observed on 

day 1 post-paclitaxel injection, and this effect was sustained for more than 90 days (data not 

shown). On the other hand, 2 and 4 mg/kg paclitaxel induced mechanical allodynia 

beginning on day 3, and the effects did not differ in terms of magnitude or time to recover. 

With regard to cold allodynia, paclitaxel presented a clear dose-dependent induction on day 

8 post-paclitaxel injection. However, mice that received 2 or 4 mg/kg paclitaxel recovered by 

day 22, whereas the 8 mg/kg group continued to exhibit cold allodynia. In regards to general 

body condition, even the highest dose of paclitaxel (8 mg/kg) did not significantly alter body 

weight [Fdose × time (5, 25) = 1.093, P > 0.05; Supplementary Fig. 1A], or motor coordination 

[Fdose × time (4, 40) = 0.5204, P > 0.05; Supplementary Fig. 1B].

3.1.1. Paclitaxel decreased the density of intra-epidermal nerve fibers (lENFs)
—Because changes in the density of peripheral nerve fibers represent a hallmark of CIPN, 
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we studied the changes in peripheral nerve fiber density following paclitaxel treatment using 

immunohistochemistry. At 28 days post-paclitaxel injection, mice treated with paclitaxel (8 

mg/kg, 1 cycle) demonstrated significant reductions in the density of IENFs when compared 

to vehicle-treated mice [t = 3.736, df = 10, P < 0.01; Fig. 2A]. Representative 

immunostained sections of foot pads from vehicle- (Fig. 2B; upper panel) and paclitaxel-

treated mice (Fig. 2B; lower panel) show the reduction in IENFs following paclitaxel 

treatment.

3.1.2. Impact of repeated drug cycles on paclitaxel-induced mechanical 
allodynia—To investigate the effect of repeated cycles of paclitaxel on mechanical 

allodynia, mice were injected with two cycles of a low dose of paclitaxel (2 mg/kg). As 

expected, the first cycle of paclitaxel (2 mg/kg) was capable of inducing mechanical 

allodynia. Indeed, paclitaxel (2 mg/kg) induced a significant reduction in mechanical 

threshold that lasted for at least 14 days after the first injection of paclitaxel [Fdose × tme (7, 

35) = 8.436, P < 0.0001; Fig 3A]. After a one week wash-out period, mice received another 

cycle of paclitaxel (2 mg/kg). Surprisingly, the effects of paclitaxel were significantly 

enhanced in the mice subjected to a second cycle, which was demonstrated by a further 

decrease in mechanical threshold [Fdose × tme (3, 15) = 48.61, P < 0.0001; Supplementary 

Fig. 2]. In addition, mice that received a second cycle of paclitaxel treatment (2 mg/kg) 

displayed a much longer duration of allodynia (Fig. 3B) compared to one cycle of treatment 

(Fig. 3A) [Fdose × time (13, 65) = 10.97, P < 0.0001; Fig. 3B]. Whereas mice given one cycle 

recovered by day 21 post-paclitaxel injection, mice given two cycles recovered by day 63 

after the first injection of paclitaxel. Calculation of the area under the curve (AUC) threshold 

for the initial 28 days of both the first and second cycles of paclitaxel treatment revealed 

significant differences (2.5 fold difference) between cycles [Ftreatment (3, 20) = 60.35, P < 

0.0001; Fig. 3C].

3.1.3. Paclitaxel induced allodynia following carboplatin treatment—We further 

investigated the impact of carboplatin treatment on paclitaxel-induced allodynia. Mice given 

one cycle of carboplatin alone did not demonstrate significant mechanical nociceptive 

changes. As shown in Supplementary Figure 3, one cycle of 5 or 20 mg/kg carboplatin did 

not significantly reduce the mechanical threshold [Fdose × time (8, 40) = 0.4526, P > 0.05]. 

