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pathway BMDs derived for coal tar were comparable to 
BMDs derived from previously published coal tar-induced 
mouse lung tumor incidence data. These results suggest 
that in the absence of tumor incidence data, individual 
chemical-induced transcriptomics changes associated with 
cancer can be used to investigate the assumption of additiv-
ity and to predict the carcinogenic potential of a mixture.
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Introduction

Human exposures to environmental chemicals occur via 
contact with complex mixtures rather than single chemi-
cals in isolation. Currently, quantitative hazard and risk 
assessment of chemical mixtures is conducted using two 
approaches: (a) a whole mixture approach or (b) a compo-
nent-based approach that only examines prioritized mixture 
components. The whole mixture approach is used when 
data are available for the mixture in question or for a surro-
gate mixture that is sufficiently similar to the mixture under 
investigation. The whole mixture approach is preferred by 
several regulatory agencies such as Health Canada and the 
US Environment Protection Agency (CCME 2010; USEPA 
2010); however, due to difficulties in processing mixtures 
(e.g., atmospheric particulate matter) and the lack of stand-
ards for positive controls, the whole mixture approach can-
not be used for routine mixture toxicity testing and risk 
assessment. Similarly, comparing each newly identified 
mixture to a sufficiently similar mixture is complicated 
because of the relative differences in mixture composition 
that may influence the overall toxicity of the mixture. Thus, 

Abstract  The assumption of additivity applied in the risk 
assessment of environmental mixtures containing carci-
nogenic polycyclic aromatic hydrocarbons (PAHs) was 
investigated using transcriptomics. MutaTMMouse were 
gavaged for 28  days with three doses of eight individual 
PAHs, two defined mixtures of PAHs, or coal tar, an envi-
ronmentally ubiquitous complex mixture of PAHs. Micro-
arrays were used to identify differentially expressed genes 
(DEGs) in lung tissue collected 3 days post-exposure. Can-
cer-related pathways perturbed by the individual or mix-
tures of PAHs were identified, and dose–response modeling 
of the DEGs was conducted to calculate gene/pathway 
benchmark doses (BMDs). Individual PAH-induced path-
way perturbations (the median gene expression changes 
for all genes in a pathway relative to controls) and pathway 
BMDs were applied to models of additivity [i.e., concen-
tration addition (CA), generalized concentration addition 
(GCA), and independent action (IA)] to generate predicted 
pathway-specific dose–response curves for each PAH mix-
ture. The predicted and observed pathway dose–response 
curves were compared to assess the sensitivity of different 
additivity models. Transcriptomics-based additivity cal-
culation showed that IA accurately predicted the pathway 
perturbations induced by all mixtures of PAHs. CA did not 
support the additivity assumption for the defined mixtures; 
however, GCA improved the CA predictions. Moreover, 
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assuming that the total risk and hazard associated with a 
mixture is the sum of the contributions from the known pri-
ority components, and the component-based approach has 
been deemed the most appropriate and practical for routine 
assessments. This approach is also referred to as the addi-
tivity approach, and it is currently employed by multiple 
regulatory agencies worldwide, including Health Canada 
(2010), the USEPA (2010), and the European Commission 
(2001).

