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been considered to be a research tool only. In recent years, 
however, PET technology has been fused with computed 
tomography (CT). These hybrid devices have gained great 
popularity, predominantly driven by their success in clini-
cal oncology, which has led to an exponential growth of 
the numbers of scanners installed worldwide. This growth 
in hardware has been paralleled by improvements in radi-
otracer availability and advances in postprocessing soft-
ware. Consequently, cardiac PET has witnessed more wide-
spread use and routine implementation in clinical practice. 
This review will outline the fundamental principles of 
cardiac PET imaging and available tracer characteristics. 
Subsequently, clinical implications of myocardial perfusion 
imaging (MPI) will be delineated with special emphasis 
on quantification of MBF and the additive value of hybrid 
PET/CT imaging.

Principles of PET

PET relies on the simultaneous detection of two photons, 
emitted from the decay of radionuclide tracers. In more 
detail, positrons are emitted during the distribution of these 
tracers in the patient’s body and collide with an electron. 
Consequently, a positron annihilates, which results in the 
emission of two photons in opposite directions. Since the 
average range traveled by positrons is small, in the order of 
mm, the decay can be considered to have occurred along 
the straight line described by the two annihilation pho-
tons. A PET scanner contains several rings of detectors, 
made of a scintillating material, which convert the energy 
of the annihilation photons proportionally into an electrical 
signal. Two photons are considered to have been emitted 
simultaneously when they are detected within the narrow 
coincidence-timing window of the scanner, around 6–12 ns. 

Abstract  Noninvasive assessment of coronary artery dis-
ease remains a challenging task, with a large armamentar-
ium of diagnostic modalities. Myocardial perfusion imag-
ing (MPI) is widely used for this purpose whereby cardiac 
positron emission tomography (PET) is considered the gold 
standard. Next to relative radiotracer distribution, PET 
allows for measurement of absolute myocardial blood flow. 
This quantification of perfusion improves diagnostic accu-
racy and prognostic value. Cardiac hybrid imaging relies 
on the fusion of anatomical and functional imaging using 
coronary computed tomography angiography and MPI, 
respectively, and provides incremental value as compared 
with either stand-alone modality.
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Introduction

Positron emission tomography (PET) is a radionuclide 
imaging technique that allows for noninvasive quantifica-
tion of myocardial blood flow (MBF) in vivo. Assessment 
of myocardial perfusion provides important diagnostic and 
prognostic information for suspected or known coronary 
artery disease (CAD). Due to its limited availability, meth-
odologic complexity, and high cost, cardiac PET has long 
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Accordingly, when two photons are detected simultane-
ously, a decay event should have occurred somewhere 
along the line between two detectors. By detection of these 
annihilation photon pairs, the distribution of the positron-
emitting nuclides in the patients part positioned within the 
field-of-view of the PET scanner can be reconstructed.

PET versus SPECT

As compared with single-photon emission computed 
tomography (SPECT), PET has several advantages. One 
of the main benefits is the superior image quality of PET 
over SPECT. This improvement is due to more favorable 
tracer characteristics, improved count statistics, as well as 
the routine and more accurate application of photon attenu-
ation correction (AC). Although this correction technique 
is increasingly available for SPECT imaging with possible 
benefit in terms of diagnostic accuracy, the downside is that 
it can also induce artifacts [1]. Furthermore, smaller and 

more subtle perfusion defects can be detected due to higher 
spatial resolution of PET (typically 4–7 mm) as compared 
to SPECT (typically 12–15 mm). Next to spatial resolution, 
also temporal resolution is in favor of PET, which allows 
for absolute quantification of perfusion by tracking the 
dynamic tracer activities of arterial blood and myocardium 
through time. Although it has been attempted for SPECT 
[2], PET is an established tool to provide clinically rel-
evant quantitative levels of perfusion and flow reserve next 
to qualitative myocardial perfusion images [3–6]. Other 
advantages include a lower radiation burden and acquiring 
both rest and stress images within a single scanning ses-
sion due to the short physical half-life of the PET perfusion 
tracers. The main limitation for PET is the need for an on-
site cyclotron or generator with the current tracer agents as 
will be discussed in more detail. An overview of PET and 
SPECT imaging characteristics are provided in Table 1.