However, in a separate cohort of mice, a low-dose paclitaxel (1 mg/kg) cycle administered 

one week following the completion of the carboplatin (5 mg/kg) cycle led to a significant 

reduction of mechanical threshold compared to the vehicle-paclitaxel group [Fdose × tme (12, 

60) = 16.65, P < 0.0001; Fig. 3D].

3.2. Paclitaxel induced changes in affective-related behaviors in mice

To assess whether paclitaxel interferes with the natural behavior of mice, a nesting assay was 

conducted at various time points after paclitaxel treatment was initiated. However, paclitaxel 

did not interfere with nesting activity [z = 0.856, P > 0.05; z = 1.000, P > 0.05], the quantity 

of nesting material used [t = 0.08655, df = 10, P > 0.05; t = 0.03402, df = 10, P > 0.05], or 

nest quality [t = 0.4152, df = 10, P > 0.05; t = 0.2033, df = 10, P > 0.05] at 1 and 2 weeks 

post-paclitaxel injection, respectively (Fig. 4). Similar results were observed at 8 and 11 

weeks post-paclitaxel injection, in which nesting activity was not significantly affected by 
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paclitaxel [z = 0.926, P > 0.05; Fig. 4A]. The use of nesting material [Ftreatment × tme (1,11) = 

1.157, P > 0.05] and nest quality [Ftreatment × time (1,11) = 0.0094, P > 0.05] were also not 

found to be significantly altered (Fig. 4B and C).

With regard to affective-related changes, we assessed anxiety-, depression-, and anhedonia-

like behaviors at various time points in mice treated with paclitaxel, according to the 

aforementioned treatment regimen. Alterations in anxiety were assessed utilizing the novelty 

suppressed feeding (NSF) assay. Paclitaxel significantly increased the latency to eat in a 

novel environment at 3 and 9 weeks post-paclitaxel injection (Fig. 5A and C). A significant 

increase in latency to eat occurred at 3 weeks post-paclitaxel treatment [t = 2.224, df = 12, P 
< 0.05, Fig. 5A]. When comparing latency to eat at weeks 9 and 11 post-paclitaxel 

treatment, the factor of time was significant [Ftime (1, 23) = 16.20, P < 0.001, Fig. 5C]. In 

addition, significant differences in latency to eat between vehicle- and paclitaxel-treated 

mice occurred at 9 weeks post-paclitaxel injection (P < 0.05), which dissipated by week 11, 

and between paclitaxel-treated mice at weeks 9 and 11 (P < 0.01). The amount of food 

consumed in the test cage was not impacted by paclitaxel treatment (Fig. 5B and D).

Paclitaxel was also found to induce anxiety-like behavior in the light/dark box (LDB) test, in 

which time spent in the light compartment of the LDB apparatus was significantly decreased 

at 3 weeks [t = 2.277, df = 14, P < 0.05], 6 weeks [t = 2.350, df = 14, P < 0.05], and 9 weeks 

[t = 2.309, df = 14, P < 0.05] post-paclitaxel treatment (Fig. 6). Importantly, the number of 

entries into the light compartment was not significantly decreased at any time point for the 

paclitaxel-treated mice (Table 1), suggesting that the decrease in time spent in the light 

compartment is not due to motor deficits (Supplementary Fig. 1B).

The mice were then evaluated for depression-like behavior in FST, an experimental 

paradigm that assesses immobility when placed in a container of water. Within the same 

cohort of mice, paclitaxel treatment induced an emotional-like deficit during FST 

[Ftreatment × time (3,15) = 6.200, P < 0.01; Fig. 7]. The time spent immobile during FST was 

significantly increased at 2 and 3 weeks post paclitaxel-injection (P < 0.01), an effect that 

dissipated by week 4 (Fig. 7).

