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Abstract

Background—Epidemiologic studies that aim to estimate a causal effect of an exposure on a
particular event of interest may be complicated by the existence of competing events that preclude
the occurrence of the primary event. Recently, many articles have been published in the
epidemiologic literature demonstrating the need for appropriate models to accommodate
competing risks when they are present. However, there has been little attention to variable
selection for confounder control in competing risk analyses.

Methods—We employ simulation to demonstrate the bias in two variable selection strategies:
include covariates that are associated with the exposure and 1) which change the cause-specific
hazard of any of the outcomes; or 2) which change the cause-specific hazard of the specific event
of interest.

Results—We demonstrated minimal to no bias in estimators adjusted for confounders of
exposure and either the event of interest or the competing event, but bias of varying magnitude in
almost all estimators adjusted only for confounders of exposure and the primary outcome.

Discussion—When estimating causal effects for which there are competing risks, the analysis
should control for confounders of both the exposure—primary outcome effect and of the exposure—
competing outcome effect.

In many epidemiologic studies, the event of interest may be precluded by another event,
termed a competing risk. The majority of the epidemiologic literature on competing risk has
focused on explaining why and how competing risks should be incorporated into
epidemiologic analyses,1~> prediction,8 inference when the cause of failure is misclassified
or incompletely recorded.” However, there has been little attention given to estimation of
causal effects in the presence of competing risks, and in particular to variable selection for
confounder control.

Recent work on model specification in the presence of competing risks has focused on the
development of stepwise variable selection procedures based on information criterion,® score
statistics, or various penalized likelihoods.1%11 However, the field of epidemiology has
largely moved away from automated variable selection procedures,12-15 in favor of the use
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of background knowledge encoded in directed acyclic graphs (DAGS) to identify a set of
variables sufficient for confounder control.1>-17 Our objective was to show that estimation
of the cumulative incidence function will be biased when a confounder of the effect of
exposure on a competing event is ignored. Furthermore, estimands based upon the
cumulative incidence function, including the subdistribution proportional hazard ratio will
also be biased.18 We illustrate the bias with a simulation.

METHODS

Motivating example

Imagine an observational study of a hypothetical drug that alleviates symptoms of chronic
obstructive pulmonary disease (COPD) but also increases mortality. A standard analysis
might censor individuals when they die or report the incidence of a composite outcome.
However, censoring individuals who die will overestimate the probability of chronic
obstructive pulmonary disease (COPD) remission when deaths are not rare. Furthermore, it
does not make sense to combine remission (a desirable outcome) with death (an undesirable
outcome). Even when both outcomes are desirable or undesirable, analyzing a composite
outcome results in a loss of information.1® An analysis that explicitly incorporates
competing risks (e.g., one that employs the Fine and Gray subdistribution hazard model8 or
that estimates the cumulative incidence function non-parametrically®) accounts for both the
“direct” effect of the drug on the probability of COPD remission (because treated individuals
have a higher hazard of COPD remission), and the “indirect” effect (because individuals
who die are no longer at risk for COPD remission).

In the presence of competing risks, there are at least as many causal estimands as there are
competing events. For example, denote the difference in the cumulative incidence of
remission due to drug, P(7,—y<t, J,—1=1) — P(T,—o<t, Ju—o=1)and the difference in
the cumulative incidence of death due to drug,

P(Ty—1<t, Jo=1=2) — P(Tu=0<t, Ju—o=2)- Here, P(-) denotes probability; 7'is the
composite event time; A denotes treatment type; and Jdistinguishes event types. 7;and J,
denote composite event time and event type that we would have seen under treatment a (that
is, potential outcomes). Following convention, we denote random variables with capital
letters and possible realizations of random variables with lower case letters. We borrow
potential outcomes notation from Cole et al (2015).1 In eAppendix A, we present an
extension of potential outcomes notation that combines an event indicator with an event type
indicator at a particular point in time, which allows incorporation of Greenland’s causal
response types to the competing risk setting.2°

