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ABSTRACT
A universal vaccine that provides long-lasting protection from both epidemic and pandemic influenza
viruses remains the “holy grail” of influenza vaccine research. Though virus neutralization assays are the
current benchmark of measuring vaccine effectiveness, it is clear that Fc-receptor functions can drastically
improve the effectiveness of antibodies and vaccines in vivo. Antibodies that kill virus-infected cells and/or
elicit an antiviral environment, termed antibody-dependent cellular cytotoxicity (ADCC)-mediating
antibodies, provide a link between the innate and adaptive immune response. New technologies allowing
the rapid isolation and characterization of monoclonal antibodies (mAb) have yielded a plethora of mAbs
which target conserved regions of influenza virus, such as the hemagglutinin (HA) stem region. Many such
mAbs have been used to gain a better understanding of Fc-receptor functions in vivo. In parallel, several
studies have characterized the induction of polyclonal ADCC following influenza vaccination and infection
in humans. Taken together, these studies suggest that ADCC-mediating antibodies (ADCC-Abs)
significantly contribute to host immunity against influenza virus and may be a mechanism to exploit for
rational vaccine and therapeutic design. We discuss recent research on influenza-specific ADCC and
potential future avenues to extend our understanding.
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Introduction

Seasonal influenza epidemics and pandemics result in exten-
sive global morbidity and mortality in humans. Seasonal
influenza viruses infect approximately 10–20% of world’s
population and result in 250–500,000 deaths per year, with
deaths occurring disproportionately in lower income coun-
tries.1 Influenza also imposes an immense economic and
public health burden, with total spending estimated to be in
excess of $US 26.8–87.1 billion per year in the US alone.2

Yearly influenza vaccination strategies act to reduce the
severity influenza epidemics on the human population.
Unfortunately, the effectiveness of seasonal influenza vac-
cines is significantly reduced by the continual accumulation
of amino acid substitutions and differential glycosylation
patterns at regions targeted by the vaccine-mediated anti-
body response, combined with waning serological concen-
trations of protective antibodies in each individual over
time.3,4 This very effective immune evasion strategy by the
virus necessitates globally coordinated strategies to actively
survey for “drifted” virus strains and yearly efforts to refor-
mulate the vaccine with antigenically relevant strains. Since
seasonal influenza vaccines provide limited protection
against novel influenza subtypes, substantial resources and
effort have been expended to develop broadly protective
vaccines and therapeutics effective against multiple subtypes

of influenza viruses. Such strategies include, but are not
limited to, eliciting antibodies targeting conserved regions
of influenza surface proteins HA-stem,5-8 M2 protein,9-14

NA protein.15,16 as well as T cell-based vaccine approaches17

A more detailed understanding of the immunological mech-
anisms of vaccine-mediated protection will be beneficial for
rational immunogen and vaccine design.

Influenza vaccine effectiveness studies have generally
focused on the induction of antibodies that mediate neutraliza-
tion, a proven correlate of protection. However antibodies that
target the HA-head region, while potently neutralizing, gener-
ally only recognize related viruses within a narrow range of
antigenic diversity, whereas, antibodies that bind to the con-
served stem region have been found to provide broadly cross-
reactive immunity, but are less potent at neutralizing virus in
vitro.18,19 In addition to neutralization, influenza-specific anti-
bodies may mediate a number of Fc-receptor dependent func-
tions, including complement-mediated lysis,20-24

phagocytosis,25,26 and ADCC.27,28 Indeed, the Fc-receptor
binding activity of antibodies has been shown to increase the
protective efficacy of broadly neutralizing antibodies and has
been associated with protection against experimental influenza
challenge for a number of candidate universal vac-
cines.5,6,27,29,30 In this review, we highlight recent key studies
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on the characterization of targets of influenza-specific ADCC
and discuss potential future avenues of investigation.