The component-based approach relies on a series of 
established reference models centered on the assumption 
that individual components of the mixture do not inter-
act, do not influence each other’s toxicity, and that their 
toxicological activity is additive. Accordingly, the toxic-
ity of mixtures composed of similarly acting chemicals 
(e.g., those with similar biochemical mechanisms of toxic-
ity or carcinogenic modes of action) is calculated as the 
sum of the concentrations/doses of selected chemicals, 
each adjusted using a relative potency scalar to convert 
amounts to equivalents of a potent reference substance 
(i.e., the concentration addition or CA model). For mix-
tures of dissimilarly acting chemicals, the total toxic 
response of the mixture is calculated by summing the toxic 
responses of each chemical component (i.e., the independ-
ent action or IA model, also known as response addition 
and effect addition models). Although pragmatic, the CA 
approach is limited in scope since it can only estimate the 
combinatorial toxicity of the mixture up to the maximal 
toxic response of the weakest mixture component. Conse-
quently, recent advances in mixtures toxicology have led 
to the development of alternative models, such as gen-
eralized concentration addition model (GCA) (Howard 
and Webster 2009), which considers the maximal toxic 
response of each mixture component. The GCA model has 
been used effectively in predicting toxicological responses 
of mixtures of aryl hydrocarbon receptor (AHR) agonists 
(Howard et al. 2010). Together, these models have proven 
useful for identifying interactive behaviors in defined mix-
tures (i.e., deviations from additivity), as well as for under-
standing the influence of unknown substances on the addi-
tive behavior of known mixture components (European 
Commission 2012).

As the toxicology community embarks upon a paradigm 
shift toward more mechanistic testing strategies (NRC 
2007), applications of omics tools, such as transcriptomic 
studies investigating global changes in gene expression, 
are providing insight into the toxic action of chemicals and 
comprehensive information on the biological pathways and 
processes disturbed by environmental chemicals. However, 
despite noteworthy advantages, few studies have applied 
transcriptomics to investigate the joint effects of chemi-
cals in mixtures. The advantages of transcriptomic tools for 
mixture assessments relate to the high-content data that are 

generated, and the utility of such data for identifying and 
discriminating pathways and processes affected by indi-
vidual mixture components and the mixtures themselves. 
Such analyses can determine if structurally similar chemi-
cals indeed act via a common mechanism and can provide 
predictive insight regarding the likelihood of chemical 
interactions.

Polycyclic aromatic hydrocarbons (PAHs) are a class of 
structurally similar chemicals, many of which have been 
characterized as genotoxic carcinogens. They are formed 
during the incomplete combustion of organic materials and 
are ubiquitously found in many environmentally relevant 
complex mixtures to which humans are regularly exposed. 
Human health risk assessments of PAH mixtures com-
monly employ the CA approach that incorporates quantita-
tive contributions from the 16 PAHs that were previously 
selected by the USEPA as priorities for concern and con-
trol (i.e., priority PAHs). In a recent study, we selected 8 
of the 16 priority PAHs that are genotoxic carcinogens and 
applied global transcriptomic profiling, in combination 
with other apical endpoint analyses, to determine if these 
8 PAHs share a similar mode of action (Labib et al. 2015). 
The results revealed that the eight structurally similar PAHs 
all induced DNA damage, mutation, and enzyme activ-
ity; however, at the transcriptional level, the response was 
markedly different. Indeed, the individual PAHs induced 
alterations in the expression of genes associated with 
diverse arrays of biological functions and processes that 
were not common to all eight compounds. Furthermore, 
the transcriptional profiles were tissue specific (Labib et al. 
2012, 2013, 2015). The results suggested that the underly-
ing genotoxic and carcinogenic mechanisms of action for 
these eight PAHs are not identical. This led us to hypothe-
size that the assumption regarding a similar mode of action 
may be inaccurate.

The primary objective of the present study is to exam-
ine the utility of transcriptomic data for investigating the 
combined effects of chemicals in mixtures. Since we have 
tissue-specific transcriptomic data for the eight individual 
PAHs, this study examined PAH-containing mixtures. 
More specifically, whole genome transcriptional profil-
ing was used to examine pathways/processes perturbed by 
exposure to two defined mixtures of four and eight PAHs, 
and a coal tar extract (a highly complex mixture of PAHs). 
Since the lung transcriptome was the most perturbed of the 
three tissues studied in our previous work in terms of tran-
scriptomic responses and DNA damage induction, in this 
study the pulmonary transcriptomes following exposure to 
the mixtures were compared to the pulmonary transcrip-
tomes from our previous studies of eight PAHs individually 
(Labib et al. 2012, 2013, 2015). Furthermore, the compari-
sons were used to evaluate the CA, GCA, and IA models, 
to investigate interactions between priority PAHs and, 



