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Abstract

In this paper, we introduce a novel model of the brain vascular system, which is developed based 

on laws of fluid dynamics and vascular morphology. This model is used to address dispersion and 

delay of the Arterial Input Function (AIF) at different levels of the vascular structure and to 

estimate the local AIF in DCE images. We developed a method based on the Simplex algorithm 

and Akaike Information Criterion for estimating the likelihood of the contrast agent concentration 

signal sampled in DCE images to belong to different layers of the vascular tree or being a 

combination of different signal levels from different nodes of this structure. To evaluate this 

method, we tested the method on simulated local AIF signals at different levels of this structure. 

Even down to an SNR of 5.5 our method was able to accurately detect the branching level of the 

simulated signals. When two signals with the same power levels were combined, our method was 

able to separate the base signals of the composite AIF at the 50% threshold. We applied this 

method to Dynamic Contract Enhanced Computed Tomography (DCE-CT) data and using the 

parameters estimated by our method, we created an arrival time map of the brain. Our model 

corrected AIFcan be used for solving the pharmacokinetic equations for more accurate estimation 

of vascular permeability parameters in DCE imaging studies.

Graphical Abstract

We have presented a model of the cerebral vascular system based on vascular morphology and 

laws of fluid dynamics, to be used for estimating the local arterial input function in DSC and DCE 

MRI and DCE-CT studies. Using this local arterial input function can reduce errors in estimation 

of permeability and perfusion parameters in these studies. The model was tested on DCE-CT 
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images by creating an arrival time map using the model parameters, which matched the expected 

values in the brain.
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INTRODUCTION

Estimating the Arterial Input Function (AIF) of a Contrast Agent (CA), the time-

concentration curve in plasma, especially at the tissue level, has long presented a challenge 

in Dynamic Contrast Enhanced Magnetic Resonance (DCE-MR), Dynamic Contrast 

Enhanced Computed Tomography (DCE-CT) and Dynamic Susceptibility Contrast (DSC) 

imaging studies. The AIF is used for estimating Mean Transit Time (MTT), Cerebral Blood 

Flow (CBF), Cerebral Blood Volume (CBV), vascular transfer rate constant (Ktrans), 

vascular plasma volume (vp), and extracellular-extravascular space (ve) in DSC and DCE 

studies (1, 2). Using an inaccurate AIF profile in permeability and perfusion analyses could 

substantially add bias to the estimated hemodynamic and permeability maps. This is one of 

the main reasons for finding the Arterial Input Function (AIF) at the tissue level or in other 

words, the local AIF. One of approaches towards solving this problem is modeling the 

vascular system in the brain and using that to find the dynamics of blood flow at the 

capillary (tissue) level.

Many researchers have attempted to model vasculature for applications in DSC and DCE 

studies. Depending on the applications, there have been different approaches to this problem, 

each having their advantages and shortcomings. One approach has been modeling the blood 

circulatory system of the whole body and finding the flow at different locations in the 

vascular system. In this category, Sherwin et al built a one dimensional network based on 

space-time variables and linear and non-linear modeling (3). Another modeling approach is 

based on having a three-dimensional arterial tree embedded in a one-dimensional 

representation of the arterial system (4). Bagher-Ebadian et al suggested a model and 

algorithm based on the blood-circulatory system, for estimating the CA time-concentration 
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curve in arterial plasma after an intravenous bolus injection (5, 6). Although these models 

allow performing quantitative and qualitative studies about local and global hemodynamic 

quantities, none of the models above have addressed the model of the flow at the capillary 

(tissue) level in the brain.

In one study Calamante et al proposed using Independent Component Analysis (ICA) in 

perfusion studies as a tool to define a local AIF for obtaining more accurate quantification of 

CBF in DSC-MRI studies (7). The method for finding the local AIF was based on a semi-

manual approach and user input was required for choosing the components and also there 

was no method for validating the local AIF. Mouridsen et al defined a physiological 

estimation of microvasculature which was used for estimation of cerebral perfusion with 

Bayesian methods (8). In this study, it was assumed that the AIF has a Gamma variate 

Probability Density Function (PDF). Assuming Gamma Variate or exponential decay 

functions for the local AIF have been used in other studies as well (9, 10). Cebral et al used 

a method based on MR angiograms to develop detailed assessment of blood flow patterns 

from direct in vivo measurements of vessel anatomy and flow rates using finite element 

methods (11). The focus of this research was only on major arteries and small arteries were 

not modeled.