The mechanisms of ADCC function

ADCC relies upon cross-talk and synergism between the innate
and adaptive immune response. Innate immune cells such as
NK cells, macrophages and neutrophils possess Fc-receptors
(FcRs) that can engage the Fc-region of particular antibody iso-
types. Bound antibodies provide the specificity lacking from
innate immune cells, allowing them to recognize pathogens
specifically through the engagement of their Fc receptors. Anti-
body Fc regions can engage a combination of either activating
FcRs (murine; FcgRI, FcgRIII, FcgRIV and human; FcgRI and
FcgRIIIa) or inhibitory FcRs (murine; FcgRIIb and human;
FcgRIIa/b/c) which are expressed on the surface of immune
cells.31 The ligation of a combination of these activating or
inhibitory FcRs determines the overall cellular effector func-
tion. In particular, FcyRIIIa (CD16) receptor (the ortholog of
the mouse FcgRIV receptor which has the highest affinity for
IgG2a) found on NK cells can bind to the Fc-region of a sur-
face-bound Ab (IgG1 and IgG3). Crosslinking of the CD16
receptor leads to phosphorlyation of the C-terminal ITAM to
activate the downstream calcium-dependent signaling path-
way.32 This results in the release of pre-formed granzyme B
and perforin from endosomes, which together facilitate DNA
fragmentation and apoptosis of the target cell. Activation of
innate immune cells such as NK can have a number of other
indirect consequences including the secretion of antiviral cyto-
kines and chemokines, including IFN-g and TNF, which have
important antiviral and immunopathological properties.

Influenza ADCC following vaccination and infection
Antibodies that mediate cytotoxicity have been studied in chil-
dren and adults for many years. Early studies by Greenberg et
al. found that lymphocytes from subjects vaccinated with inac-
tivated influenza vaccine or experimentally inoculated with live
influenza viruses developed cytotoxicity toward virus infected
target cells via an antibody-dependent mechanism.33,34 Subse-
quent studies by Hashimoto et al. found that NK cells (HNK-
1C cells) present in PBMCs mediated cytotoxicity to
virus-infected target cells in the presence of sera from children
after vaccination (either inactivated or live-attenuated influenza
vaccine (LAIV)) or following natural influenza infection.35

Additionally, Hashimoto and colleagues showed that immuni-
sation with a LAIV was more durable in inducing ADCC-medi-
ating antibodies (ADCC-Abs) whereas the inactivated influenza
vaccine induced ADCC-Ab only in some of the children.35 In
contrast, more recent studies have found that unlike TIV (triva-
lent influenza vaccine), which generate a modest rise in ADCC-
Ab titers in children, LAIV failed to generate significant
changes in ADCC-Ab titers.36,37 It is likely that ADCC-Abs are
present early during life, with cord blood plasma from new-
borns shown to have detectable ADCC-Ab titers.38 Broadly
cross-reactive ADCC-Abs have been detected against antigeni-
cally novel strains such as H5N1, H7N9 and H1N1pdm09
(before the 2009) early during infancy, even in the absence of
any detectable neutralizing antibodies to these viruses.22,39-42

These cross-reactive ADCC-Ab titers increase with age, with

higher levels found in older adults than infants.22,40,41,43 The
generation of broadly cross-reactive ADCC-Abs is likely a
result of repeated influenza infections and vaccinations
throughout life. Cross-reactive ADCC-Ab in the absence of any
detectable neutralizing antibodies, suggests that ADCC-Ab
may target regions conserved and not classically neutralizing.
This should be of great interest to understand potential strate-
gies for universal immunogen design.