2601Arch Toxicol (2017) 91:2599–2616	

1 3

lastly, to determine the influence of unknown substances 
on the activity of the complex mixtures via comparison 
of the simple and complex mixtures. The analyses specifi-
cally examined pathways associated with cancer since the 
PAHs examined are known or suspected carcinogens. The 
data were further used to assess whether the predicted and 
actual perturbations of cancer-associated pathways elicited 
by coal tar exposures are aligned with the lung tumor inci-
dence observed in the Culp et  al. murine carcinogenicity 
study (Culp et al. 1998).

Methods

Chemicals

BaP and chrysene (CHR) were purchased from Sigma-
Aldrich Canada Ltd. (Canada). Benz(a)anthracene (BaA), 
benzo(b)fluoranthene (BbF), benzo(ghi)perylene (BghiP), 
benzo(k)fluoranthene (BkF), dibenz(ah)anthracene 
(DBahA), and indeno(123,cd)pyrene (IP) were purchased 
from Cambridge Isotopes Laboratories (USA). All com-
pounds had purity ≥98.8%.

Preparation of PAH mixtures and animal exposures

Coal tar extract (CT-Mix) was prepared as described previ-
ously (Wise et al. 1988; Long et al. 2016). The analytical 
assessment of the CT-Mix for volatile organic compounds 
and PAH content was conducted by Paracel Laborato-
ries Ltd. (Ottawa, ON, Canada), a commercial labora-
tory accredited according to ISO/IEC 17025:2005 by the 
Canadian Association for Laboratory Accreditation, by gas 
chromatography mass spectrometry (EPA reference meth-
ods 624 and 625) (further details can be found in Online 
Resource 1). The relative content of the eight priority PAHs 
in the CT-Mix was 23983 mg PAH/kg CT-Mix. The relative 
concentration of each of these eight PAHs relative to total 
PAH content in the CT-Mix used in this study was within 
0–1% of that found in the coal tar sample used in a pre-
viously published 2-year feeding study with coal tar (Culp 
et  al. 1998) (Online Resource 1); the content of the eight 
PAHs in the Culp et al. (1998) study was 12499 mg PAH/
kg coal tar.

The proportion of each PAH in the CT-Mix was then 
used to prepare two defined mixtures containing only four 
PAHs (4PAH-Mix) or only eight PAHs (8PAH-Mix). The 
PAHs selected for the 4PAH-Mix and 8PAH-Mix constitute 
the panel of four and eight PAHs recommended for routine 
examination of food samples by the European Food Safety 
Authority because they are the genotoxic PAHs that were 
measured in coal tar mixtures used in oral carcinogenic-
ity studies (EFSA 2008). Exposure doses for the defined 

mixtures and the CT-Mix were selected based on the maxi-
mum tolerated dose of each mixture determined in a dose 
range-finding study. This stock was diluted twice, by two-
fold each, to obtain two lower doses. The specific doses 
in the 4PAH-Mix are as follows: BaP (9.9, 19.9, 39.7 mg/
kg-day), BaA (12, 23.9, 47.8 mg/kg-day), BbF (12.6, 25.3, 
50.6  mg/kg-day), and CHR (11.4, 22.7, 45.5  mg/kg-day). 
This provided doses of 12.5, 25, and 50  mg BaP equiva-
lents/kg-day based on the CCME PAH-specific potency 
equivalence factors (CCME 2010). The specific doses of 
the 8PAH-Mix are as follows: BaP (10.5, 20.9, 41.9 mg/kg-
day), BaA (12.6, 25.2, 50.4 mg/kg-day), BbF (13.3, 26.7, 
53.4 mg/kg-day), CHR (12.0, 24.0, 48.0 mg/kg-day), BghiP 
(5.7, 11.4, 22.7  mg/kg-day), BkF (6.9, 13.7, 27.5  mg/kg-
day), DBahA (1.2, 2.4, 4.8 mg/kg-day), and IP (5.2, 10.4, 
20.9 mg/kg-day). This provided doses of 15, 30, and 60 mg 
BaP equivalents/kg-day. The CT-Mix was diluted to pro-
vide doses of 1.3, 2.5, and 5.1 mg BaP equivalents/kg-day.

