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Abstract

Background—Epidemiologic studies that aim to estimate a causal effect of an exposure on a 

particular event of interest may be complicated by the existence of competing events that preclude 

the occurrence of the primary event. Recently, many articles have been published in the 

epidemiologic literature demonstrating the need for appropriate models to accommodate 

competing risks when they are present. However, there has been little attention to variable 

selection for confounder control in competing risk analyses.

Methods—We employ simulation to demonstrate the bias in two variable selection strategies: 

include covariates that are associated with the exposure and 1) which change the cause-specific 

hazard of any of the outcomes; or 2) which change the cause-specific hazard of the specific event 

of interest.

Results—We demonstrated minimal to no bias in estimators adjusted for confounders of 

exposure and either the event of interest or the competing event, but bias of varying magnitude in 

almost all estimators adjusted only for confounders of exposure and the primary outcome.

Discussion—When estimating causal effects for which there are competing risks, the analysis 

should control for confounders of both the exposure–primary outcome effect and of the exposure–

competing outcome effect.

In many epidemiologic studies, the event of interest may be precluded by another event, 

termed a competing risk. The majority of the epidemiologic literature on competing risk has 

focused on explaining why and how competing risks should be incorporated into 

epidemiologic analyses,1–5 prediction,6 inference when the cause of failure is misclassified 

or incompletely recorded.7 However, there has been little attention given to estimation of 

causal effects in the presence of competing risks, and in particular to variable selection for 

confounder control.

Recent work on model specification in the presence of competing risks has focused on the 

development of stepwise variable selection procedures based on information criterion,8 score 

statistics,9 or various penalized likelihoods.10,11 However, the field of epidemiology has 

largely moved away from automated variable selection procedures,12–15 in favor of the use 
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of background knowledge encoded in directed acyclic graphs (DAGs) to identify a set of 

variables sufficient for confounder control.15–17 Our objective was to show that estimation 

of the cumulative incidence function will be biased when a confounder of the effect of 

exposure on a competing event is ignored. Furthermore, estimands based upon the 

cumulative incidence function, including the subdistribution proportional hazard ratio will 

also be biased.18 We illustrate the bias with a simulation.

METHODS

Motivating example

Imagine an observational study of a hypothetical drug that alleviates symptoms of chronic 

obstructive pulmonary disease (COPD) but also increases mortality. A standard analysis 

might censor individuals when they die or report the incidence of a composite outcome. 

However, censoring individuals who die will overestimate the probability of chronic 

obstructive pulmonary disease (COPD) remission when deaths are not rare. Furthermore, it 

does not make sense to combine remission (a desirable outcome) with death (an undesirable 

outcome). Even when both outcomes are desirable or undesirable, analyzing a composite 

outcome results in a loss of information.19 An analysis that explicitly incorporates 

competing risks (e.g., one that employs the Fine and Gray subdistribution hazard model18 or 

that estimates the cumulative incidence function non-parametrically1) accounts for both the 

“direct” effect of the drug on the probability of COPD remission (because treated individuals 

have a higher hazard of COPD remission), and the “indirect” effect (because individuals 

who die are no longer at risk for COPD remission).

In the presence of competing risks, there are at least as many causal estimands as there are 

competing events. For example, denote the difference in the cumulative incidence of 

remission due to drug,  and the difference in 

the cumulative incidence of death due to drug, 

. Here, P (∙) denotes probability; T is the 

composite event time; A denotes treatment type; and J distinguishes event types. Ta and Ja 

denote composite event time and event type that we would have seen under treatment a (that 

is, potential outcomes). Following convention, we denote random variables with capital 

letters and possible realizations of random variables with lower case letters. We borrow 

potential outcomes notation from Cole et al (2015).1 In eAppendix A, we present an 

extension of potential outcomes notation that combines an event indicator with an event type 

indicator at a particular point in time, which allows incorporation of Greenland’s causal 

response types to the competing risk setting.20

Brief introduction to competing risk

Complete introductions to competing risks have previously been published.1,2,21 

Nevertheless we reiterate some concepts for completeness. We limit discussion to two 

competing events; however, methods are easily extended to settings with more than two 

competing events.
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The cumulative incidence function is perhaps the most natural estimand in the presence of 

competing risks and is defined:

Equation 1

where  is used to denote the cumulative incidence function for the Jth event type, j = 1,

…,J; T and J are defined as above; and the asterisk distinguishes the cumulative incidence 

function from the conditional risk function estimated in standard survival analyses (e.g., 

complement of a Kaplan-Meier curve). Causal estimates can be generated by estimating the 

cumulative incidence function for each level of exposure, then taking a difference or ratio of 

those estimates, e.g., . Contrast the cumulative incidence function with the 

conditional risk (where competing events are censored):

Equation 2

In (2), T′ denotes time to event j. We explicitly embrace the term conditional risk function22 

to highlight the assumption embedded in the risk function when competing events are 

censored; the conditional risk function is the risk of the outcome in a world in which all 
competing risks have been eliminated, (without changing the cause-specific hazard of the 

event of interest). Imagining an intervention that would result in such a world is typically 

difficult, if not impossible. This assumption is also inherent in our definition of T′. T′ does 

not exist for people who get the competing event; estimators of the conditional risk impute T
′ for people with the competing risk when they are treated as censored, despite the fact that 

by definition experiencing a competing event precludes the occurrence of event j. Therefore 

the conditional risk is rarely of interest because of its lack of grounding in reality. 

Furthermore, in the presence of competing risks,  may exceed 1, violating the rule 

of coherence.23

The cumulative incidence function is a function of the cause-specific hazards:24,25

Equation 3

where S(u−) is the survival function from all events (i.e., from the composite outcome) as it 

approaches u from the left and hj(t) denotes the cause-specific hazard for outcome j at time t:

Equation 4
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The cause-specific hazard includes individuals who have survived from all events to time t in 

the risk set. Informally, (3) shows that the cumulative incidence function for event j is 

obtained by partitioning the cumulative incidence function for the composite event 

according to the relative magnitude of the cause-specific hazards. Importantly, one can see 

that the cumulative incidence function relies on the survival function, which is itself a 

function of the sum of the cause-specific hazards for both the primary event of interest and 

the competing event(s).

Because there is not a one-to-one relationship between the cause-specific hazard ratios and 

the relative cumulative incidence functions, Fine and Gray introduced the subdistribution 

hazards model. The risk set for the subdistribution hazard includes individuals who have 

survived until time t and those who failed due to the competing event prior to t.18 The 

subdistribution hazard is defined:18

Equation 5

The cumulative incidence function is directly estimable from the subdistribution hazards:18

Equation 6

In the presence of confounding, the cumulative incidence functions for each level of 

exposure can be estimated nonparametrically (or semiparametrically, depending on the 

formulation of the weights) by estimating cause-specific or subdistribution hazards and 

applying (3) or (6) above, weighting each observation by the inverse probability of 

exposure.26 CIFsCumulative incidence functions could also be estimated 

parametrically.27–29 Interpretation of the these functions should be complemented by 

examination of the cause-specific hazards for all events.3 If the exposure effects on the 

cause-specific hazard ratios are in the same direction for competing events, the exposure 

effects on the cumulative incidence functions are less predictable.30

The cause-specific hazards can be estimated from a Cox proportional hazards model, 

censoring individuals who fail with the competing event:

Equation 7

where h0j(t) is the unspecified baseline cause-specific hazard, z a vector of covariates, and βj 

the corresponding vector of regression coefficients such that exp(βj) are cause-specific 

hazard ratios associated with z. In the subdistribution proportional hazards model individuals 

who experience the competing event remain in the risk set until the end of follow-up and 

censored individuals are partitioned across the cumulative incidence functions for all the 

event types:
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Equation 8

where λ0j is the unspecified baseline subdistribution hazard and ϕj the corresponding vector 

of regression coefficients such that exp(ϕj) are subdistribution hazard ratios associated with 

z. Confounders can be included in either model, resulting in a covariate conditional hazard 

ratio due to exposure, or confounding can be controlled with inverse probability exposure 

weights, resulting in a marginal hazard ratio due to exposure. The covariate conditional and 

marginal hazard ratios may not be equal because the hazard ratio is a non-collapsible 

estimator.31

Variable selection strategies

When etiologic or interventional parameters are of interest, the purpose of variable selection 

is to block non-causal pathways between the exposure and outcome under study,14–16,32 

rather than to maximize a model’s predictive ability. Strategies put forward for variable 

selection for confounder control, include identifying a minimally sufficient set of covariates 

for d-separation between exposure and outcome on a directed acyclic graph17 (considered in 

more detail in the Discussion) and identifying confounders based on a set of criteria. One set 

of criteria for identifying confounders includes: confounders must be 1) associated with 

exposure, 2) either a true cause or a surrogate of a true cause of the outcome, and 3) not 

affected by exposure.33,34 Another set of criteria states that if any set of covariates suffice to 

control confounding, selecting all pretreatment variables that cause exposure or cause the 

outcome will also control confounding.32 However, existing strategies only reference the 

relationship between covariates and one outcome; to our knowledge, there is no guidance on 

how to handle covariates associated with exposure and competing outcomes. One strategy 

for selecting covariates for confounder control would be to include confounders of only the 

outcome of interest. A second, more inclusive strategy would be to also include confounders 

of the competing event.

Simulation

We simulated 1,000 cohorts of 1,000 individuals each, in which we estimated the effect of a 

dichotomous exposure, A on an outcome of interest, j = 1, in the presence of a competing 

event, j = 2, and two dichotomous confounders:Z1, a confounder of the cause-specific hazard 

ratio for A on j = 1, and Z2, a confounder of the cause-specific hazard ratio for A on j = 2 

(henceforth, a confounder of A on j = 1and a confounder of A on j = 2, respectively). 

Discussions of confounders are typically not specific as to the estimand of interest, but 

previous work has shown that presence of confounding can depend on the outcome 

parameter of interest.35 In this paper we generate confounding by simulating variables that 

change the odds of the exposure log-linearly and that change the cause-specific hazard of 

one of the two simulated events (but not the other) log-linearly. Details of the simulated data 

structure are provided in eAppendix B.

To establish values for the truth for each estimand, we generated deterministic potential 

outcomes for the 1,000,000 individuals across all simulations and cohorts, then calculated 
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the value of each estimand using the 2,000,000 potential outcomes (one for each of the two 

treatments).36 Because the hazard ratio is non-collapsible,31,35 we calculated true marginal 

and covariate conditional hazard ratios to contrast with inverse probability exposure 

weighted and covariate conditional estimators, by including only exposure, or exposure and 

covariates, respectively, in models fitted on the simulated potential outcomes. To calculate 

cause-specific hazard ratios, we fit Cox proportional hazards models37 and censored 

individuals experiencing the competing event. To calculate subdistribution hazard ratios, we 

fit Cox proportional hazards models and set follow-up time to the end of follow-up for 

individuals experiencing the competing event; this is the subdistribution proportional 

hazards model in the absence of censoring.18 We assumed no censoring in our simulation, as 

it would have complicated calculations without changing any conclusions. We calculated the 

true conditional risk functions and cumulative incidence function nonparametrically using 

the simulated potential outcomes.