Brief introduction to competing risk

Complete introductions to competing risks have previously been published.1:2:21
Nevertheless we reiterate some concepts for completeness. We limit discussion to two
competing events; however, methods are easily extended to settings with more than two
competing events.
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The cumulative incidence function is perhaps the most natural estimand in the presence of
competing risks and is defined:

Fi=P(T'<t,J=j) Equation 1

where F;" is used to denote the cumulative incidence function for the J event type, j=1,
...,J; Tand Jare defined as above; and the asterisk distinguishes the cumulative incidence
function from the conditional risk function estimated in standard survival analyses (e.g.,
complement of a Kaplan-Meier curve). Causal estimates can be generated by estimating the
cumulative incidence function for each level of exposure, then taking a difference or ratio of

those estimates, e.g., F;,_; — F},—,. Contrast the cumulative incidence function with the
conditional risk (where competing events are censored):

F;=P(I" < t) Equation 2

In (2), 7' denotes time to event /. We explicitly embrace the term conditional risk function??
to highlight the assumption embedded in the risk function when competing events are
censored; the conditional risk function is the risk of the outcome in a world in which a//
competing risks have been eliminated, (without changing the cause-specific hazard of the
event of interest). Imagining an intervention that would result in such a world is typically
difficult, if not impossible. This assumption is also inherent in our definition of 7. 7 does
not exist for people who get the competing event; estimators of the conditional risk impute 7
" for people with the competing risk when they are treated as censored, despite the fact that
by definition experiencing a competing event precludes the occurrence of event j. Therefore
the conditional risk is rarely of interest because of its lack of grounding in reality.

Furthermore, in the presence of competing risks, Z 'j’:le may exceed 1, violating the rule
of coherence.23

The cumulative incidence function is a function of the cause-specific hazards:24:25
Fr(t) =[4S(u=)h;(u)du
J
sz)exp (—fg_Zh](x)dT) hj(u)du
j=1

Equation 3

where S(«~) is the survival function from all events (i.e., from the composite outcome) as it
approaches v from the left and /(4 denotes the cause-specific hazard for outcome jat time &

P(t<T < t+At, J=4|T>t
hj(t):lim{ (t<T < +At"] JT=1)

} Equation 4
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The cause-specific hazard includes individuals who have survived from all events to time ¢in
the risk set. Informally, (3) shows that the cumulative incidence function for event jis
obtained by partitioning the cumulative incidence function for the composite event
according to the relative magnitude of the cause-specific hazards. Importantly, one can see
that the cumulative incidence function relies on the survival function, which is itself a
function of the sum of the cause-specific hazards for both the primary event of interest and
the competing event(s).

Because there is not a one-to-one relationship between the cause-specific hazard ratios and
the relative cumulative incidence functions, Fine and Gray introduced the subdistribution
hazards model. The risk set for the subdistribution hazard includes individuals who have
survived until time #and those who failed due to the competing event prior to £18 The
subdistribution hazard is defined:18

. [P[t<T < t+At, J=j|T>tU(T<tNJ # j)]
A t Equation 5

The cumulative incidence function is directly estimable from the subdistribution hazards:18

Fi(t)=1—exp <—f6)\j(u)du> Equation 6

In the presence of confounding, the cumulative incidence functions for each level of
exposure can be estimated nonparametrically (or semiparametrically, depending on the
formulation of the weights) by estimating cause-specific or subdistribution hazards and
applying (3) or (6) above, weighting each observation by the inverse probability of
exposure.28 CIFsCumulative incidence functions could also be estimated
parametrically.2’~29 Interpretation of the these functions should be complemented by
examination of the cause-specific hazards for a//events.3 If the exposure effects on the
cause-specific hazard ratios are in the same direction for competing events, the exposure
effects on the cumulative incidence functions are less predictable.30