There have been a considerable number of studies for modeling changes in the AIF for 

Arterial Spin Labeling (ASL) applications. Some have used Gaussian kernels (12) or 

variations of it (13) for modeling dispersion of the AIF which provide plausible 

smoothening of the AIF box-car shape along the arterial pathway. Hernandez et al. 

previously presented a one dimensional model for ASL applications that takes into account 

the effects of transit times by modeling displacement and decay of the inversion tag between 

the tagging and imaging locations (14). In another study, Kazan et al. modeled the effects of 

dispersion in Arterial Spin Labeling (ASL) (15) using the mass transport equation. In 

another study Gallichan and Jezzard modeled dispersion of the AIF using laminar 

(parabolic) and pulsatile flow of blood in major arteries (16). This model was designed only 

for ASL applications and also it considered only a single tube with no branching, which is 

not the case in vascular structures. Later Chapelle et al. used a variation of this model with 

adding a gamma-variate kernel to address dispersion in ASL (17). Although these studies 

have suggested practical approaches for addressing changes of the ASL bolus, none of them 

have considered the effects of multiple pathways of flow through the vasculature for 

modeling the overall dispersion. One of the approaches that has used laws of fluid dynamics 

for estimating the changes in the bolus profile is a method proposed by Gall et al (18). They 

introduced a framework for solving the deconvolution problem in DSC using a functional 

form of the residue function and also for estimating the changes in the bolus profile in ASL 

applications. In this framework, the function was derived based on the laws of laminar flow 

and a vascular tree model. Their results of using this function showed excellent agreement 

with data measured using ASL in early branches of the vascular tree.

The methods discussed above show different models for the AIF but most of these models 

either represent the input function only at the level of the major arteries (such as the carotid 

artery) or if they have an estimation of the input function at a lower level, the model does not 

represent all the major parameters that affect the AIF at the capillary level. Here, using an 
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approach similar to the work done by Gall et al (18) and Kellner et al (19), we introduce an 

analytical model of dispersion in major arteries at different levels of branching based on 

laws of fluid dynamics and morphological properties of the vessels. Next, using this model 

and Akaike Information Criterion (AIC), we introduce a method for estimating the structure 

of the vascular tree at different locations in DCE images.

MATERIALS AND METHODS

Implementation of the vasculature model

The model which we have proposed, explains dispersion of the AIF based on two different 

sources: Dispersion in a single vessel due to laminar flow and dispersion due to branching of 

the vessels down to the capillaries and multiple arrival times of blood in the tissue due to 

different vascular pathways of different lengths. All modeling and visualization was done in 

MATLAB (MATLAB Release 2010b, The MathWorks, Inc., Natick, Massachusetts, United 

States).

Parametric expression of dispersion in single tube—The average Reynolds number 

(Re) for the Carotid Artery has been calculated to be 266 and 911 for mean and peak flow 

rates respectively (20) and since this is less than 4000, we consider the flow of blood in the 

brain vessels other than the capillaries being laminar. In laminar flow, the velocity of the 

fluid in a tube is dependent on the radial distance to the center of the tube and can be 

characterized as (21):

(1)

where v0 is the velocity of blood along the central axis of the vessel with a radius of R.v is 

the blood velocity at the radial distance r from this axis. In this study, considering the time 

resolution of DCE imaging, the effects of pulsatile flow of blood in the vessels are ignored 

and it is assumed that flow has reached a steady state; thus, from this point on, v0 will 

represent the maximum blood velocity in each vessel. Based on Equation 1, in an approach 

similar to the work by Gall et al (22) and Kellner et al (19), we have derived a transfer 

function that describes the distortion of the contrast agent profile, after passing through a 

single vessel (details are presented in the Appendix):

(2)

where

(3)
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D0 is the length of the vessel and since v0 is the maximum velocity of blood in the vessel, t0 

is the shortest time that the contrast agent takes to pass through the vessel and under the 

assumption of steady flow in the vascular system, it can be considered a characteristic of the 

vessel.

Dispersion due to the cascade of vessels—In the case where a cascade of vessels 

exists, the overall transfer function of the vessels from the input node to any node in the 

system is the convolution of the transfer functions of the individual vessels in the pathway. 