The animal care, exposures, and tissue collection pro-
cedures have been previously described (Labib et al. 2012; 
Lemieux et  al. 2011). Mice were bred, maintained, and 
treated in accordance with the Canadian Council for Ani-
mal Care Guidelines, and all protocols were approved by 
Health Canada’s Animal Care Committee. In brief, adult, 
male Muta™Mouse (transgenic mouse strain 40.6 on 
BALB/C-DBA/2 background) were exposed by oral gav-
age for 28 consecutive days to olive oil (vehicle control) 
or to three doses of each of the PAH-containing mixtures. 
The dosing regime follows the established Organisation for 
Economic Co-operation and Development (OECD) guide-
line for transgenic rodent mutation assays (i.e., TG #488) 
(OECD 2011). Each treatment group contained five ani-
mals. Three days after the final dose animals were sacri-
ficed by cardiac puncture under isoflurane anesthesia. Two 
mice from the 8PAH-Mix died as a result of accidental pul-
monary puncture during oral gavage. Thus, the final sample 
size for the 8PAH-Mix experiment was 5, 5, 4, and 4 in the 
control, low, medium, and high-dose groups, respectively. 
The right lobe of the lung was collected, flash-frozen in liq-
uid nitrogen, and stored at −80 °C until use.

Tissue RNA extraction and purification

Total RNA for gene expression analysis was isolated 
from the lung using TRIzol reagent (Invitrogen, Canada) 
and purified using RNeasy Mini Kit (Qiagen, Canada) as 
described previously (Halappanavar et al. 2011). All sam-
ples met quality control standards for RNA with A260/
A280 ratios between 2.0 and 2.2 determined using a Nan-
oDrop Spectrophotometer (Thermo Fisher Scientific, Can-
ada) and RNA integrity numbers above 8.0 determined 
using an Agilent 2100 Bioanalyzer (Agilent Technologies 
Inc., Canada).
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Microarray hybridization and analysis

A detailed description of the microarray hybridization and 
statistical analysis protocols has been published previously 
(Labib et  al. 2013). With the exception of the 8PAH-Mix 
(see above), 5 replicates were examined for each PAH mix-
ture treatment group. Briefly, 200  ng of total RNA from 
each individual sample and 200  ng of Universal Mouse 
Reference RNA (Stratagene, Canada) were used to synthe-
size cDNA and cyanine-labeled cRNA using the Agilent 
Linear Amplification Kit (Agilent Technologies Inc., Can-
ada). The labeled cRNAs (i.e., Cyanine-5 for experimen-
tal samples and Cyanine-3 for reference RNA) were puri-
fied using RNeasy Mini Kits (Qiagen, Canada). 300 ng of 
labeled cRNA from each experimental sample was hybrid-
ized with the same amount of labeled reference RNA to 
Agilent Sureprint G3 Mouse GE 8  ×  60  K microarrays 
(Agilent Technologies Inc., Canada) at 65  °C for 17  h in 
the Agilent SureHyb hybridization chamber. The arrays 
were washed and scanned on an Agilent G2505B Scanner 
according to the manufacturer’s recommendations. Data 
were extracted using Feature Extraction 10.7.3.1 (Agilent 
Technologies Inc., Canada).