Perfusion tracer characteristics

Of several available PET tracers, 82Rb, 13NH3, and H2
15O 

are the most commonly used for the assessment of myo-
cardial perfusion [3]. Additionally, 18F-flurpiridaz is an 
emerging perfusion tracer which holds great clinical poten-
tial but is not yet available for clinical use and is currently 
being tested in phase 3 trials [7–9]. Tracer specific charac-
teristics, including pros and cons, will be described below 
and summarized in Table  2. It’s important to realize that 
none of the perfusion tracers excels on all of these features. 
Therefore the choice of tracer is multifactorial and depend-
ing on practical considerations, as well as the aim of the 
PET imaging program.

Table 1   SPECT and PET characteristics

SPECT single-photon emission computed tomography; PET positron 
emission tomography; mSv millisievert

SPECT PET

Availability Wide Limited
Attenuation correction Less accurate Accurate
Spatial resolution 12–15 mm 4–7 mm
Protocol 1–2 days <1 h
Radiation >5 mSv <5 mSv
Images Qualitative Quantitative
Hybrid with CT Yes Yes

Table 2   PET tracers 
characteristics

H2
15O, oxygen-15-labeled water, 13NH3, 13  N-labeled ammonia; 82Rb, 82rubidium; LV, left ventricular; 

other abbreviations as in Table 1

H2
15O 13NH3

82Rb 18F-flurpiridaz

Half-life 123 s 9.97 min 76 s 110 min
Production Cyclotron Cyclotron Generator Cyclotron
Kinetics Freely dif-

fusible, 
metaboli-
cally inert

Metabolically 
trapped in myo-
cardium

Metabolically 
trapped in myo-
cardium

Metabolically 
trapped in myo-
cardium

Mean positron range in tissue 1.1 mm 0.4 mm 2.8 mm 0.2 mm
Data acquisition Dynamic Dynamic, static Dynamic, static Dynamic, static
Scan duration 6 min 20 min 6 min 20 min
Gating/LV function − + + +
Radiation dose ~0.4 mSv ~1 mSv ~3 mSv ~4 mSv
Quantification Excellent Good Moderate Very good
Image quality Good (para-

metric 
images)

Very good Good Excellent
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Among clinically used perfusion tracers, H2
15O fea-

tures fundamentally different properties compared to 82Rb, 
13NH3, and 18F-flurpiridaz [3, 6, 10]. Namely, 82Rb is a 
potassium analog and is taken up by myocardial cells via 
the Na/K ATP transporter in a rapid and active manner 
[11]. While 13NH3 is incorporated into the glutamine pool 
through active transport and passive diffusion processes 
[12]. 18F-flurpiridaz is derived from pyridazinone and binds 
avidly to mitochondrial complex-1 [13]. In other words, 
these three tracers are transported across the cell membrane 
and effectively become metabolically trapped while they 
are cleared from the intravascular compartment (arterial 
blood pool). Consequently, ‘late’ static uptake images of 
these tracers account for high tissue-to-background ratios 
and result in excellent qualitative grading of relative per-
fusion distribution. The combination of these images with 
ECG-gating permits the assessment of left ventricular (LV) 
volumes and function as well as regional wall motion [14].

In contrast, H2
15O diffuses freely across myocyte mem-

branes, is metabolically inert and thereby promptly reach-
ing equilibrium between blood and tissue without accumu-
lation in the myocardium. As a consequence, radiotracer 
distribution images of H2

15O are of poor image quality 
and provide little diagnostic value. The lack of diagnos-
tic images has long prohibited the use of H2

15O in clini-
cal practice and nearly all studies on qualitative imaging 
for CAD have been conducted with 82Rb or 13NH3 [15]. In 
recent years, however, digital subtraction techniques and 
parametric imaging by automated software packages now 
generate qualitative gradable images that display perfusion 
at a voxel level, based on the tracer kinetic model for each 
voxel [16, 17]. These images are distinctly different from 
actual tracer uptake images as they represent a graphical 
illustration of quantitative flow values. These developments 
have enabled H2

15O to be utilized in clinical practice [18, 
19].

Image quality is additionally determined by the positron 
range in tissue. High-energy positrons penetrate deeper 
into tissue before annihilation occurs and demonstrate 
decreased spatial resolution compared to low-energy posi-
trons. Therefore, image resolution gradually increases from 
82Rb, H2

15O, 13NH3, to 18F-flurpiridaz, respectively, accord-
ing to their energetic state (Fig. 1) [4]. Moreover, the physi-
cal half-life of the radioactive compounds determines the 
potential acquisition duration and therefore count-statistics. 
The short physical half-life of 82Rb and H2

15O allows a 
timeframe of only a few minutes of acquisition before the 
tracer is decayed to background levels, whereas 13NH3 and 
18F-flurpiridaz acquisitions can be continued till satisfac-
tory counts-statistics are obtained, which enhances image 
quality. These factors result in the highest image quality 
of 18F-flurpiridaz given its long half-life and low positron 
range as opposed to relative poor image quality of 82Rb 
with its ultra-short half-life and high positron range.