The generation and protective potential of cross-reactive
ADCC-Abs has been studied in both humans and non-human
primates. Macaques administered either seasonal H1N1,
H1N1pmd09 or H3N2 generate robust serological titers of
ADCC-Abs following infection.44-46 However, detecting
ADCC-Abs following confirmed influenza infection in humans
is confounded by the rapid boost in ADCC-Abs before patients
presenting to the clinic with symptoms. To this end, we
observed a modest increase in homologous ADCC-Ab titers
when adult subjects were experimentally infected with influ-
enza virus,36,47 with increases in ADCC-Ab titers associated
with higher virus replication and symptom score.36 There was
no correlation between pre-existing homologous ADCC-Ab
titers and subsequent viral load or clinical symptoms following
challenge.36 However, when subjects were stratified based upon
if they had a “high” or “low” baseline ADCC titers, subjects
with high ADCC titers before influenza challenge had lower
viral loads and significantly lower total symptom scores. It
should be noted that this study used a limited cohort size, with
only 3 individuals with ADCC-Ab titers � 320. Despite this,
these findings provide a good rationale to initiate larger cohort
based studies to clarify if pre-existing ADCC-titers contribute
to protection. Studies such as these will provide useful data to
inform therapeutic and vaccine design, as well as informing
licensing criteria.

The ability of influenza vaccines to induce robust ADCC-
Abs has been investigated in some detail. Vaccination of non-
human primates with 2 doses of TIV failed to induce detectable
ADCC-Ab, whereas influenza infection with either H1N1 or
H3N2 was capable of inducing robust ADCC-Abs. In contrast,
studies in human adults have shown that pre-existing cross-
reactive HA-specific ADCC-Abs can be boosted following sea-
sonal inactivated influenza vaccination,36,43,48-50 in most cases
independent of increases in neutralizing antibodies. Priming of
the ADCC-Ab response, before inactivated vaccine administra-
tion, seems to be important for the generation of robust
ADCC-Abs; with the generation of robust H7-specific ADCC-
Ab responses boosted by prior H7N9 pLAIV vaccination.51

Vaccination of adults with seasonal TIV boosts responses to a
number of antigenically distinct influenza subtypes.43,48 includ-
ing drifted strains49 In contrast, vaccination of adults with
LAIV alone fails to induce increases in ADCC-Ab titers.36,51

ADCC-Ab have been also shown to be generated following vac-
cination with a number of novel vaccine constructs including
MVA52 and stable trimeric stem constructs.5 An interesting
study performed by Goodier et al. suggests that the CD16
receptor on NK cells is significantly downregulated following
TIV partially via ADAM17 matrix metalloprotease mediated
cleavage.53 This data suggests that vaccination may increase the
level of ADCC-Abs available, however, circulating NK cells (or
other CD16 expressing cells) may have a reduced ability to
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mediate ADCC upon influenza infection. That ADCC-Ab titers
can be elicited somewhat independently of neutralizing anti-
body titers suggests that standard neutralization assays used for
measuring vaccine immunogenicity and effectiveness provide
an accurate measurement of only a narrow subset of potentially
protective antibodies induced by vaccination.

A role for ADCC in protection by HA-specific antibodies

The advent of high-throughput molecular biological techniques
to clone and express human immunoglobulins has facilitated
the isolation of numerous monoclonal antibodies (mAbs) that
target a highly conserved region of the influenza HA stem.
Studies have shown that the Fc-receptor function of antibodies
is important for the potency and protective capacity of broadly
binding HA-specific antibodies in vivo.27,29 An initial study by
Corti et al. showed that mice administered the 3 mg/kg of a
FcR-binding deficient mutant of the neutralising FI6 mAb
(FI6-LALA) were 60% less likely to survive a lethal dose of PR8
virus compared with unmutated FI6 mAb.29 This observation
was subsequently confirmed by DiLillo et al. where mice sur-
vived lethal challenge with PR8 when administered 4 mg/kg of
FI6 in the context of a murine IgG2a Fc (an Fc shown previ-
ously to be associated with ADCC function in mice31) but suc-
cumbed to infection when mice were administered the an IgG1
variant of FI6 (not ADCC capable).27 DiLillo and colleagues
went on to confirm this result was FcgR-dependent, by show-
ing the protection afforded by FI6- IgG2a was abolished when
administered to FcerIg¡/¡ deficient mice.27 Using the several
alternative broadly neutralizing stem-antibodies, they showed
that FcgR binding activity was critical for the potent protection
provided by broadly neutralizing stem-mAbs in vivo. In partic-
ular, a 6F12 DA265 mutant mAb (which lacked Fc-receptor
binding activity), had to be administered at concentrations
>16 mg/kg for protection of mice from lethal challenge
whereas the unmodified IgG2a form provided protection at
only 4 mg/kg. These experiments highlight Fc receptor function
underpins the protective potency of stem-specific antibodies.