Details of the statistical normalization methods for the 
transcriptomic data were published previously (Labib et al. 
2013). Briefly, a reference design (Kerr and Churchill 2001, 
2007) was used to analyze microarray data. Non-back-
ground median signal intensities were normalized using 
LOWESS (Yang et al. 2002) using the R (R Development 
Core Team 2010) platform. A transcript was considered 
to be a differentially expressed gene (DEG: upregulated 
or downregulated relative to the vehicle treated controls) 
using the MAANOVA library in R (Wu et  al. 2003). The 
Fs statistic was used to test for treatment effects (Cui et al. 
2005). The P values for all statistical tests for each probe 
ID were estimated by the permutation method using resid-
ual shuffling followed by adjustment for multiple compari-
sons using the false discovery rate (FDR) approach (Ben-
jamini and Hochberg 1995). The fold change calculations 
were based on the least-square means (Goodnight and 
Harvey 1978; Searle et al. 1980). All microarray results are 
available in the Gene Expression Omnibus database (http://
www.ncbi.nlm.nih.gov/geo/) under the accession number 
GSE87691.

Biological replicates of each experimental condition 
were collapsed to an average expression value for each 
gene and normalized to the median of the control sam-
ples. This dataset was then filtered using the DEGs from 
the three independent MAANOVA analyses. Hierarchical 
clustering was then applied to the filtered data using the 
one minus correlation dissimilarity metric using the Spear-
man correlation with average linkage. Data were visualized 
using a heatmap.

Bioinformatics and pathway analysis

The list of DEGs (FDR P ≤ 0.05, fold change ±1.5 in at 
least one dose group) from each PAH congener (Labib et al. 
2012, 2015), the two defined PAH mixtures, and the coal 
tar extract were independently analyzed to identify bio-
logical functions or processes perturbed in response to the 
treatments. DAVID (Huang et al. 2009) Functional Annota-
tion Charts were used to identify gene ontology (GO) terms 
(biological processes and cellular compartments) associ-
ated with the significant genes, and to classify the DEGs 
into biological pathways using KEGG pathways (Kanehisa 
and Goto 2000). Ingenuity Pathway Analysis (IPA, Ingenu-
ity Systems, Redwood City, CA, USA) Canonical Pathway 
analysis, Biological Function analysis, and Network analy-
sis were used to identify biological pathways and func-
tions associated with the DEGs. Based on the tool used, 
different criteria were used to determine the significance of 
pathways, functions or biological processes perturbed. Any 
pathway or process that was associated with more than 3 
DEGs was included in the interpretation of the results. In 
addition, an EASE score (right-tailed Fisher’s test) cutoff 
of P ≤ 0.05 was applied to DAVID ontologies and KEGG 
pathways, and P ≤ 0.05 to IPA canonical pathways. Redun-
dancy in pathways and processes was reduced by collaps-
ing multiple pathways or processes implying perturbation 
of the same biological function as described in Labib et al. 
(2015). Since our previous studies (Labib et al. 2012, 2013, 
2015) focussed on carcinogenic effects of PAHs, pathways 
pertinent to cancer formation were the focus of the analysis 
in the present study.

Transcriptional benchmark dose (BMD) analysis

BMDExpress version 1.4.1 (Yang et al. 2007) was used to 
perform BMD analysis on the transcriptomic data. Only 
genes that had “present” calls in at least one dose group 
(i.e., 4 out of 5 biological samples within at least one exper-
imental group with signal intensities above the background 
non-murine control probes by at least three standard devia-
tions), fold change ≥±1.5, and ANOVA P  <  0.05 were 
modeled. Hill, Power, Linear, and Polynomial (20 and 30) 
models were used to fit the gene expression dose–response 
data. For each gene, the best fitting model was selected 
based on (1) a nested Chi-square test (cutoff of 0.05) to 
choose between linear and polynomial models, (2) the 
lowest Akaike information criterion (AIC) values for the 
nested, Hill, and power models, and (3) curve goodness-of-
fit P > 0.1. Genes with BMD values higher than the high-
est dose were excluded. The resulting gene BMD datasets 
were mapped to all pathways/processes described in Labib 
et al. (2015). Median BMD and BMDL (lower confidence 
limit) were reported for pathways with at least three DEGs.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Applications of the component‑based reference models 
to evaluate additivity