The cause-specific hazards can be estimated from a Cox proportional hazards model,
censoring individuals who fail with the competing event:

hj(t]2)=hoj (t)exp (=" B;)  Equation 7

where /(2 is the unspecified baseline cause-specific hazard, z a vector of covariates, and B;
the corresponding vector of regression coefficients such that exp(8,) are cause-specific
hazard ratios associated with z. In the subdistribution proportional hazards model individuals
who experience the competing event remain in the risk set until the end of follow-up and
censored individuals are partitioned across the cumulative incidence functions for all the
event types:
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Aj(H2)=Xo;(t)exp(2"6;)  Equation 8

where Agjis the unspecified baseline subdistribution hazard and ¢ the corresponding vector
of regression coefficients such that exp(g) are subdistribution hazard ratios associated with
z. Confounders can be included in either model, resulting in a covariate conditional hazard
ratio due to exposure, or confounding can be controlled with inverse probability exposure
weights, resulting in a marginal hazard ratio due to exposure. The covariate conditional and
marginal hazard ratios may not be equal because the hazard ratio is a non-collapsible
estimator.31

Variable selection strategies

Simulation

When etiologic or interventional parameters are of interest, the purpose of variable selection
is to block non-causal pathways between the exposure and outcome under study,14-16.32
rather than to maximize a model’s predictive ability. Strategies put forward for variable
selection for confounder control, include identifying a minimally sufficient set of covariates
for d-separation between exposure and outcome on a directed acyclic graphl” (considered in
more detail in the Discussion) and identifying confounders based on a set of criteria. One set
of criteria for identifying confounders includes: confounders must be 1) associated with
exposure, 2) either a true cause or a surrogate of a true cause of the outcome, and 3) not
affected by exposure.33:34 Another set of criteria states that if any set of covariates suffice to
control confounding, selecting all pretreatment variables that cause exposure or cause the
outcome will also control confounding.32 However, existing strategies only reference the
relationship between covariates and one outcome; to our knowledge, there is no guidance on
how to handle covariates associated with exposure and competing outcomes. One strategy
for selecting covariates for confounder control would be to include confounders of only the
outcome of interest. A second, more inclusive strategy would be to also include confounders
of the competing event.

We simulated 1,000 cohorts of 1,000 individuals each, in which we estimated the effect of a
dichotomous exposure, A on an outcome of interest, j= 1, in the presence of a competing
event, j= 2, and two dichotomous confounders: .2, a confounder of the cause-specific hazard
ratio for Aon j=1, and 2, a confounder of the cause-specific hazard ratio for Aon j=2
(henceforth, a confounder of A on j= 1land a confounder of A on j= 2, respectively).
Discussions of confounders are typically not specific as to the estimand of interest, but
previous work has shown that presence of confounding can depend on the outcome
parameter of interest.3® In this paper we generate confounding by simulating variables that
change the odds of the exposure log-linearly and that change the cause-specific hazard of
one of the two simulated events (but not the other) log-linearly. Details of the simulated data
structure are provided in eAppendix B.

To establish values for the truth for each estimand, we generated deterministic potential
outcomes for the 1,000,000 individuals across all simulations and cohorts, then calculated
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the value of each estimand using the 2,000,000 potential outcomes (one for each of the two
treatments).36 Because the hazard ratio is non-collapsible,31:35 we calculated true marginal
and covariate conditional hazard ratios to contrast with inverse probability exposure
weighted and covariate conditional estimators, by including only exposure, or exposure and
covariates, respectively, in models fitted on the simulated potential outcomes. To calculate
cause-specific hazard ratios, we fit Cox proportional hazards models3” and censored
individuals experiencing the competing event. To calculate subdistribution hazard ratios, we
fit Cox proportional hazards models and set follow-up time to the end of follow-up for
individuals experiencing the competing event; this is the subdistribution proportional
hazards model in the absence of censoring.1® We assumed no censoring in our simulation, as
it would have complicated calculations without changing any conclusions. We calculated the
true conditional risk functions and cumulative incidence function nonparametrically using
the simulated potential outcomes.