A surprising finding from experiments performed by DiLillo
and colleagues was that stem-specific mAbs could engage FcRs
and mediate ADCC activity whereas head-specific antibodies
(binding canonical sites surrounding the receptor binding site)
were limited in their ADCC capacity.27,54 A number of recent
studies confirmed this result using in vitro ADCC assays
whereby numerous stem-specific mAb can induce robust
ADCC30 whereas, head-specific, HAIC antibodies are not capa-
ble of inducing ADCC-activity.55-57 In particular, Leon et al.
elegantly demonstrated, using FLAG-epitopes inserted into
either the stem or head region of the influenza HA, that anti-
FLAG antibodies binding within the stem-region induce 2–4-
fold higher ADCC than the same antibodies binding within the
HA head region (adjacent to the sialic acid binding site).55 Fur-
thermore, antibodies that mediate HAIC activity are capable of
antagonizing the ability of stem-specific antibodies to mediate
ADCC. He et al. showed using NK cell lines and primary
human NK cells that ADCC-induced by stem-specific antibody
(CR8020) is reduced in the presence of an HAIC HA-specific
antibody (C05). Several groups have performed competitive
titrations with stem-specific and head-specific mAbs, showing

that HAIC head-specific antibodies inhibit in vitro ADCC
induction.55-57 These studies also highlight that ADCC induc-
tion by a polyclonal IgG can be inhibited by the addition of a
HAIC HA-specific antibody. In particular, experiments by Cox
et al. have shown that the presence of high titers of HAI anti-
bodies or the addition of mAbs with HAI activity to sera from
vaccinees can dramatically inhibit ADCC induction. The bind-
ing of head-specific antibodies does not directly prevent the
binding of stem-specific antibodies to HA56 however, mutation
of HA residues critical to sialic acid binding (Y108F HA or
K195F HA,) has been shown to lead to a marked reduction in
ADCC activity. This suggests that the sialic acid binding activ-
ity of HA is imperative for stem-specific ADCC activity. In
addition, recent data from Mullarkey et al. have extended this
observation to show that stem-specific mAbs can induce Fc-
dependent ROS release and phagocytosis by neutrophils,
whereas head-specific mAbs could not.25 It is not clear at pres-
ent whether sialic acid binding is stabilizing the HA protein
conformation or whether alternative co-receptor interactions
between HA and effector cells are augmenting ADCC activity.
These results have wide implications for vaccination strategies
that aim to generate stem-specific antibodies (a summary of
this is shown in Fig. 1A).

The inability of head-specific mAbs to mediate effective
ADCC is still contentious. It is clear that strain-specific anti-
bodies with HAI activity induce lower ADCC activity and can
even antagonize stem-specific ADCC activity.55-57 However
there exists some broadly conserved epitopes within the HA-
head region that are non-neutralizing but facilitate potent
ADCC activity. The study by DiLillo shows that 2 broadly neu-
tralizing anti-head mAbs (4G05 1 mg/kg and 1F05 4 mg/kg)
provided protection from lethal Neth/09 challenge.54 Addition-
ally, they also show that 3 non-neutralizing, head-specific
mAbs (1A01, 1A05 and 4G01) can similarly protect from
Neth/09 lethal challenge in an FcR mediated manner. This is
somewhat contrary to in vitro data by He et al. where 2 HA
head-binding antibodies (FEE8 and 5E02) had diminished
ADCC activity using a FcgRIV reporter cell assay. It is clear
that in addition to the preliminary studies to date, a compre-
hensive approach combining detailed antigenic characteriza-
tion of mAbs with in vivo passive transfer studies is necessary
to conclusively define the capacity for particular epitopes in the
HA globular head to induce ADCC activity and provide protec-
tion. Such an antigenic map of ADCC antigenicity would be
invalable for vaccine design to target broadly conserved non-
neutralizing regions of the influenza head region.