Lastly, anhedonia-like behavior was assessed using the sucrose preference test. The 

interaction between paclitaxel treatment and time was significant within the same cohort of 

mice [Ftreatment × time (8,112) = 9.424, P < 0.0001, Fig. 8]. Paclitaxel produced a significant 

decrease in sucrose preference during (P < 0.0001) and shortly after (P < 0.01, P < 0.05) 

completion of the treatment regimen when compared to vehicle-treated mice (Fig. 8). To 

ensure that the decrease in consumatory behavior was not due to a decrease in overall 

consumption, we assessed total fluid intake between vehicle- and paclitaxel-treated mice, 

which was found to not differ significantly between the two groups (Supplementary Fig. 4).

4. Discussion

The results of the present study demonstrate that a clinically relevant dosing regimen of 

paclitaxel given systemically to male C57BL/6J mice causes the induction and long-term 

maintenance of mechanical and cold allodynia, as well as negative affective-related 
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symptoms, including anxiety- and depression-like behaviors of shorter duration. These 

changes occurred without significant decreases in body weight or impairment of locomotion 

following paclitaxel treatment (Supplementary Fig. 1), findings that are in accordance with 

other studies showing that various doses of paclitaxel do not alter body weight (Boehmerle 

et al., 2014) or locomotor activity (Deng et al., 2015; Nieto et al., 2008).

Few studies have been performed under similar experimental conditions examining the 

effect of various doses of paclitaxel on the development of mechanical and cold allodynia, 

especially during the early period of injection and regarding the magnitude of that allodynia. 

Our results are consistent with other reports showing that paclitaxel induces both mechanical 

and cold allodynia in male mice (Deng et al., 2015; Slivicki et al., 2016; Naji-Esfahani et al., 

2016). Interestingly, Ward et al. (2011) reported that a cycle of low-dose paclitaxel (1 or 2 

mg/kg) elicited a considerably greater magnitude of cold allodynia in female mice than in 

male mice. Importantly, it has been noted in the clinic that neuropathic pain is more 

prevelant in women than in men (Fillingim et al., 2009). Therefore, it is possible that sex 

differences may arise in affective-like behaviors, along with nociceptive behaviors, 

following paclitaxel treatment.

With regard to morphological changes, our experiments show that 8 mg/kg paclitaxel 

produces a robust decrease in the density of intra-epidermal nerve fibers (IENFs), which is 

consistent with the results of Krukowski et al. (2015) that demonstrate significant reductions 

in IENF density following repeated adminsitrations of paclitaxel in mice. Additional studies 

in rats have shown a dose-dependent decrease in IENFs following a wide range of paclitaxel 

doses (0.5 – 32 mg/kg), as well as a correlation between paclitaxel-induced loss of IENFs 

and allodynia (Bennett et al., 2011; Ko et al., 2014). Also, it is known that the polymodal C 

and Aδ fibers are retracted following paclitaxel administration (Basbaum et al., 2009; 

Landowski et al., 2016; Vichaya et al., 2015). Despite the decrease in IENF density, the 

remaining nociceptive fibers can become hyperactive and/or sensitized due to their release of 

chemical mediators of inflammation, such as substance P and calcitonin gene-related peptide 

(CGRP), as well as exposure to pro-inflammatory cytokines released by infiltrating immune 

cells, such as macrophages (Carozzi et al., 2015).

The present study also revealed that two cycles of 2 mg/kg paclitaxel (cumulative dose of 16 

mg/kg) causes mice to exhibit lower mechanical thresholds than mice that received the same 

cumulative dose following one cycle of 4 mg/kg paclitaxel (Supplementary Fig. 2; Fig. 1A). 

This finding suggests that sensitization occurs during the first cycle of paclitaxel treatment. 

The observed sensitization may be due to the accumulation of paclitaxel in the periphery, as 

detectable concentrations of paclitaxel have been measured in the dorsal root ganglia and the 

sciatic nerve up to 26 days post-paclitaxel dosing (Wozniak et al., 2016).