In each simulated cohorts, we estimated the cause-specific hazard ratio and subdistribution
hazard ratio from a Cox model and Fine and Gray model, respectively. We controlled for
different sets of confounders using covariate adjustment and inverse probability exposure
weights.38 The conditional risk function and cumulative incidence function were estimated
using inverse probability exposure weights,28 and incidence was read off of those curves at ¢
=200 to estimate risk differences. Calculated risk differences at other times yielded
substantively similar results; we present risk differences at only one time point (the end of
follow-up) to simplify results. Within-simulation standard error for the inverse probability
exposure weighted estimator (for calculating 95% confidence interval coverage) of the
cause-specific and subdistribution hazard ratios was estimated using the robust variance.
Within-simulation standard error for risk differences were estimated using the standard
deviation of estimates from 200 bootstrap samples, sampled with replacement within each
simulated cohort. We report the bias and percent bias averaged across all 1000 simulations,
the average within-simulation standard error of the 1000 estimates, the average mean

squared error (MSE) which we calculated as [Bz‘as(é, 9)]2+ Var(0) where Var(6) is the
Monte Carlo variance, and the percent coverage averaged across all 1000 simulations.

We present estimates from the simulation for in tables 1-6. For all parameter values we
investigated, there was minimal to no bias in any estimators when we adjusted for both 2;
and 2. There were, however, varying degrees of bias in the covariate-adjusted
subdistribution hazard ratios for /= 1 when we adjusted only for Z;. The percent bias was
-14.8% in the base case (table 1; odds ratios for association between Z5 and A, and cause-
specific hazard ratio for association between s and 7= 2.0). Percent bias increased to
-19.2 when the odds ratios for association between 2 and A increased from 2.0 to 4.0 (table
2) and increased to —29.6 when the cause-specific hazard ratio for association between 25
and 7 increased from 2.0 to 4.0 (table 3). The bias remained when the cause-specific hazard
ratio for A on 7was set to 1.0 (null; table 4) and when the cause-specific hazard ratio for A
on 7 was increased to 4.0 (table 5). Finally, in table 6, we present results from a simulation
with strong associations between covariates 2; and 2 and A and the cause-specific hazard
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ratios for 7, to show that (although the set-up may be more extreme) there is bias in almost
all the estimators adjusting only for Z; (i.e. adjusting only for confounders specific to the
event under study and ignoring confounders of the competing event). In table 6, the percent
bias in the subdistribution hazard ratio jumped to —44.3, while it was 11.0 and 9.5 for the
inverse probability of exposure weighted estimator of the subdistribution hazard ratio and
cumulative incidence difference, respectively.

All estimators related to the subdistribution hazards (the covariate-adjusted subdistribution
hazard ratio, inverse probability exposure weighted subdistribution hazard ratio, and the
cumulative incidence function) were biased when the confounder of the effect of exposure
on the competing event was omitted, although by far the most clinically meaningful bias was
in the covariate-adjusted subdistribution hazard ratio.

DISCUSSION

Others have suggested that all the pertinent statistical estimands in the presence of
competing risks (cumulative incidence function, subdistribution hazards and subdistribution
hazard ratio) are derived from the cause-specific hazards.3? Therefore, given that the
cumulative incidence function (and therefore the subdistribution hazards) are a function of
all events (Equation 3), an imbalance in a covariate related to the exposure and a competing
event would distort the difference in the cumulative incidence between exposed and
unexposed groups. It is fairly straightforward to show mathematically that an unbiased
estimator for any of the statistical estimands for a competing risks analysis requires
adjustment for confounders of the effect of exposure on the competing event, in addition to
the confounders of the effect of exposure on the event of interest. The reader may be
disturbed by our demonstration that the competing risk estimands are biased when the cause-
specific hazard ratios are not, but previous work has shown that confounding can depend on
the outcome parameter of interest.3% Furthermore, the cause-specific hazard ratios in our
simulation were unbiased because the correct models were fit; in practice, correct model
specification will never be assured. In a competing risk setting, the exposure may be
associated with the probability of a particular event because (1) the exposure only directly
causes or prevents the event of interest, (2) the exposure only causes or prevents the
competing event, which subsequently indirectly permits or prevents the event of interest, or
(3) the exposure both directly and indirectly causes or prevents the occurrence of the event
of interest.