Next to relative uptake images, PET enables the 
assessment of absolute levels of tracer concentration. 
Using a dynamic acquisition (i.e. multiple frames initi-
ated upon administration of the tracer) time-activity 
curves can be generated of tracer flux for arterial blood 
and myocardium. Automated software then computes 
myocardial blood flow (MBF) in absolute terms (in units 
of mL·min−1·g−1) and calculates coronary flow reserve 
(CFR) [16, 17]. An ideal tracer for these measurements 
is characterized by accumulation in/or clearance from 
myocardium proportionally linear to perfusion, irrespec-
tive of flow rate or metabolic state [20]. H2

15O is the 
only tracer that meets these criteria and is considered the 

Fig. 1   Simulated short-axis images using digital cardio-torso phan-
tom for different positron emitting radioisotopes (18F, 13N, 15O and 
82Rb). Blurring effect by positron range increases with higher posi-
tron kinetic energy. Adapted from Rischpler et al. [8]

Fig. 2   Kinetics of myocardial perfusion tracers and contrast agent. 
Graphical presentation of the relationship between absolute myocar-
dial blood flow and tracer uptake for currently available PET radi-
otracers and 18F-flurpiridaz, which is not yet available for clinical use. 
Also included are the kinetics of the commonly used SPECT radi-
otracer (99mTc-Sestamibi) as well as contrast agents for CT and CMR 
perfusion (i.e. iodine and gadolinium based contrast agent). Adapted 
from Danad et al. [30]
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gold standard for quantification of MBF [21]. The other 
aforementioned tracers have the property that myocardial 
extraction from arterial blood is incomplete and curvi-
linear with increasing flow rates, frequently referred to 
as the “roll-off” phenomenon (Fig. 2) [22]. PET derived 
MBF measurements are therefore underestimated with 
increasing actual flow. Correction models based on ani-
mal experiments can be employed yet induce noise, par-
ticularly when large correction factors are required with 
severely blunted extraction at high perfusion levels or 
with tracers characterized by a lower extraction fraction. 
Nonetheless, each of these tracers has been tested in ani-
mal experiments against microsphere-quantified perfu-
sion, the invasive reference standard. H2

15O and 13NH3 
in particular have been well validated and display close 
agreement with microsphere flow and demonstrate low 
test–retest variability (10–15%) [10, 21, 23–25]. In recent 
years, automated software packages have been devel-
oped and improved, applying these validated models. 
Postprocessing is now in the order of minutes, and these 
packages display high reproducibility [16, 26, 27]. Quan-
tification of 82Rb is less reliable as this tracer harbors 
intrinsic limitations (ultrashort physical half-life, long 
positron range, and low extraction fraction). Nonetheless, 
its extraction fraction is still superior to Technetium-99m 
(99mTc)-labeled SPECT (Fig.  2) and recent studies have 
shown MBF measurements of 82Rb to be feasible [28]. 
Limited data are available concerning the quantifica-
tion of 18F-flurpiridaz, but its characteristics and kinetics 
(very high extraction fraction and short positron range) 
have the potential for highly reliable perfusion measure-
ments [8, 20, 29].

Of interest, recent developments enabled the estimation 
of quantitative MBF using alternative noninvasive imag-
ing techniques, such as cardiovascular magnetic resonance 
imaging (CMR) and CT, with the use of contrast media 
[31, 32]. The low extraction fraction of these iodine and 
gadolinium based contrast agents (Fig. 2), however, neces-
sitates the use of extensive corrections and limits the accu-
racy of MBF measurements.

Tracer production and availability

A fundamental concern for widespread clinical application 
of cardiac PET perfusion imaging is the necessity to pro-
duce the utilized tracers onsite. In this regard, the currently 
available tracers H2

15O and 13NH3 require a cyclotron in 
close proximity of the scanning facilities. Additionally, 
while H2