In the clinic, paclitaxel has been administered in combination with cisplatin in non-small 

cell lung cancer patients. The combination produces additional neurotoxicity, and even two 

cycles of the treatment can result in neuropathy (Arrieta et al., 2010). In an attempt to avoid 

this toxicity, paclitaxel and carboplatin have been used in combination. Carboplatin is 

considered to be less neurotoxic than cisplatin and only 4–6% of patients who receive 

carboplatin may develop peripheral neuropathy (McWhinney et al., 2009). Furthermore, a 
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study in ovarian cancer patients revealed that the carboplatin-paclitaxel treatment induced 

significantly less peripheral neuropathy than that produced by the cisplatin-paclitaxel 

treatment (Neijt et al., 2000). Clinical studies have shown that administration of carboplatin 

before paclitaxel is feasible in patients (Markman et al., 2003; Davidson et al., 2016). Our 

data show that in contrast to paclitaxel, mice treated with carboplatin (5 or 20 mg/kg) alone 

failed to show signficant allodynia. However, when a low dose of carboplatin (5 mg/kg) was 

followed by a low dose of paclitaxel (1 mg/kg), mice develop more severe mechanical 

allodynia when compared to paclitaxel alone, suggesting that carboplatin sensitized the mice 

to subsequent paclitaxel treatment. To our knowledge, studies of carboplatin- or carboplatin-

paclitaxel-induced mechanical allodynia in mice have not been reported previously.

This work also investigated the affective-related consequences of paclitaxel treatment. Using 

a paclitaxel regimen that caused a long-lasting allodynia (8 mg/kg, 1 cycle), we observed an 

increase in the latency to eat during the NSF assay and aversion to the light compartment of 

the LDB apparatus. These effects in two tests of anxiety suggest that, under the present 

experimental conditions, paclitaxel induces an anxiety-like state. We also found that 

paclitaxel-treated mice exhibit increased immobility time during FST and anhedonia-like 

behavior in the sucrose preference test. The observed decrease in sucrose preference could 

also indicate that an alteration in taste (dysgeusia), a phenomenon seen in some patients 

receiving paclitaxel (Turcott et al., 2016), is occurring during paclitaxel treatment; yet, we 

cannot make that conclusion from a single oral consumption assay. The possible taste 

alteration may produce decreased appetite, but no significant changes in body weight were 

detected. Collectively, these results indicate that in addition to peripheral neuropathy signs, 

paclitaxel induces a deficit in the emotional-like state of the mice. Conversely, paclitaxel did 

not affect nesting behavior, an assay that has been shown to reflect pain-depressed behavior 

when lactic acid and complete Freund adjuvant (CFA) are used as noxious stimuli (Negus et 

al., 2015). The lack of an effect in this assay is consistent with the hypothesis that the value 

of a habit-like survival task does not alter depending on the motivational state (Rock, et al. 

2014). Thus, the necessity of establishing a nest for thermoregulation, fitness, and shelter 

may overcome the nociceptive and negative affective symptoms of paclitaxel.

To increase our understanding of paclitaxel-induced toxicity, the relationship between 

nociceptive and affective symptoms needs to be considered, as well as the temporal order in 

which these side effects develop. Studies have shown that the pathology of a tumor itself can 

cause emotional disturbances in rodents (Pyter et al., 2009), but our experiments in non-

tumor-bearing mice reveal that paclitaxel alone is also capable of inducing anxiety- and 

depression- like behaviors. At 1 week post-paclitaxel injection, we observed the 

development of both mechanical and cold allodynia, as well as anhedonia-like behavior 

(Table 2). Anxiety- and depression-like behaviors arise in the subsequent weeks following 

paclitaxel treatment. The immediate appearance of nociceptive symptoms is consistent with 

paclitaxel acting directly on the peripheral nervous system, but there may be a separate 

central mechanism of the drug. While paclitaxel seems to accumulate in peripheral organs 

such as the peripheral nervous system, it has been detected in the brain of mice following tail 

vein injection, even at low concentrations (Gangloff et al., 2005; Kemper et al., 2003), 

suggesting that it crossed the blood brain barrier. Therefore, the presence of paclitaxel in the 