The transcriptomic data for individual PAHs (includ-
ing the degrees of pathway perturbations induced by each 
PAH and transcriptional BMDs for each gene and pathway 
induced by each PAH) were used to generate predicted 
dose–response curves for the perturbed pathways for each 
PAH-containing mixture using three models of additivity 
(CA, GCA, and IA). Thus, when we refer to predicted path-
way perturbation or predicted dose–response curves, we 
are referring to those generated using the CA, GCA, and 
IA models. The complete strategy is described in detail in 
Fig. 1.

Step 1: Analysis of pulmonary transcriptional data for 
mice exposed to individual PAHs. In the first step, lung-
specific transcriptional changes for eight individual PAHs 
were analyzed at each dose to identify significantly altered 
pathways associated with pulmonary carcinogenesis (anal-
yses are described previously by Labib et al. (2012, 2013, 
2015)); of these pathways, eight were identified as specifi-
cally important for PAH-induced carcinogenesis, and these 
were considered for mathematical modeling as described 
below.

Step 2: Pathway selection for quantitative prediction 
of mixture responses. For the selection of pathways to be 
used in the additivity modeling, we first assessed if these 
eight pathways were also significantly perturbed following 
exposure to the three PAH-containing mixtures (concord-
ance analysis). Since alteration in expression of individual 
genes can be associated with several redundant biological 
functions and processes, the ability of a PAH or a PAH 
mixture to perturb biological pathways (reflective of col-
lective expression changes in several genes) was selected 
as the metric for prediction calculations (Fig.  1). More 
specifically, the median percent change in gene expression 
for genes annotated to a pathway (that passed the BMDEx-
press filter), relative to controls, was used as the effect level 
to represent pathway perturbations for comparisons of pre-
dicted and observed responses. For example, a 50% change 
in gene expression corresponds to an absolute 1.5-fold 
change. The maximal effect level was defined as the larg-
est median percent gene expression change for a particular 
pathway at any of the doses tested (this value was neces-
sary for the GCA model described below). BMD modeling 
was used to conduct pathway dose–response assessment as 
described above, and pathway median BMD values were 
used in lieu of ED50 values that are traditionally used in 
predictive models of mixture toxicity.

Step 3: Mixture prediction analyses using mathemati-
cal models of additivity. For each selected pathway, CA 
(also known as dose addition), GCA, and IA models were 
then employed to predict pathway perturbations associated 

with mixture exposures. The formulas and methodologies 
employed for CA, GCA, and IA modeling are described 
below.

1.	 The CA model is used to predict the concentrations of 
the mixture that would elicit a predetermined effect. In 
principle, concentrations of individual mixture compo-
nents that are capable of eliciting the same effect on 
their own are added, after being multiplied by a scaling 
factor that accounts for potency differences. CA pre-
dictions were modeled according to Eq. 1.

	

where Dpred.mix is the predicted dose of the mixture 
across a range of effect levels, which were determined 
starting with the maximal effect level of the weakest 
inducer for that pathway and declining down to zero 
(the effect levels correspond to the benchmark response 
(BMR) used to generate BMDs). dePAH is the dose level 
(BMD) at which each PAH on its own exerts the effect 
level (BMR); PEFPAH is the potency equivalence fac-
tor (PEF) for each PAH scaled for potency relative to 
BaP (CCME 2010) (BaP = 1; BaA = 0.1; BbF = 0.1; 
Chr = 0.01; BghiP = 0.01; BkF = 0.1; DBahA = 1; 
and IP =  0.1); and pPAH is the fraction of each PAH 
in the mixture. Dpred.mix values were calculated for a 
range of effect levels (up to the maximal effect level 
of the weakest inducer of that pathway) and a predic-
tion dose–response curve was established. In the case 
of PAHs for which selected pathway BMDs could not 
be calculated (due to a lack of genes that passed the 
BMDExpress filters described above) mathematical 
modeling proceeded without data input for that PAH. 
Statistical uncertainties for the predicted effects were 
presented as the most conservative estimate of the 
upper and lower bounds for each mixture component 
using two-sided confidence intervals for the BMD.