In such a system, the transfer function of each vessel can be written as follows:

(4)

(5)

(6)

(7)

In these functions, t01 to t0n are the time delays of each individual vessel along the vascular 

route, from the opening of the main artery down to the nth branching layer. The transfer 

function of the vessels from the main input to the nth level of sub-branches can be written as:

(8)

Fractal geometry of the vessels—Based on Murray’s branching law of vessels, when 

an artery bifurcates, the radii of the daughter vessels are related to the radius of the parent 

vessel through (23, 24):

(9)

If we assume that the two daughter branches are similar, the radius of these daughter vessels 

and the parent vessel will be related through:
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(10)

Therefore the maximum velocity of blood in each of the daughter vessels (v0d) will be 

times that of the parent vessel (v0d ). Also if we assume that the length of the daughter 

branches is:

(11)

the delay time of the daughter vessels (t0d) will be equal to the delay time of the parent 

vessel (t0p). The benefit of employing these assumptions is that while they are close to 

reality (25) it can reduce the number of parameters that describe a vascular tree; instead of 

having an individual t0 for each branch, one t0 can describe the entire tree from the major 

artery down to the arterioles. In this case, if h(t)1 is the transfer function of each branch the 

general equation for the transfer function of the vascular tree will be:

(12)

Where “*n” denotes n repeated convolutions.

Simulating the CA concentration profile at different levels of the vascular 
structure—To explore the feasibility of using our method for estimating the vascular 

transfer function parameters in DCE images, we first performed a simulation of the CA 

concentration profiles. Initially we implemented a vascular morphological model as in 

Figure 1, with parameters comparable to real life values. The diameter of the common 

carotid artery in healthy adults has been estimated to be (26) 6.0 ± 0.8 mm and the mean 

velocity of blood passing through the Internal Carotid Artery (ICA) has been measured to be 

32.7 ± 3.0 cm/s in healthy adults (26). These values were used as the starting points of our 

model implementation. Based on the findings of Wright et al. the mean and standard 

deviation of the branch lengths in the brain is 25.02 ± 2.71 mm (19.35 mm-30.14 mm). The 

length of the main branch of our model was set to 4 cm based on these reported values. The 

model starts with one main artery; this artery bifurcates and two daughter vessels are created 

with the length and radius described in the previous section.

Using the same procedure, the daughter branches can be created recursively till they reach 

the capillary level. The three main arterial branches originating from the circle of Willis are 

the Anterior Cerebral Artery (ACA), Middle Cerebral Artery (MCA) and Posterior Cerebral 

Artery (PCA) (27). Each of these major vascular trees feeds a different part of the brain, but 

since they all originate from the circle of Willis, considering the relatively low time 

resolution of the imaging modalities, we assumed that the CA concentration profile of the 

blood entering these three branches is similar. According to the measurements done by 
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Wright et al. (28), the maximum number of bifurcations in these trees are 6.15 ± 1.53 

(ACA), 8.80 ± 1.40 (MCA), and 5.93 ± 1.66 (PCA). Using these initial values and branching 

rules, our model was implemented with six levels of branching down to the capillary level as 

in Figure 1; the veins and venules were implemented as the mirror image of the arteries and 

arterioles, albeit with a larger radius such that the overall volume of the veins and venules be 

four times that of the arteries and arterioles (21).

The flow rate in the vessels in this model was calculated by finding the resistance of every 

branch based on Poiseuille’s law (21) and converting the model to an analogous electric 

circuit and finding the electric current in all branches based on Ohm’s law (29). After 

finding the velocity of blood in all branches of the model, the time delay (t0) of each branch 

was calculated using Equation 3 and the vascular transfer function between the opening of 

the main artery and every node was estimated based on Equation 12. Figure 2-a shows the 

transfer functions between the opening of the main artery to the end of each of the vessels in 

the vascular structure, down to the sixth layer of branching in one vascular line. Using the 

profile of the contrast agent in the carotid artery of a human subject in a DCE-CT image 

series (acquired by the procedure which will be described in the following sections) and 

these six transfer functions, the local AIF at every node was calculated as plotted in Figure 

2-b. For better visual comparison of these curves, the peaks are all scaled to the same level 

as the AIF. By moving to higher levels of the vascular tree, the arrival time of the CA profile 

increases and it also gets more dispersed.

Estimating the vascular level of a DCE signal

In this section we describe the method we have used for solving the inverse problem which 

is estimating the values of the time delay (t0) of the vascular tree based on the CA profile 

sampled in the brain tissue which can be both for the simulated data and data from DCE 

images.

Fitting the data to the models—Every voxel in the image volume belongs to one part of 

the vascular tree or the capillary bed; however, except for a few major vessels, it is not 

visually possible to follow the level of vessels in the branch hierarchy. The goal is to 

determine the likelihood of each voxel belonging to different branching levels of the 

vascular tree structure. The first step is to estimate a transfer function (according to Equation 

12) that when convolved with a global AIF, can result in the CA concentration profile of that 

voxel. For practical purposes, to compensate for the signal reduction due to volumetric 

fraction of vessels in tissue, a gain factor g was added to the transfer function:

(13)