central nervous system and/or paclitaxel-induced peripheral neuropathy itself may be 
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causing changes in affective behaviors through neuroinflammation mechanisms and/or an 

induction of central neurotoxicity. It is also possible that paclitaxel-induced sensitization of 

immune responses may have played a role in the development of peripheral neuropathy, and 

perhaps of affective-like behaviors. Indeed, hypersensitivity to stimuli, not only in 

neuropathic pain but also in inflammatory pain, can be explained by both peripheral and 

central sensitization of sensory nerve fibers (Fornasari, 2012). In regards to the 

neuroimmune interface, glial responses have also been shown to play a role in central and 

peripheral nervous system function during neuropathic pain (Scholz and Woolf, 2007).

The differences between the onset, duration, and resolution of these affective behaviors 

should also be considered. Although changes in nociceptive behavior, such as mechanical 

allodynia, occur immediately following paclitaxel administration, there appears to be a delay 

in the initiation of emotional-like deficits. Clinically, somatic and affective symptoms can 

occur simultaneously. Breast cancer patients often experience a cluster of symptoms 

including pain (77%), anxiety (21%), and depression (36%), indicating that they may share a 

common mechanism (So et al., 2009). Those patients receiving chemotherapy experience the 

cluster symptoms to a greater degree and are at a higher risk for decreased quality of life.

The time-dependent development of both anxiety- and depression-like behaviors has also 

been observed in other mouse neuropathic pain models. La Porta et al. (2016) reported 

ipsilateral mechanical and cold allodynia from day 3 to day 27 post-partial sciatic nerve 

ligation (PSNL) in Swiss albino male mice, with enhanced anxiety-like behavior in the 

elevated plus maze from 1 to 3 weeks post-PSNL and increased depressive-like behavior 

during FST, but only at 3 weeks post-PSNL. Also, a significant decrease in sucrose 

preference was observed from day 1 to day 20 post-PSNL. Although this study utilized a 

different model of neuropathic pain, alterations in nociceptive behaviors were also induced 

immediately and persisted for approximately four weeks. However, we found that anxiety-

like behavior can be maintained for 9 weeks following nerve exposure to a noxious stimulus. 

Consistent findings were made in regards to depression-like behavior, in which increased 

immobility during FST did not appear until 2–3 weeks. We recognize that repeated testing of 

the same cohort during FST could be a limitation, however, vehicle-treated mice did not 

express adaptation to the assay. The development of anhedonia-like behavior was also 

similar, during which a decrease in sucrose preference was observed the day following 

PSNL or paclitaxel treatment, but the effect only persisted for 11 days post-paclitaxel 

injection, whereas PSNL induced this behavior until day 20.

Similarly, using sciatic nerve constriction (SNC) in male C57BL/6J mice, Yalcin, et al. 

(2011) reported that ipsilateral mechanical allodynia persisted for 90 days, and increased 

anxiety-like behavior in the light/dark box test was observed at 4, 7, and 8 weeks post-SNC, 

a time-dependent effect similar to that seen in the present study. Latency to first contact and 

bite the food pellet during the NSF assay was observed at 5 and 8 weeks post-SNC, an effect 

that appeared earlier in paclitaxel-induced neuropathic pain. Increased immobility in 

neuropathic mice was observed at 8 and 9 weeks post-SNC during FST, whereas paclitaxel-

induced neuropathic pain caused immobility at 2 and 3 weeks post-paclitaxel injection. The 

differences and similarities amongst these studies illustrate the importance of establishing a 

clinically relevant model specific to the type of neuropathic pain of interest in order to best 
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determine the responsible mechanisms. Also, these data suggest that multiple pathways 

and/or brain regions are involved in the manifestation of affective-related behaviors. Yet it 

remains plausible that paclitaxel administration and models of nerve injury share common 

mechanisms for the induction of affective-related behaviors.