2.	 The GCA model is an extension of the CA model that 
accounts for the maximal effect level of the mixture 
components by including a parameter (emax

PAH ) for the 
maximum effects induced by each mixture component. 
GCA predictions were modeled according to Eq. 2.

	

where Epred.mix is the predicted pathway perturbation 
(as above, the percent change in gene expression for 
responding genes in a pathway) induced by the mixture 
at a specific dose; emax

PAH  is the maximal effect level, 

(1)Dpred.mix =

(

∑ pPAH

dePAH ∗ PEFPAH

)−1

(2)Epred.mix =

∑

(

emax
PAH ∗ [PAH]

/

dPAH

)

1+
∑

(

[PAH]
/

dPAH

)
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which is the maximum pathway perturbation (median 
percent change in gene expression) induced by each 
PAH mixture component; [PAH] is the concentration of 

the individual PAH in the mixture at a specific mixture 
concentration; dPAH is the dose level (BMD) at which 
each PAH exerts a 50% change in gene expression, 

STEP 3: Mixture Prediction Analyses Using Mathematical Models of Additivity 

STEP 2: Pathway Selection for Quantitative Prediction of Mixture Responses 

STEP 1: Analysis of Pulmonary Transcriptomes for Mice Exposed to Individual PAHs 

Statistical filtering 
Significant genes (FDR P ≤ 0.05, fold change ± 1.5)

Bioinformatics and pathway analysis 
Significant Pathways (P ≤ 0.05)

Establish list of biological pathways and processes related to tissue carcinogenesis. 
Pathways must be significant for at least one individual PAH. 

Concordance analysis 
- Is the pathway also  significantly perturbed by 
all three mixtures? 

Dose-response analysis 
- Are the genes and pathway dose-responsive 
for all individual PAHs and mixtures? 

Pathway cannot be 
used for modeling 

YES

YES

NO

NO

Dose (mg/kg-bw/day)

m
ed

ia
n 

%
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ha
ng

e 
in

 
ge

ne
 e

xp
re

ss
io

n Additivity modeling  
- For each selected pathway, 
use individual PAH data to 
generate predicted dose-
response curves for each 
mixture using mathematical 
models of additivity  

Predictivity analysis 
- Do the predicted dose-
response curves for each 
pathway predict the observed 
mixture dose-response curve? 

PREDICTED MIXTURE 
DOSE-RESPONSE 
CURVES 

Dose (mg/kg-bw/day)

OBSERVED MIXTURE  
DOSE-RESPONSE 
CURVE 

YES

ADDITIVE 
The model validates the 
assumption of additivity 

NON-ADDITIVE 
The model does not validate 
the assumption of additivity 

NO

BMD Comparisons
- Identify  the model that best predicts the mixture response (pathway 
perturbation) by comparing predicted and observed BMD values 

Fig. 1   Workflow to select pathways for mathematical modeling and 
mixture prediction analyses. In step 1: analysis of pulmonary tran-
scriptomes for mice exposed to individual PAHs, following statisti-
cal filtering and bioinformatics and pathway analysis, pathways were 
selected based on cancer-related biological pathways and processes 
perturbed by the individual PAHs examined in Labib et  al. (2015). 
The number of significant genes and significant pathways induced 
by each PAH are shown. In step 2: pathway selection for quantita-
tive prediction of mixture responses, pathways were selected follow-
ing concordance and dose–response analyses (white boxes). Pathways 
that did not pass concordance and dose–response analyses were not 