The global AIF profile is defined as AIF(t) and the measured tissue concentration signal of 

an arbitrary voxel in the brain image as CA(t). The relationship between these two can be 

defined as:
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(14)

where x is the branching level of the vessels in that voxel which generally speaking, is 

initially an unknown value and one of the goals is to determine the possible value (or values) 

of x for that voxel. It should be noted that in this equation, the effects of the capillary bed on 

dispersing the AIF have been neglected. Using the simplex algorithm (30) as a non-linear 

fitting method and the sum of squared errors as the cost function, for every possible 

configuration of the transfer function h(t)1 to 2, h(t)1 to 3, … or h(t)1 to 6), the best function 

transforming the reference AIF(t) to CA(t) is found. This results in six different 

configurations of the transfer function where each is described by [g, t0, n] where n varies 

from 1 to 6 and represents the branching level of the vessel. It should be noted that the 

parameters estimated for every configuration of the transfer function are not dependent on 

the parameters from other configurations and are estimated independently every time the 

fitting procedure is repeated.

Model selection and model averaging using Akaike Information Criterion (AIC)
—After finding the six best transfer functions (one for each of the six branching layer 

configurations) or the model configurations for every voxel, the problem of determining the 

contribution of each model configuration should be addressed; this is necessary since each 

voxel might be representing a combination of vessels from different layers of the vascular 

structure; or if it is the representative of only one vessel or tissue type, the branching level of 

the vessel at that voxel needs to be estimated. In our study, we used Akaike Information 

Criterion (AIC) for model selection and model averaging (31). The AIC value can be 

calculated using the residual sum of squares (RSS) for each of the six models being 

investigated using the following equation:

(15)

Here n is defined as the number of observations which in our study represents the number of 

image timepoints. k is the number of model configuration parameters which in our 

application, is two for each model configuration. We define AICmin as the AIC for the model 

configuration with the best fit. To calculate the Akaike weights, we first define a new 

variable Δi that represents the difference between the AIC values in these six model 

configurations with the lowest AIC value:

(16)

Using these values, the Akaike weight (wi) for each model configuration is estimated:
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(17)

For each voxel, the estimated Akaike weights are considered to be the probability of model 

configuration i (i=1 to 6) being the best model that describes the transfer function between 

the opening of the main artery and that voxel. Using the Akaike weights and the estimated 

values of the model parameters for each configuration of the model, an average transfer 

function is calculated which we name h(t)est Using this transfer function, the local AIF can 

be estimated as follows:

(18)

In our model, we have not included the effects of the capillaries on the AIF and therefore the 

transfer function that is estimated using the method explained above will give an estimation 

of the transfer functions of the arteries and arterioles feeding the capillary bed which is the 

reason that in this equation we have referred to it as AIFL(t).

Delay maps—As explained before, every transfer function is described with a set of 

parameters [g, t0, n]. In the case of dealing with only one model configuration, the total 

delay time from the main artery opening to the voxel being studied (or the arrival time of the 

contrast agent) can be calculated as n × t0; however, in this study since multiple model 

configurations are used, by applying the rules of model averaging using AIC (32), the delay 

time (CA arrival time) of each voxel is estimated by calculating a weighted sum of the delay 

times of all model configurations, with the weights being the Akaike weights of that voxel:

(19)

Where t0i is the t0 of model configuration with i branching levels. The benefit of using this 

model averaging method (32) for calculating the delay time is that voxels representing 

tissues that are being supplied by more than one branching level of the vascular system will 

have all those vessels accounted for and the delay time will be a weighted average of all the 

possible delay times from different vascular pathways. This approach can also address the 

concept of collateral flow. Previously, Brix et al used a similar weighted model approach for 

finding the best approximating model from three nested compartmental pharmacokinetic 

model for analysis of tissue microcirculation (33).

Model evaluation using DCE-CT imaging

The next step of vascular model development was evaluating the performance of the model 

using human DCE data. After studying different dynamic imaging modalities, DCE-CT 

imaging was selected as this modality. Compared to DCE-MRI, DCE-CT images have lower 

Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) (34). However, other 
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characteristics of this modality made it a better choice for our study: the signal intensity of 

the CT images is linearly dependent on the CA concentration (35) and also, the temporal 

resolution of this modality is much higher (~10 times more) than DCE-MR images (0.5 sec 

vs. 5 sec). In addition, CT images have better spatial resolution (36).