In conclusion, this work characterizes a preclinical mouse model of both the nociceptive and 

negative affective symptoms of paclitaxel treatment, which can be utilized to test the efficacy 

of potential therapeutics for the treatment of paclitaxel-induced side effects, as well as 

investigate mechanisms of action. In addition, this study allows for the separate investigation 

of chemotherapy-induced pain-realted behaviors in a tumor-free environment, which cannot 

be ethically accomplished in a clinical setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Paclitaxel induces mechanical and cold allodynia in a dose-dependent 

manner.

• Carboplatin enhances magnitude of paclitaxel-induced mechanical allodynia.

• Paclitaxel induces anxiety-, depression-, and anhedonia-like behaviors in 

mice.
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Figure 1. 
Paclitaxel induces nociceptive behaviors. Paclitaxel doses of 2, 4, and 8 mg/kg (i.p., every 

other day for a total of 4 injections) induce both mechanical (A) and cold (B) allodynia in a 

dose and time dependent manner. Arrows indicate vehicle/paclitaxel injections on days 0, 2, 

4, and 6. Baseline measurements were taken before vehicle/paclitaxel administration on day 

0. The same cohort was tested for both mechanical and cold allodynia; n = 6 per group (data 

expressed as mean ± SEM). *P < 0.05 vs vehicle; #P < 0.05 vs paclitaxel (2 mg/kg); $P < 

0.05 vs paclitaxel (4 mg/kg). BL, baseline.
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Figure 2. 
Paclitaxel induces a reduction in intra-epidermal nerve fiber (IENF) density at 28 days post-

paclitaxel injection. A) Quantification of IENF density in mice treated with one cycle of 

paclitaxel (8 mg/kg, i.p., every other day for a total of 4 injections) shows a significant 

reduction compared to vehicle. One cohort was tested; n = 6 per group (data expressed as 

mean ± SEM). *P < 0.05 vs vehicle. Veh, vehicle; PAC, paclitaxel. B) Immunostained 

sections of vehicle-(upper panel) and paclitaxel-treated (lower panel) hind foot pad skin 

showing the reduction of lENFs (arrows) following paclitaxel treatment. Bar represents 20 

microns in both images.
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Figure 3. 
Mice are sensitized to cutaneous stimulation after second cycle of paclitaxel treatment. A) 

Mice treated with one cycle of paclitaxel (2 mg/kg) or vehicle (i.p., every other day for a 

total of 4 injections). B) Mice from 3A treated with a second cycle of paclitaxel (2 mg/kg) or 

vehicle (i.p., every other day for a total of 4 injections). C) AUC mechanical threshold for 

initial 28 days of first and second cycles of paclitaxel treatment. D) Comparison of 

mechanical thresholds during the second cycle of treatment between mice treated with 

carboplatin (5 mg/kg) alone and with carboplatin followed by a low dose of paclitaxel (1 

mg/kg). Arrows indicate vehicle/paclitaxel/carboplatin injections on days 0, 2, 4, and 6 of 

each cycle. Baseline measurements were taken before vehicle/paclitaxel/carboplatin 

administration on day 0. One cohort was tested; n = 6 per group (data expressed as mean ± 

SEM). *P < 0.05 vs vehicle; $P < 0.05 vs first cycle of paclitaxel (2 mg/kg), #P < 0.05 vs 

carboplatin (5 mg/kg). Veh, vehicle; PAC, paclitaxel; CAR, carboplatin.
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Figure 4. 
Paclitaxel does not influence the nesting behavior of mice. Mice were allowed 120 minutes 

to nest at weeks 1, 2, 8, and 11 post-paclitaxel (8 mg/kg, i.p.) or vehicle injection. A) It was 

determined that mice had participated in nesting activity if at least one nestlet piece had been 

chewed or pulled into the home cage. A comparison of proportions via z-tests between 

vehicle- and paclitaxel-treated mice was not significant at any time point. B) The percentage 

of nesting material used was determined by the following equation: (weight of initial nestlet 

pieces - weight of remaining nestlet pieces)/weight of initial nestlet pieces. C) The quality of 