Cause-specific hazards interplay with one another and may produce unexpected results in
the cumulative incidence function. In the simulation presented in this paper, we simulated
cause-specific hazard ratios that were in opposite directions. However, if cause-specific
hazard ratios are in the same direction for both the event of interest and the competing event,
it is possible that the effect of exposure on the cumulative incidence function may be in the
opposite direction.30 It is impossible to accurately predict the effect of an exposure on the
cumulative incidence function based on a single cause-specific hazard ratio alone. Both
cause-specific hazard ratios and cumulative incidence functions should be investigated in the
presence of a competing risk.3
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In presenting results from our simulation, we have chosen to present the conditional risk
curves and conditional risk differences. We have done this because it is not uncommon for
analyses that include competing risks to ignore them and treat individuals who get the
competing risk as censored. However, as stated earlier, interpretation of a conditional risk
functions requires the assumption that somehow all the competing events could prevented
without affecting the risk of the event of interest; in nearly every scenario, this assumption is
unrealistic. We reiterate that estimating conditional risks is not appropriate or meaningful
when competing risks are present.

To our knowledge, this is the first paper to address variable selection for competing risk
analyses when causal inference is the goal of the inquiry. We have demonstrated that in order
to have unbiased estimators in a competing risk analysis, the analysis should control for
confounders of both the effect of exposure on the primary event and of the effect of exposure
on the competing event. However, we have not addressed how to identify confounders of
either or both relationships. In the Methods section we recalled criteria for confounder
selection and briefly mentioned directed acyclic graphs (DAGS) as an aid favored by
epidemiologists for confounder identification. DAGs are a representation of the researcher’s
hypothesis about the causal relationships between exposure, the outcome of interest, and all
of their common causes. Using graphical criteria to analyze the DAG leads to identification
of a minimally sufficient set of variables to block all non-causal paths between exposure and
the primary outcome of interest.1” While the extension of this strategy to a competing risk
situation may seem trivial, there are no established rules for representing competing risks on
a DAG. To illustrate bias in the presence of competing risks, several authors have drawn
DAGs with two outcome nodes, one for the event of interest and one for the competing
event, with a box around the competing event indicating that a typical cause-specific
analysis is restricted to those who do not experience the competing event.3%40 An analysis
that censors individuals who experience the competing event and estimates conditional risks
might be represented by drawing a box around the competing event. However, it is unclear
how to alter the DAG when conducting a competing risk analysis. Indeed, including separate
nodes for the event of interest and the competing event may cause researchers to forget that
the two nodes cannot be separated because they are often two halves of the same coin.1941
On such a DAG, one may be tempted to remove the box around the competing event, but
then the DAG appears to indicate that 7, | v, j=1, which we demonstrated 7ot to be the
case in our simulation. Perhaps researchers would do better to include a node on the DAG
that is the composite outcome, because that would generally lead us to the correct
conclusion about what covariates are confounders (all covariates that are confounders of any
exposure-outcome cause-specific effect). A complete discourse on DAGs in the presence of
competing risks is beyond the scope of this paper.

Both the cumulative incidence functions and the cause-specific hazard ratios provide insight
into the mechanisms at work in the presence of competing risks, and both should be
estimated. When the goal of an investigation is causal inference, and there is a competing
event that may preclude occurrence of the event of interest, we have demonstrated that
confounders of the effect of the exposure on both the primary event and the competing event
must be controlled. The resultant bias from failing to account for confounders of the
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exposure effect on the competing event is likely to increase with increasing incidence of the
competing event, although the direction of the bias is generally unpredictable.
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