The study was approved by the Henry Ford Health System institutional review board and 

written informed consent was obtained from the subject. DCE-CT images were acquired on 

a GE LightSpeed VCT scanner with image matrix size of 512×512 (24×24 cm FOV) and 

eight slices (5mm slice thickness) with 99 imagepacks (89 image sets sampled every 0.5 

seconds for the first 44 seconds, 1 image acquired at the 50 second time point, followed by 9 

image sets acquired every 16 seconds for a total scan time of 194 seconds). 50ml of 

iodinated CA with a concentration of 0.5ml/Kg was injected as a bolus using a power 

injector at a rate of 4cc/sec starting five seconds after start of image acquisition; cine scan 

was done for 50 sec. The dynamic images were baseline corrected to make their intensity 

linearly dependent on the CA concentration. Also, to increase the SNR, especially in the 

tissue regions, the neighboring voxels were averaged and the images downsized to 128×128. 

After these pre-processing steps, the CT images were ready to be used for testing the model 

using the same approach explained in the previous sections.

RESULTS

Simulation Results

Estimation of the level of the simulated CA concentration profiles—The goal of 

the first part of our simulation was to explore the ability of our method for finding the 

correct transfer function of the vascular structure based on the AIF and the simulated CA 

concentration profiles as we explained previously. The different model configurations were 

fit to each of the six profiles using the fitting procedure and the model selection methods that 

we described. The likelihood of these profiles belonging to each of the different model 

configurations was estimated using the fitting residue value and the Akaike method. The 

effect of noise on the performance of the model was evaluated by adding different levels of 

noise to the simulated profiles. Figure 3-a shows the results of these simulations. As seen 

here, the added noise level is varied between 0% to 100% and at each of these levels the 

likelihood of selecting the correct level of the vascular structures has been estimated. Up to 

the 18% noise level, the likelihood of selecting the correct level of the profile is almost 1 for 

all cases. As this noise level increases, the accuracy of the system decreases and this 

likelihood gets less; however, in the 100% noise level, the likelihood of selecting the correct 

level index does not go below 0.3.

In Figure 3-b, the bias and variance of the estimated parameters are plotted. These values are 

estimated with the procedure described above. In these graphs, each data point shows the 

bias and variance of the values for each noise level. As seen here, for all levels of noise, the 

estimates of these parameters remain very close to the original values of these parameters. 

One of the reasons for the bias in the estimated values can be the temporal resolution of the 

simulated data.
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Decomposing the simulated composite profile—When applying our method to the 

DCE-CT images, it is likely that the signal sampled from a typical voxel in the image 

represents a composite of vessel segments from more than one level of the vascular tree 

which can also be the result of collateral flow in cranial vasculature. To simulate these 

conditions, and to explore the feasibility of our method for detecting these signals, the 

superposition of the CA profile from different levels of the model was created and 

decomposed by the fitting algorithm and by applying the AIC method as we explained 

before.

Figure 4 shows a schematic diagram of our model simulation in the case when two signals 

are combined. Here, the square represents a hypothetical voxel in which vessels from both 

the second and sixth levels pass through. The temporal signal sampled in this voxel is the 

weighted sum of the signals from the two vessel segments and depending on the effective 

volume of each of them in this voxel, the level of contribution of each signal is adjusted 

from 0% to 100%. Also, we added different levels of noise to the composite signal (0% to 

100%) and explored the feasibility of our method to decompose these signals in presence of 

noise.

Figure 5 shows the curves representing the Akaike weights of the composite signals after 

decomposition by the method explained above. Each curve represents the average of results 

from 300 repetitions at each noise level. As seen here, at noise levels lower than 50%, almost 

all these curves meet at the 50% contribution level point which matches our expectation. 

One observation in these curves is that in cases where the contribution of either signal is not 

close to 50%, when no noise is added to the signals or the noise level is small, the Akaike 

weights tend to get saturated to 1 or 0; this is due to the large difference in the residue values 

of the fitting procedure for the two signals in the absence of noise. But when noise is added, 

since the residues will have large values, the Akaike weights will not get saturated in these 

cases. When the difference between the levels of the two signals increases, this saturation 

effect will become more evident, even in the presence of noise. These results show that in 

the no-noise situation, the AIC does not act as an unbiased estimator.

Results of applying the model to DCE-CT images

Figure 6 shows the tissue concentration signals sampled from four different regions (circle 

of Willis, a small artery which was the sub-branch the middle cerebral artery, a region of the 

normal tissue and the superior sagittal sinus) and the corresponding tissue input signals 

estimated by Equation 18. These curves show that the proposed method can describe the 

transfer function for the arteries and capillaries very well and the reconstructed signal 

matches the tissue concentration signal sampled from the tissue with healthy vessels. Figure 

7-a shows the six Akaike weight maps for two slices of a DCE-CT image volume. As seen 

in this figure, in the Akaike map of the first model configuration, the voxels that represent 

the major artery that the AIF has been sampled from have the highest Akaike weight which 

has a value very close to 1. As the model configuration index increases, the voxels with the 

highest value shift from the major arteries to other cerebral regions. In the map 

corresponding to model configurations 5 and 6, the voxels showing the major veins such as 

the sagittal sinus have the highest likelihood of belonging to this model configuration. The 
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reason for this is that the transfer function was not designed to describe the changes of the 

CA concentration profile in the veins and venules and since in the model fitting step these 

configurations give the lowest fitting residue, they are selected at the best fitting model 

configurations.