each nest was evaluated on a scale ranging from 0 to 2 (0 = no nest formed, 1 = some nesting 

activity, 2 = established nest). Individual cohorts were tested at 1 week (n = 6 per group), 2 

weeks (n = 6 per group), 8 and 11 weeks (n = 6 Veh, n = 7 PAC) post-paclitaxel (8 mg/kg, 
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i.p.) or vehicle injection; data expressed as mean ± SEM. Post-PAC injection refers to the 

time following the first of four paclitaxel injections. Veh, vehicle; PAC, paclitaxel.
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Figure 5. 
Paclitaxel induces anxiety-like behavior in the novelty suppressed feeding assay. (A) 

Latency to eat test cage food was determined as the time in seconds from the when the 

mouse was placed inside the test cage until the mouse sat on its haunches while holding and 

biting the food pellet. (B) Consumption of test cage food was calculated with the following 

equation: (initial weight of food pellet - weight of food pellet after 5 min eating period in 

test cage). Individual cohorts were tested at 3 weeks (n = 6 per group), 9 and 11 weeks (n = 

6 Veh, n = 7 PAC) post-paclitaxel (8 mg/kg, i.p.) or vehicle injection; data expressed as 

mean ± SEM. *P < 0.05 vs vehicle. Post-PAC injection refers to the time following the first 

of four paclitaxel injections. Veh, vehicle; PAC, paclitaxel.

Toma et al. Page 23

Neuropharmacology. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Paclitaxel induces anxiety-like behavior in the light/dark box test. Mice were free to explore 

both light and dark compartments for 5 min. The study was conducted with individual 

cohorts of mice (n = 8 per group) at 3, 6, and 9 weeks post-paclitaxel (8 mg/kg, i.p.) or 

vehicle injection; data expressed as mean ± SEM. *P < 0.05 vs vehicle. Post-PAC injection 

refers to the time following the first of four paclitaxel injections. Veh, vehicle; PAC, 

paclitaxel.
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Figure 7. 
Paclitaxel induces depression-like behavior in the forced swim test. Time represents the 

number of seconds the mouse was immobile when placed in water; the cut-off time was 240 

seconds. The same cohort of mice (n = 6 per group) was tested at weeks 1, 2, 3, and 4 post-

paclitaxel (8 mg/kg, i.p.) or vehicle injection; data expressed as mean ± SEM. **P < 0.01 vs 

vehicle. Post-PAC injection refers to the time following the first of four paclitaxel injections. 

Veh, vehicle; PAC, paclitaxel.
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Figure 8. 
Paclitaxel induces anhedonia-like behavior in the sucrose preference test. Mice were 

provided with two sipper tubes, one containing normal drinking water and the other 

containing a 2% sucrose solution, for 24 h per day. Sucrose preference was determined as 

the percentage of 2% sucrose volume consumed over the total fluid intake volume. Arrows 

indicate the time of each paclitaxel (8 mg/kg, i.p.) or vehicle injection. The study was 

conducted with the same cohort of mice (n = 8 per group) during paclitaxel (8 mg/kg, i.p.) or 

vehicle injections; data expressed as mean ± SEM. *P < 0.05, **P < 0.01, #P < 0.0001 vs 

vehicle. BL, baseline; Veh, vehicle; PAC, paclitaxel.
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Table 1

Paclitaxel treatment does not interfere with entry into the light compartment of the light/dark box apparatus. 

Unpaired t tests revealed no significant differences between vehicle- and paclitaxel-treated mice at any time 

point. One experiment was conducted with individual cohorts of mice (n = 8 per group) at each time point. 

Post-PAC injection refers to the time following the first of four paclitaxel injections. Data are expressed as 

mean ± SEM.

Light Side: Number of Entries

3 Weeks Post-PAC 6 Weeks Post-PAC 9 Weeks Post-PAC

Vehicle 16 ± 1.7 15 ± 2.0 14 ± 1.7

Paclitaxel 14 ± 1.9 13 ± 1.9 12 ± 1.7
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