15O is mainly used in European and Asian nuclear 
imaging labs at this time, FDA hasn’t approved this tracer 
for clinical use. 82Rb, however, is produced by a 82Sr/82Rb 
generator obviating the need for a cyclotron and is therefore 

more convenient to implement in clinical practice. The 
downside of this approach is that the generator needs 
to be replenished every 28 days at relatively high costs 
($20,000). In order to make such a program cost-effective, 
a high volume patient throughput is needed. These issues 
may soon be overcome by the emerging fluorine-labeled 
tracers such as 18F-flurpiridaz [8]. Because its longer physi-
cal half-life of 110 min allows for off-site production, this 
tracer has great potential for widespread implementation. 
18F-labeled perfusion tracers also benefit from the fact that 
they can be used in physical exercise protocols whereby 
the radioisotope is administered during maximal exertion. 
82Rb, H2

15O, and 13NH3 require injection while the patient 
is lying inside the scanner, as tracer decay is too rapid to 
transport the patient from the treadmill or stationary bike to 
the scanner. These tracers can therefore only be utilized in 
conjunction with pharmacological stressor agents.

Clinical value of myocardial blood flow imaging

Similar to SPECT, in clinical practice PET perfusion 
images are most commonly graded visually and in a quali-
tative manner. Relative radiotracer distribution is assessed 
during both rest and stress (or hyperemic) conditions. Myo-
cardial perfusion defects are usually graded by their extent, 
severity, and location. Current guidelines recommend a 
semiquantitative analysis using a segmental 5 point scale 
system (normal = 0, mild defect = 1, moderate defect = 2, 
severe defect = 3, and absent uptake = 4) on a 17 segment 
model of the left ventricle [33, 34]. These scores can be 
summed for rest (SRS) and stress (SSS) with a subsequent 
summed difference score (SDS) in order to identify revers-
ibility [35]. Fixed defects are compatible with myocar-
dial scarring or hibernating myocardium, whereas revers-
ibility of stress induced hypoperfusion is compatible with 
ischemia.

Next to qualitative and semiquantitative grading, PET 
also allows for absolute quantification of perfusion. Several 
available automatic software packages routinely provide 
these MBF values per myocardial territory. Derived MBF 
values can then be compared with normalcy ranges of flow. 
Normal databases, however, display a broad base of hyper-
emic MBF between 2 and 5 mL min−1 g−1, which is attrib-
utable to variability in minimal microvascular resistance 
and is dependent on age, sex, and traditional cardiovas-
cular risk factors [36–39]. Currently, still limited data are 
available with regard to an optimal threshold to distinguish 
pathological from normal hyperemic MBF and myocardial 
flow reserve [5]. In addition, thresholds for PET derived 
MBF values are not interchangeable for different radiotrac-
ers. Although in general, a myocardial flow reserve below 
two is considered abnormal whereas beyond 2.5 is deemed 
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normal, with an ambiguous transition zone between 2.0 
and 2.5 [6]. These values were confirmed by a recent 
multicenter study presenting an optimal threshold of 2.30 
mL min−1 g−1 for hyperemic MBF and 2.50 mL min−1 g−1 
for myocardial flow reserve when compared with invasive 
fractional flow reserve (FFR) measurements [40]. It can 
be questioned, however, whether single thresholds are rea-
sonable. Alternatively, MBF values might be interpreted 
on a continuous scale for diagnostic and prognostic pur-
poses as well as subsequent clinical decision making [5]. 
Therefore ongoing studies are targeted to further define 
the normal limits of (hyperemic) perfusion, especially 
for different subgroups such as revascularized patients as 
well as patients with diabetes and cardiomyopathies [41]. 
Another important issue is that myocardial perfusion imag-
ing reflects the composite of the epicardial as well as the 
microvascular bed. This means that diminished flow values 
may originate from either epicardial or microvascular dis-
ease, or both.

Diagnostic accuracy of PET imaging

The majority of studies exploring the diagnostic accuracy 
of PET perfusion imaging for the detection of CAD, have 
been conducted with static uptake images of 82Rb and 
13NH3. Compared with SPECT, perfusion imaging using 
PET consistently yields the highest diagnostic accuracy 

[42–44]. Sensitivity and specificity for PET in these meta-
analyses ranged from 84 to 93% and 81 to 88%, respec-
tively. It must be acknowledged, however, that most of 
these studies were compared with invasive coronary angi-
ography without FFR and therefore lack an appropriate ref-
erence standard.