These probability maps were used to create the blood flow delay maps of the brain as seen in 

Figure 7-c and 7-e. Point R in this figure shows the reference point where the global AIF 

was sampled (same profile as the AIF in Figure 2). This AIF was used to estimate the 

transfer function between R and all the voxels in the image. As seen here, the estimated 

delay time is different at different parts of the brain: The arteries such as the main arteries 

marked as A have a short delay time and other areas of the brain have longer delay times and 

have values up to 4 seconds which is a good approximation of the mean transit time of the 

blood flow in the brain (37). As explained above, the profile in veins (such the Superior 

Sagittal Sinus marked as B) cannot be explained using this model and the estimated delay 

times in these regions are not valid. As seen in Figure 7-e, the tumor (T) shows a longer 

delay time. This long delay time in the tumor area is an overestimation of the actual value. 

One reason for this can be the extravasation of the CA to the extracellular-extravascular 

space which results in changes of the CA concentration profile in this area such that it that 

cannot be explained solely by dispersion and delay. This issue will be addressed in an 

accompanying paper [*].

DISCUSSION AND CONCLUSION

In this study, the first system investigation was performed on a novel vascular model that we 

have developed for studying the changes of the AIF at different levels of the vascular 

structure, using a transfer function of a single vessel. Our investigation is based on a 

combination of simplex (for fitting) and AIC (for model selection) methods and we did a 

simulation study to test our methods and also studied the application of our method in DCE-

CT images of the human brain. Our model can analytically explain dispersion of the contrast 

agent profile at different levels of the vascular tree in the brain without any assumptions 

about the profile of the contrast agent, using systems analysis methods. The simulation 

results showed high accuracy in finding the level of the CA profile in the vascular tree and 

the contribution of CA profiles at different levels of the vascular tree. Applying this model to 

DCE-CT images of the human brain exhibited that the arrival time of the contrast agent at 

each voxel matched the expected data.

Our novel semi-empirical model of the brain vascular system is based on laws of fluid 

dynamics and morphology of the vascular structure in the brain. Our approach is similar to 

the framework proposed by Gall et al (18) and Kellner et al (19). One advantage of this 

model is that it does not make any assumptions about the profile of the contrast agent (such 

as it being a gamma variate or Gaussian function, etc.). The vascular model in its current 

form, does not include all aspects of the laws of fluid dynamics and vascular physiology 

such as turbulence at the bifurcation points in the vessels; but considering the data 

modalities and also the time resolution of our dynamic experiments, it can explain dispersion 

in the brain vasculature very well. However, this model assumes no leakage of the CA from 

the vessels into the extravascular space; leakage can change the profile of the measured 
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tissue response signal. To address leakage, permeability and diffusion parameters should be 

incorporated into the model. As an extension of our model, we have included and studied the 

effects of some these parameters in our model. These will be reported in a separate paper. 

The number of parameters that are directly estimated using the vascular model two which 

are basically the delays of the vascular segments and a scaling factor; however other 

parameters can be indirectly estimated using the estimated transfer function.

Our vascular model has demonstrated its application for studying the changes of the AIF at 

different levels of the vascular structure and for improving the measurement of arrival time 

of the contrast agent in the dynamic contrast enhanced perfusion measurements. Kellner et al 

(19) have described two approaches for measuring the tracer in the vessel segment with 

laminar flow: the snapshot method where the CA volume in measured instantaneously and 

the flow-type method where local velocity contribution to the labeled CA volume is 

considered. Although the flow-type model provides better theoretical approach, fitting the 

flow-type model and snapshot model to the ASL data showed that the transfer function of 

the snapshot model gave better fits to the data than the flow-type model. On the other hand, 

the expected bolus dispersions using these two models differ only slightly after passing 

through a few bifurcations (19).

The interesting point about the vascular transfer function is that it can describe dispersion in 

a single vessel with only one parameter. Our model mainly describes arteries, arterioles and 

capillaries and in order to describe the veins, venules and capillaries, more parameters 

should be added to the model to address the dispersion of the CA profile in the veins more 

accurately. However, considering the fact that the total volume fraction of capillaries, veins 

and venules consist only about 3% of the total brain volume (38), the likelihood of selecting 

a voxel representing a vein is low. For this reason and also to avoid the unnecessary increase 

of the complexity of our model at this point, we did not include that in our analysis. Despite 

this, since the transfer function of the veins and venules is the closest to that of the highest 

level of arterioles in our model, these vessels show the best fit to the transfer functions 

describing these vessels; the results as seen in the final Akaike weight maps (Figure 7-a) 

show the major veins (such as the inferior and superior sagittal sinus) having the highest 

likelihood at the highest model level which confirms this point.