ADCC to other viral proteins
While HA epitopes have been extensively studied, other influ-
enza proteins can also be targeted by ADCC-Abs. Hashimoto
et al. first described the surface glycoprotein NA as a target of
ADCC over 30 y ago.35 A recent study by DiLillo and colleagues
confirmed that broadly neutralizing NA-specific mAbs, like
broadly neutralizing HA-specific antibodies, also require Fc-
receptor interactions to mediate protection in vivo.54 Concur-
rently, He et al. used an in vitro ADCC reporter assay to show
that NA-specific antibodies can only induce modest ADCC,
but could cooperatively enhance ADCC activity when com-
bined with HA stalk antibodies.55 Further, there evidence that
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both influenza infection and vaccination with TIV can induce
low levels of NA-specific ADCC-Abs.36,58 Indeed, anti-NA anti-
bodies may be an important component of the polyclonal
ADCC response to influenza, which in combination with HA-
specific antibodies, exert pressure on influenza virus to undergo
significant antigenic drift. Combinatoral strategies simulta-
neously targeting conserved non-neutralizing HA-specific and
NA-specific epitopes may elicit synergistic humoral immunity
to maximise vaccine-elicited protection, or in the case of mAbs,
novel therapeutics for influenza treatment.

There has been a renewed interest in ADCC-Abs targeting
highly conserved influenza antigens like nucleoprotein (NP)

and matrix proteins. NP is detectable on the surface of influ-
enza-infected cells in vitro,59,60 and may provide a conserved
target for ADCC-Abs. NP-specific antibodies have been shown
to provide robust Fc-mediated protection in mice passively
transferred antibodies before lethal heterosubtypic influenza
challenge.61,62 Supporting the idea that NP-specific antibodies
can mediate ADCC, recent work by our group has shown that
NP-specific antibodies from influenza immunized or infected
humans can crosslink FcgRIIIa and activate primary NK
cells.45,47 Terajima et al. found high titers of ADCC-Abs in chil-
dren and adults, but not infants, that could kill A549 target cells
infected with avian influenza viruses of the H7N9 and H5N1

Figure 1. Possible mechanisms of influenza-specific ADCC. (A) Differential ability of HA-specific mAbs to mediate ADCC. Mabs targeting regions of influenza virus HA
(stem or head region) have the ability to mediate ADCC (HAI¡ head-specific mAbs or stem-specific mAbs), cannot mediate ADCC (HAIC head-specific mAbs) or inhibit
ADCC (HAI C head-specific with stem-specific mAbs). (B) Potential role of neutralizing and non-neutralizing (including ADCC-Abs) antibodies against seasonal influenza
viruses that antigenically drift through influenza seasons. High concentractions of neutralizing antibodies against seasonal influenza virus entry before infection is estab-
lished, such as following "matched" seasonal influenza vaccination or homologous influenza control of virus infection. Moderate neutralization and cross-reactive
non-nuetralizing antibodies may lead to some infection but provide rapid control of virus infection and clearance, as maybe the case following vaccine miss-match or het-
erologous influenza infection. Low neutralizing and high cross-reactive non-neutralizing antibodies may not prevent influenza virus infection but reduce the severity of
influenza infection.
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subtypes.22 Further analysis showed that subjects had low to
undetectable ADCC-Ab titers against H7N9 HA or NA, but
high ADCC-Ab titers against H7N9 NP.40 A strong correlation
was observed between ADCC-Ab titers against H7N9 NP and
H7N9 virus-infected cells.40 Collectively, these findings suggest
that influenza infection and immunization induces cross-reac-
tive NP antibodies with the ability to mediate ADCC against a
wide array of influenza viruses.