Diagnostic accuracy testing has been less extensive for 
quantitative perfusion imaging. Increasing data, however, 
show the superiority of quantitative assessment over static 
uptake image grading [45–49]. Typical groups of patients 
which could benefit the most from quantitative assessment 
include patients with multivessel disease (i.e. balanced 
ischemia), early stage blood flow impairment, and micro-
vascular disease [6, 47, 50]. Especially multivessel disease 
frequently results in false negative interpretation of relative 
radiotracer uptake, because the myocardial region with the 
highest uptake is considered the normal reference region. 
Absolute blood flow quantification would then reveal that 
this region is abnormally perfused as well. This is illus-
trated with an example in Fig. 3. Apart from this, the com-
bination with ECG gated derived information such as LV 
function and transient ischemic dilatation (TID) seems to 
increase diagnostic accuracy of qualitative uptake images 
[51, 52].

Another interesting finding from recent studies is that 
hyperemic MBF quantification outperforms CFR to diag-
nose obstructive CAD, highlighting the potential of stress 
only protocols [40, 53, 54]. The largest of these studies, 

Fig. 3   99mTc-Tetrofosmin SPECT (A), H2
15O PET (B) and invasive 

coronary angiography (C) images of a 73-year-old male with chest 
pain. Short and long axis images during stress (A1) and rest (A2) 
show a homogenous tracer distribution indicating a normal perfusion. 
Stress and rest polarmaps (A3) display the same normal perfusion 
pattern. PET derived short and long axis images show an extensive 
attenuated perfusion pattern during stress (B1) as compared to rest 

(B2). Quantitative MBF values provided in the polarmaps (B3) indi-
cate ‘balanced ischemia’ with impaired hyperemic MBF (<2.30 mL 
min−1 g−1) and flow reserve (<2.50) values in each vascular territory. 
Invasive coronary angiography confirmed the diagnosis with multi 
vessel disease located at the proximal and distal right coronary artery 
(C1) and left main coronary artery (C2) as indicated with arrows
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involving 330 patients, reported a sensitivity, specificity, 
and accuracy of 89, 84, and 86% against 86, 72, and 78% 
for hyperemic MBF and CFR, respectively [40] (Fig. 4).

Prognostic value of PET imaging

Studies determining the prognostic significance of SPECT 
contain larger databases, nonetheless parallel the value of 
PET [55]. The extent and severity of PET derived perfusion 
defects have also been demonstrated to hold strong prog-
nostic information beyond traditional cardiovascular risk 
factors [56, 57]. In addition, the quantitative nature of PET 
has the potential to further increase prognostic significance. 
Due to greater availability, especially quantitative 82Rb and 
13NH3 PET have shown incremental value for predicting 
adverse cardiac events over traditional relative perfusion 
imaging grading [4, 58–60]. Murthy et  al. [4] revealed a 
significant association between quantitative coronary flow 
reserve (CFR) measurements and cardiac mortally even 
after adjustment for traditional risk factors and visual per-
fusion imaging grading in nearly three thousand patients 
undergoing 82Rb PET imaging. CFR measurements also 
induced correct reclassification of estimated risk catego-
ries in 35% of patients with a previously intermediate risk 
on cardiac death. Of particular interest is reclassification 
of perfusion images with visually homogenous tracer dis-
tribution caused by diffusely blunted hyperemic perfusion. 
Several studies have revealed that this subset of patients is 
at increased risk for future cardiac events [58, 59, 61, 62] 
Additionally, reduced flow values predict higher risk of car-
diac events, even without obstructive CAD. Microvascular 

Fig. 4   Diagnostic performance of quantitative PET perfusion param-
eters. ROC curve analysis with corresponding AUCs and 95% CI 
displaying the diagnostic performance of hyperemic MBF, MFR, 
MFRcorr, and baseline MBF for the detection of hemodynamically 
significant CAD as indicated by FFR on a per patient basis (a). Sen-
sitivity, specificity, PPV, NPV, and accuracy on a per patient basis of 
quantitative PET using hyperemic MBF and MFR, respectively, as a 
perfusion parameter (b). Adapted from Danad et al. [40]

Fig. 5   Case example of a 
46-year-old male with typical 
anginal chest pain. PET showed 
an inferolateral perfusion defect 
with an abnormal hyperemic 
perfusion of 1.89 mL min−1 g−1 
and a myocardial flow reserve 
of 1.75. CCTA displayed an 
obstructive soft plaque located 
in the obtuse marginal branch. 
Fused PET and CCTA images 
revealed a perfusion defect 
downstream from the coronary 
stenosis. Invasive coronary 
angiography showed angio-
graphic significant luminal nar-
rowing of the obtuse marginal 
branch (1-vessel disease) with 
an FFR of 0.34
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dysfunction is thought to play an important pathophysi-
ological role in these patients [63, 64].