The good performance of the model fitting and selection method in the simulation studies in 

presence of noise shows its robustness for finding the vascular branching level of signals for 

non-simulated data. In the second part of this paper [*], this model will be translated to 

DCE-MR experiments for estimating permeability parameters in these images. To extend 

this model to be used for perfusion studies, the Tissue Input Function (TIF) should be 

estimated and for this reason, the effect of capillaries should be added to the model.

One application of this model and methods introduced in this paper is tissue 

characterization; based on the vascularity of the tissue, the CA profile can change and this 

can be used to classify it. As was noted, modeling abnormal vasculature in the brain such as 

those in tumors can add to the options for possible equations of the transfer function and by 

using the same procedure as described in this study, different types of tissue can be 

Nejad-Davarani et al. Page 13

NMR Biomed. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



characterized in the DCE images based on the parameters of the model which will be part of 

the future work.

In conclusion, we have developed a model of the vascular system of the brain that explains 

dispersion of the CA profile in different locations of the brain vascular system and has been 

tested using DCE-CT and simulated data. Even though at this point only healthy arteries, 

arterioles have been modeled in our model, our model in its current form can give a good 

estimate of the transfer functions of most vessels in the brain. Further steps in this research 

will involve adding parameters to the model to describe certain effect of capillaries and also 

vascular pathologies that could be used for more accurate estimation of perfusion and 

permeability characteristics of vessels in DCE images.
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Abbreviations

AIF Arterial Input Function

CA Contrast Agent

DCE-MR Dynamic Contrast Enhanced Magnetic Resonance

DCE-CT Dynamic Contrast Enhanced Computed Tomography

DSC Dynamic Susceptibility Contrast

MTT Mean Transit Time

CBF Cerebral Blood Flow

CBV Cerebral Blood Volume

Ktrans Vascular transfer rate constant

vp Vascular plasma volume

ve Extracellular-extravascular volume

TIF Tissue Input Function

PDF Probability Density Function

ASL Arterial Spin Labeling

ICA Internal Carotid Artery

ACA Anterior Cerebral Artery

MCA Middle Cerebral Artery

PCA Posterior Cerebral Artery
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AIC Akaike Information Criterion

RSS Residual Sum of Squares
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APPENDIX

Derivation of the transfer function of a single vessel with laminar low

To derive an equation for the transfer function of a vessel, we start by finding the volume of 

the Contrast Agent (CA) and the total volume of the fluid exiting a vessel with the length of 

D0, as a function of time. Initially, CA is introduced to the entrance of the vessel in the form 

of a step function and after flowing through the vessel it forms a parabola. The equation of 

the surface of the parabola is written as:

(A.1)

Where R is the radius of the vessel, r the radial distance of the parabola surface from the axis 

of the vessel and z is the distance from the opening of the vessel. After time t0 = D0/v0, the 

tip of the parabola reaches the end of the vessel and at time t = D/v0 it reaches the plane z = 

D (assuming that the fluid continues to flow in a cylindrical form). The volume of the CA 

enclosed between the between the planes D0 and D can be calculated as:

(A.2)

Prior to time t = t0 there is no CA exiting the vessel so the average CA concentration is zero 

during this time. The total volume of fluid exiting the vessel between the times t0 and t can 

be calculated as:

(A.3)

To find CA concentration of the fluid exiting the vessel, the volume of the CA exiting the 

vessel in an infinitesimal time should be divided by the total volume of fluid exiting the 

vessel in the same time:

(A.4)
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And since this is the response to the unit step function, the transfer function equation can be 

found by differeniatig this with respect to time:

(A.5)
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Figure 1. 
Morphological structure of the vascular model; branching of arteries and arterioles has been 

simulated down to six levels. As seen here, the veins and venules have larger volume and 

diameter compared to arteries and arterioles. The volumetric flow rate of blood entering this 

model equals the efferent flow. Every segment of the capillary bed is modeled as a single 

tube vessel in which the flow is non-laminar.
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Figure 2. 
(a) The transfer functions of vessels from the opening of the main artery down to the 6th 

level of the vascular branching. As seen here, as the level increases, the arrival time and 

dispersion both increase. (b). Plots of the main AIF (bold curve) of a human subject along 

with the local AIF at six levels of our vascular model estimated by convolving the main AIF 

with the transfer function at each level. The AIF was sampled from the first 45 seconds of 

the DCE-CT image series in the voxels showing the Internal Carotid Artery of a human 

subject after the bolus injection of the CA. For easier comparison of the profile of these 

curves, the peaks are scaled to the peak of the AIF. As seen here, by moving to the higher 

levels of the vascular structure, the arrival time delay gets longer and the curves get more 

dispersed.