Influenza matrix protein 2 (M2) also localizes to the mem-
brane of influenza-infected cells63 and the extracellular region
(M2e) is accessible to ADCC-Abs. There is mounting evidence
that M2e-specific antibodies require Fc-mediated effector func-
tions for protection. Infusion of M2e-specific immune serum
can protect wild type mice from lethal PR8 infection, while
FcgR knockout mice were not protected.64 Prophylactic and
therapeutic administration of a human M2e-specific mAb
(Z3G1) protected mice from lethal influenza challenge and
decreased viral load in the lungs through FcgR- and comple-
ment-dependent mechanisms.65 Simhadri et al. showed that
another human M2e-specific mAb (Ab1–10) can activate NK
cells and mediate antibody-dependent killing of M2 expressing
or influenza-infected cells.66 Furthermore, vaccination studies
in mice have demonstrated that M2e-based vaccines are capa-
ble of generating improved FcgR-mediated cross-protection
compared with commercially available split virion
vaccines.67-71 Broadly reactive ADCC-Abs targeting NP, M2e
or other conserved influenza proteins could therefore be impor-
tant targets in the development of a universally protective influ-
enza vaccines.

Effector cells mediating ADCC in vivo
Human NK cells, monocytes, macrophages and neutrophils all
express FcyRIII on the cell surface,72,73 and have the potential
to mediate ADCC in vivo. An early study by Hashimoto et al.
showed that human NK cells, monocytes and neutrophils can
mediate ADCC of influenza-infected cells ex vivo.35 NK- and
monocyte-mediated ADCC was rapidly detected within
2–6 hours, whereas neutrophil-mediated ADCC was detected
between 6–10 hours.35 NK cells induced ADCC of influenza-
infected target cells at lower antibody concentrations (detect-
able at a 1:45,000 serum dilution) than monocytes and neutro-
phils.35 Based on these findings, NK cells are seen as the
primary effector cells in vivo and the focus of most influenza
ADCC research to date. Degranulation of primary human and
non-human primate NK cells has been studied in vitro using a
variety of surrogate influenza ADCC assays.27,36,44,45,54,74,75 A
single FcgR (FcgRIIIa) is expressed on the surface of NK
cells,72,73 and the underlying mechanism of NK cell-mediated
ADCC through perforin/granzyme and Fas/FasL pathways is
well characterized.76,77 However, emerging evidence suggests
that other innate effector cells, with a broader range Fc func-
tions, also contribute to influenza-specific ADCC in vivo.

Neutrophils are the most abundant subset of blood leuko-
cytes in humans78 and they express a myriad of both activating
and inhibitory FcgRs (mice constitutively express mFcgRIIb,
mFcgRIII and mFcgRIV; humans constitutively express
hFcgRIIa, hFcgRIIb and hFcgRIIIb).72,73 A recent study has
shown that ROS production and ADP against influenza virus-
infected cells requires FcgR engagement.25 Though, there has

been limited studies on neutrophils mediating ADP and
ADCC, in the HIV, neutrophils have been shown to capable of
killing HIV-infected CD4 T-cells in an antibody-dependent
manner.79 Interestingly ROS production by neutrophils and
monocytes is not requirement for ADCC of HIV-infected
cells.80-82 Since, neutrophils lack granzymes and perforin83

other methods have been proposed for neutrophil-mediated
killing including neutrophil extracellular traps82 and secretion
of CD63C azurphilic granules.84 The ability of neutrophils to
mediate ADCC and their relative importance in controlling
influenza virus replication remains undefined and warrants fur-
ther investigation.

Monocytes and macrophages, like neutrophils, express a
variety of FcgRs on their cell surface (mice constitutively
express mFcgRI, mFcgRIIb, mFcgRIII and mFcgRIV; humans
constitutively express hFcgRI, hFcgRIIa, hFcgRIIb and
hFcgRIIIa).72,73 A human monocytic cell line, THP-1, has been
shown to mediate ADP of influenza virions and monocytes
may act to limit the spread of influenza infection in vivo.26 In
fact, ADP was recently proposed as the primary mechanism of
Fc-mediated protection by non-neutralizing HA-specific mAbs
in a mouse model of H7N9 infection.85 Monocyte-mediated
ADCC has also been described against both influenza- and
HIV-infected cells,35,82 but the precise mechanism remains elu-
sive. FcgRIIIa expression is essential for ADCC by human
monocytes86 and enhanced granzyme B expression leads to
enhanced monocyte-mediated ADCC,87 suggesting some
mechanistic conservation between monocyte and NK cell
ADCC pathways.