Additive value of hybrid PET/CT

Current PET scanners are virtually always equipped with 
a CT component. These hybrid PET/CT devices are now 
available up to 128-slice CT and offer near simultaneous 
assessment of comprehensive anatomical and functional 
information within a single scanning session, which can be 
as short as 30 min. An example is shown in Fig. 5.

Coronary computed tomography angiography (CCTA) is 
an established tool for the non-invasive detection of coro-
nary atherosclerotic stenosis. A multitude of studies have 
shown a high diagnostic performance of CCTA for the 
identification of coronary artery stenosis [65–67]. In par-
ticular, its sensitivity and negative predictive value are con-
sistently demonstrated to be near perfect, approximating 
100%. CCTA is therefore currently the ultimate modality to 
exclude CAD in patients with a low to intermediate pre-test 
likelihood of disease. Furthermore, CCTA enables nonin-
vasive evaluation of plaque morphology. Thereby detect-
ing very early stages of CAD as well as plaques that might 
be vulnerable for rupture [68]. The specificity is, however, 
hampered as stenosis severity is often overestimated [69]. 
Another downside of CCTA concerns its limited ability 
to predict hemodynamic consequences of atherosclerotic 
stenosis.

On the contrary, myocardial perfusion imaging using 
either PET or SPECT, is particularly useful to assess hemo-
dynamic significances and thus document myocardial 
ischemia. As mentioned before, without the knowledge of 
coronary anatomy and (the location of) stenosis, the results 
of perfusion imaging should be interpreted carefully.

In summary of the above, either a solely anatomical 
or functional approach in the evaluation of CAD has its 
limitations. Therefore, a hybrid assessment could provide 
complementary rather than overlapping information. The 
limited number of studies on the diagnostic value of PET/
CT seem to confirm the theoretical enhanced accuracy 
as compared with either modality alone [18, 19, 70, 71]. 
Other studies revealed analogous improvement of diagnos-
tic performance when fusing SPECT and CCTA [72, 73]. It 
is shown that especially the moderate specificity of CCTA 
benefits from the use of hybrid imaging and results in a 
more judicious referral pattern for invasive coronary angi-
ography [74–76].

In the absence of prognostic data on hybrid PET/
CT, the results from hybrid SPECT/CT studies indicate 
an enhanced risk stratification compared to standalone 
modalities [75, 77, 78]. This holds particularly true when 
either perfusion or angiographic imaging exhibit equivocal 

results. Kim et al. [77] demonstrated incremental prognos-
tic value of sequential SPECT and CCTA in 1295 patients 
with suspected CAD. However, there was no significant 
additive value in the case of either stenosis ≥90% on CCTA 
or SSS ≥ 4 on SPECT. Figure  5 illustrates an example of 
both standalone modalities as well as hybrid imaging in 
comparison with invasive coronary angiography.

Interestingly, CT and CMR imaging provide alterna-
tive approaches with the possibility of assessing both 
anatomy and perfusion using a single imaging modality. 
For CT, the assessment of coronary anatomy can be com-
bined with myocardial perfusion. But the acquisition of 
such a dynamic first pass sequence comes at the cost of 
high patient radiation burden, next to the aforementioned 
unfavorable contrast agent characteristics for CT. A recent 
multicenter trial, however, showed that CT perfusion using 
a 320-slice CT scanner improved diagnostic accuracy over 
CCTA alone [79]. CMR does not have the issue with ioniz-
ing radiation and can be combined with e.g. the evaluation 
of LV and valvular function. In a recent trial, the diagnos-
tic accuracy of CMR in the detection of CAD was found 
to be superior to SPECT [31]. Still, also CMR perfusion 
faces multiple technical issues such as imaging artifacts, 
incomplete coverage of the LV and, as mentioned before, 
the gadolinium contrast agent impedes accurate MBF 
measurements with the corresponding disadvantages as 
compared to PET. Furthermore, not every patient is eligi-
ble to undergo CMR because of claustrophobia and con-
traindications such as pacemakers and implantable cardiac 
defibrillators.

Conclusion

PET perfusion imaging yields higher image quality and 
diagnostic accuracy, but lower radiation burden in compari-
son with SPECT. Using modern PET/CT scanners in com-
bination with appropriate PET radiotracers, absolute quan-
tification can be provided within a single, short scanning 
protocol. Quantification of flow improves both diagnostic 
accuracy as well as the prediction of major adverse cardiac 
events. Promising new PET tracers might increase clinical 
implementation of PET perfusion in the near future. Fur-
thermore, hybrid PET/CT has shown incremental value 
compared to either one of the standalone modalities.
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