In each simulated cohorts, we estimated the cause-specific hazard ratio and subdistribution 

hazard ratio from a Cox model and Fine and Gray model, respectively. We controlled for 

different sets of confounders using covariate adjustment and inverse probability exposure 

weights.38 The conditional risk function and cumulative incidence function were estimated 

using inverse probability exposure weights,26 and incidence was read off of those curves at t 
= 200 to estimate risk differences. Calculated risk differences at other times yielded 

substantively similar results; we present risk differences at only one time point (the end of 

follow-up) to simplify results. Within-simulation standard error for the inverse probability 

exposure weighted estimator (for calculating 95% confidence interval coverage) of the 

cause-specific and subdistribution hazard ratios was estimated using the robust variance. 

Within-simulation standard error for risk differences were estimated using the standard 

deviation of estimates from 200 bootstrap samples, sampled with replacement within each 

simulated cohort. We report the bias and percent bias averaged across all 1000 simulations, 

the average within-simulation standard error of the 1000 estimates, the average mean 

squared error (MSE) which we calculated as  where Var (θ) is the 

Monte Carlo variance, and the percent coverage averaged across all 1000 simulations.

RESULTS

We present estimates from the simulation for in tables 1–6. For all parameter values we 

investigated, there was minimal to no bias in any estimators when we adjusted for both Z1 

and Z2. There were, however, varying degrees of bias in the covariate-adjusted 

subdistribution hazard ratios for J = 1 when we adjusted only for Z1. The percent bias was 

−14.8% in the base case (table 1; odds ratios for association between Zs and A, and cause-

specific hazard ratio for association between Zs and T = 2.0). Percent bias increased to 

−19.2 when the odds ratios for association between Zs and A increased from 2.0 to 4.0 (table 

2) and increased to −29.6 when the cause-specific hazard ratio for association between Zs 

and T increased from 2.0 to 4.0 (table 3). The bias remained when the cause-specific hazard 

ratio for A on T was set to 1.0 (null; table 4) and when the cause-specific hazard ratio for A 
on T was increased to 4.0 (table 5). Finally, in table 6, we present results from a simulation 

with strong associations between covariates Z1 and Z2 and A and the cause-specific hazard 
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ratios for T, to show that (although the set-up may be more extreme) there is bias in almost 

all the estimators adjusting only for Z1 (i.e. adjusting only for confounders specific to the 

event under study and ignoring confounders of the competing event). In table 6, the percent 

bias in the subdistribution hazard ratio jumped to −44.3, while it was 11.0 and 9.5 for the 

inverse probability of exposure weighted estimator of the subdistribution hazard ratio and 

cumulative incidence difference, respectively.

All estimators related to the subdistribution hazards (the covariate-adjusted subdistribution 

hazard ratio, inverse probability exposure weighted subdistribution hazard ratio, and the 

cumulative incidence function) were biased when the confounder of the effect of exposure 

on the competing event was omitted, although by far the most clinically meaningful bias was 

in the covariate-adjusted subdistribution hazard ratio.

DISCUSSION

Others have suggested that all the pertinent statistical estimands in the presence of 

competing risks (cumulative incidence function, subdistribution hazards and subdistribution 

hazard ratio) are derived from the cause-specific hazards.30 Therefore, given that the 

cumulative incidence function (and therefore the subdistribution hazards) are a function of 

all events (Equation 3), an imbalance in a covariate related to the exposure and a competing 

event would distort the difference in the cumulative incidence between exposed and 

unexposed groups. It is fairly straightforward to show mathematically that an unbiased 

estimator for any of the statistical estimands for a competing risks analysis requires 

adjustment for confounders of the effect of exposure on the competing event, in addition to 

the confounders of the effect of exposure on the event of interest. The reader may be 

disturbed by our demonstration that the competing risk estimands are biased when the cause-

specific hazard ratios are not, but previous work has shown that confounding can depend on 

the outcome parameter of interest.35 Furthermore, the cause-specific hazard ratios in our 

simulation were unbiased because the correct models were fit; in practice, correct model 

specification will never be assured. In a competing risk setting, the exposure may be 

associated with the probability of a particular event because (1) the exposure only directly 

causes or prevents the event of interest, (2) the exposure only causes or prevents the 

competing event, which subsequently indirectly permits or prevents the event of interest, or 

(3) the exposure both directly and indirectly causes or prevents the occurrence of the event 

of interest.