Studying the Fc-mediated effector functions of monocytes,
macrophages and neutrophils presents a unique challenge
because these cell types are capable of mediating both ADP and
ADCC. As such, experimental models of influenza infection
using LALA mutant mAbs, pan-FcgR blocking or knockout
animals and cell type depletion do not allow for the assessment
of ADCC independently from ADP. Future experiments should
make use of knockout (FcgRIV¡/¡ mice) or knockdown (RNAi
or FcgRIII blocking mAb) methods targeting specific FcgRs to
assess whether neutrophils, monocytes and macrophages par-
ticipate in the ADCC response to influenza infection.

Conclusions/future directions
The HAI assay has been a mainstay of research into humoral
immunity to influenza and remains an important correlate for
protection elicited by conventional influenza vaccines. However
an overreliance upon HAI titers has led to an underapprecia-
tion of antibodies that bind outside the canonical HAI epitopes
and the roles that they may play in limiting influenza aquisition
and disease severity. By binding to conserved epitopes outside
the canonical neutralizing epitopes of HA, or to viral antigens
with high conservation such as NA and NP, non-neutralizing
antibodies display much greater breadth of influenza recogni-
tion than classical neutralizing antibodies. As such, polyclonal
ADCC-Abs may act synergistically to kill influenza virus-
infected cells and provide broad protection from disease caused
by epidemic and pandemic influenza strains. A role for ADCC
as a correlate of protection from severe influenza infection is
supported by pre-clincal testing of current universal influenza
vaccine candidates, which protect by a FcR dependent
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mechanism.5,6 Moreover, this is not limited to influenza, with
studies following the HIV RV144 trial showing an association
of ADCC-Abs with protection from HIV acquisition.88 Indeed,
if potent strain specific protection is all that required, then con-
ventional seasonal vaccines are appropriate and can provide
robust HAI antibodies that are protective against the circulat-
ing “matched” seasonal influenza strains (Fig. 1B). But to pro-
vide robust protection against drift variants and novel
emergent influenza subtypes, novel vaccines that rely upon
non-neutralizing effector functions may be appropriate mecha-
nism to reduce the severity of illness in the human population
(Fig. 1B).

Despite the increasing interest in the field, there is still much
to learn about influenza-specific ADCC. Noteable gaps in the
knowledge include; (1) Which epitopes within the HA head
region and NA are protective and capable of mediating ADCC?
This information would provide important insights for vaccines
and therapeutics to potentially target broadly cross-reactive
regions. (2) Why are stem-specific mAbs inhibited by HAIC
HA-specific mAbs? This could be because of interactions
between the HA sialic acid binding site and a co-receptor on
effector cells or another unknown mechanism. (3) What are the
effector cells that mediate ADCC in vivo in humans? Although,
mouse models have been very informative, differential Fc-recep-
tor expression between humans and mice may profoundly influ-
ence which cells are the major contributors to ADCC. (4) Does
the presence of ADCC-Ab in humans confer any protection
against influenza infection? If so, what is the degree of protec-
tion provided by ADCC-Ab and how is this influenced by the
functionality of the effector cells within each individual? The
answer to this question will require additional human clinical
trials or larger human influenza challenge studies. Upcoming
pre-clinical studies of next-generation HA stem and other vac-
cines will clarify the limitations and hurdles surrounding Fc-
receptor mediated protection. However, the tremendous poten-
tial that ADCC-Abs have for expanding the breadth of anti-
body-based protection against influenza is heartening for the
development of a truly universal influenza vaccine.
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