Nejad-Davarani et al. Page 20

NMR Biomed. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(a) Akaike weights of each of the simulated signals after model averaging. The plots show 

the likelihood of each of the simulated local AIFs being selected as the level of branching 

that they were simulated for. As seen here, even at the 18% noise level, the likelihood of 

picking the correct branching level of the signal is almost 1 for all cases. As the noise level 

increases, the accuracy of the system decreases and the likelihood of picking the correct 

model configuration gets less; however, in the 100% noise level, the likelihood of picking 

the correct level index does not go below 0.3. (b) Bias and variance of the estimated 

parameters for the six cionfigurations of the model for 11 levels of gaussian noise added to 
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the signal. These values are estimated with the procedure described above and for 300 

repetitions at each noise level. When the vascular structure has only one level, only one time 

delay is estimated and the curves represent the values of that parameter. For higher levels of 

vascular branching, in the graph we used the sum of the estimated values of these 

parameters. As seen here, for all levels of noise, the estimates of these parameters remain 

very close to the original values of these parameters. One of the sources of bias can be the 

temporal resolution of the simulated signals.
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Figure 4. 
Schematic figure showing a typical AIF from one of the major cerebral arteries of a human 

subject in DCE-CT images and the simulated local AIFs at the second (L2) and sixth level 

(L6) of our vascular model. In this figure the effect of one voxel representing vessels from 

two different levels has been simulated. In this case the signal sampled from this voxel 

would be the superposition of the two signals (L6+L2). Using this configuration, we have 

studied the feasibility of our method to distinguish and separate the signals that form the 

composite signal.
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Figure 5. 
Akaike weights of the simulated composite signals after decomposition. Each curve 

represents the average of results of 300 repetitions at each noise level. The composite signal 

is basically the weighted sum of the two simulated signals (the x-axis represents the 

percentage of contribution of the second signal in the composite signal) from different layers 

of the vascular structure. In each of the boxes above, each plot represents one noise level: In 

the upper half of the box, from left to right, each dotted line indicates 0% to 100% noise 

level (SNR = Inf, 100, 25, 10, 5.5, 3.6, 2.7, 1.9, 1.3, 1.1, 1) added to the composite signal 

and the solid lines correspond to 100% to 0% noise levels respectively. In the absence of 

noise, the switching point for all of these cases occurs at the 50% level which is what is 

expected. However, in the case that the model configuration levels are consecutive, when the 

noise level is increased, this switching point moves towards higher values, in favor of the 

model with fewer parameters. The worst case is seen in level 5 vs. level 6 when the noise 

level is 100%. However, even in this case even up to 52% noise level, the cutoff threshold is 

still around 50%.
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Figure 6. 
(a) CA concentration signals sampled from four regions of a DCE-CT image of the human 

brain. These regions are the circle of Willis, a small artery which is a sub-branch of the 

middle cerebral artery, a region in the normal tissue and the superior sagittal sinus. These 

signals are scaled to show the relative dispersion and delay of the CA profiles more clearly. 

(b) The reconstructed CA concentration signals corresponding to the signals in (a) that were 

created using our proposed fitting and model selection method. As seen here, unlike the 

results for the other vessels, since our model was not designed for veins and venules, the 

reconstructed CA concentration signal representing the sagittal sinus does not match the 

signal sampled from this region.
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Figure 7. 
(a) Akaike weight maps of two slices of the CT image based on the six levels 

(configurations) of the vascular tree model. The intensity of each voxel in the images L1 

through L6 images show the likelihood of that voxel belonging to that level in the vascular 

tree. Based on the Akaike method, the sum of the intensities of every voxel across the six 

images is one. The images on the right column are the CT images of the same slice, a few 

seconds after injection of the contrast agent. As seen in these CT images, all the major 

vessels have been enhanced in intensity but there is no distinction between the arteries and 

veins since they are all enhanced. (b,d) Enlarged images of the two sections of post injection 

CT images in (a) and (d,e) the delay maps (in seconds) created using our method. ‘R’ is the 

reference point for measuring the glocal AIF. ‘A’ is the location of one of the main arteries 

and ‘B’ shows the Superior Sagittal Sinus. ‘T’ shows the location of the tumor.
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