Cause-specific hazards interplay with one another and may produce unexpected results in 

the cumulative incidence function. In the simulation presented in this paper, we simulated 

cause-specific hazard ratios that were in opposite directions. However, if cause-specific 

hazard ratios are in the same direction for both the event of interest and the competing event, 

it is possible that the effect of exposure on the cumulative incidence function may be in the 

opposite direction.30 It is impossible to accurately predict the effect of an exposure on the 

cumulative incidence function based on a single cause-specific hazard ratio alone. Both 

cause-specific hazard ratios and cumulative incidence functions should be investigated in the 

presence of a competing risk.3

Lesko and Lau Page 7

Epidemiology. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In presenting results from our simulation, we have chosen to present the conditional risk 

curves and conditional risk differences. We have done this because it is not uncommon for 

analyses that include competing risks to ignore them and treat individuals who get the 

competing risk as censored. However, as stated earlier, interpretation of a conditional risk 

functions requires the assumption that somehow all the competing events could prevented 

without affecting the risk of the event of interest; in nearly every scenario, this assumption is 

unrealistic. We reiterate that estimating conditional risks is not appropriate or meaningful 

when competing risks are present.

To our knowledge, this is the first paper to address variable selection for competing risk 

analyses when causal inference is the goal of the inquiry. We have demonstrated that in order 

to have unbiased estimators in a competing risk analysis, the analysis should control for 

confounders of both the effect of exposure on the primary event and of the effect of exposure 

on the competing event. However, we have not addressed how to identify confounders of 

either or both relationships. In the Methods section we recalled criteria for confounder 

selection and briefly mentioned directed acyclic graphs (DAGs) as an aid favored by 

epidemiologists for confounder identification. DAGs are a representation of the researcher’s 

hypothesis about the causal relationships between exposure, the outcome of interest, and all 

of their common causes. Using graphical criteria to analyze the DAG leads to identification 

of a minimally sufficient set of variables to block all non-causal paths between exposure and 

the primary outcome of interest.17 While the extension of this strategy to a competing risk 

situation may seem trivial, there are no established rules for representing competing risks on 

a DAG. To illustrate bias in the presence of competing risks, several authors have drawn 

DAGs with two outcome nodes, one for the event of interest and one for the competing 

event, with a box around the competing event indicating that a typical cause-specific 

analysis is restricted to those who do not experience the competing event.39,40 An analysis 

that censors individuals who experience the competing event and estimates conditional risks 

might be represented by drawing a box around the competing event. However, it is unclear 

how to alter the DAG when conducting a competing risk analysis. Indeed, including separate 

nodes for the event of interest and the competing event may cause researchers to forget that 

the two nodes cannot be separated because they are often two halves of the same coin.19,41 

On such a DAG, one may be tempted to remove the box around the competing event, but 

then the DAG appears to indicate that , which we demonstrated not to be the 

case in our simulation. Perhaps researchers would do better to include a node on the DAG 

that is the composite outcome, because that would generally lead us to the correct 

conclusion about what covariates are confounders (all covariates that are confounders of any 

exposure-outcome cause-specific effect). A complete discourse on DAGs in the presence of 

competing risks is beyond the scope of this paper.

Both the cumulative incidence functions and the cause-specific hazard ratios provide insight 

into the mechanisms at work in the presence of competing risks, and both should be 

estimated. When the goal of an investigation is causal inference, and there is a competing 

event that may preclude occurrence of the event of interest, we have demonstrated that 

confounders of the effect of the exposure on both the primary event and the competing event 

must be controlled. The resultant bias from failing to account for confounders of the 
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exposure effect on the competing event is likely to increase with increasing incidence of the 

competing event, although the direction of the bias is generally unpredictable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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