used for mathematical modeling. In step 3: mixture prediction analy-
ses using mathematical models of additivity, the individual PAH data 
were used to generate predicted dose–response curves for each mix-
ture using three established mathematical models of additivity—con-
centration addition (CA), generalized concentration addition (GCA), 
and independent action (IA). The predicted dose–response curves and 
the BMDs for the predicted dose–response curves were compared 
with the observed mixture dose–response curves and BMDs for the 
observed dose response curves in the predictivity analysis and BMD 
comparison
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which corresponds to an absolute 1.5-fold change. 
Epred.mix values were calculated for the mixture con-
centrations and a prediction dose–response curve was 
established. In the case of PAHs for which selected 
pathway BMDs could not be calculated (due to a lack 
of genes that passed the BMDExpress filters described 
above) mathematical modeling proceeded without data 
input for that PAH. Statistical uncertainties for the pre-
dicted effects were expressed as the most conservative 
estimate of the upper and lower bounds for each mix-
ture component using two-sided confidence intervals 
for the BMDs.

3.	 The IA model is commonly used for prediction of the 
mixture toxicity when the mixture under consideration 
contains compounds with diverse modes of action. IA 
predictions were modeled according to Eq. 3.

	

where Epred.mix is the predicted pathway perturbation 
(as above, the percent change in gene expression for 
responding genes in a pathway) induced by the mixture 
at a specific mixture concentration; ePAH is the median 
percent change in gene expression for responding 
genes in a pathway for each PAH at that concentration; 
and pPAH is the fraction of each PAH in the mixture. 
For a range of mixture concentrations, Epred.mix values 
were calculated and a prediction curve was established. 
Statistical uncertainties for the predicted effects were 
expressed as 95% confidence bands.

Predictivity analysis

For each of the pre-selected pathways, the predicted dose–
response curves were compared to the actual, observed 
mixture dose–response curves (Fig.  1). If the confidence 
bands around the predicted dose–response curve gener-
ated using each model overlapped with the 95% confi-
dence band around the observed dose–response curve, 
then the assumption of additivity under that specific model 
was considered validated. If the confidence bands did not 
overlap, the model was considered invalid with respect 
to the assumption of additivity, which suggests chemical 
interactions.

BMD comparisons

As a quantitative measure of similarity or dissimilarity 
between dose–response curves, BMD and BMDL val-
ues calculated for the predicted dose–response curves 
generated by each of the models were compared with the 
observed BMD values. BMD values were calculated using 
the USEPA’s Benchmark Dose Software BMDS version 

(3)Epred.mix = 1−
∏

(1− ePAH ∗ pPAH)

2.5.1 (http://www.epa.gov/ncea/bmds/) (Davis et al. 2011). 
Data points (doses and effect levels) across the predicted 
dose–response curves generated using the CA, GCA, and 
IA models were selected from the mathematical modeling 
output for BMD modeling. These data were modeled as 
continuous data and were run against Exponential, Hill, 
Power, Polynomial, and Linear models of dose–response. 
The BMR was set to 50% corresponding to a 1.5-fold 
change in gene expression, which is thought to represent 
a biologically meaningful critical effect level for gene 
expression changes. The best model for each dataset was 
selected based on the lowest AIC value, excluding models 
with a goodness-of-fit P < 0.1.

BMD analysis of lung tumor incidence data

The transcriptomic data were further used to assess whether 
the predicted and actual perturbations of cancer-associ-
ated pathways following exposures to CT-Mix are reflec-
tive of the actual lung tumor incidence observed in mice 
exposed to coal tar. The lung tumor incidence data from a 
published 2-year feeding study in mice (Culp et al. 1998) 
were used. In this study, coal tar extracts were added to the 
feed of 5-week old female B6C3F1 (C57BL/6  N/X/C3H/
HeNMTV) mice at 0, 0.01, 0.03, 0.1, 0.3, 0.6, and 1.0% per 
day, or 0, 0.22, 0.66, 2.2, 6.6, 13.4, 22.0 mg BaP equiva-
lents/kg-bw/day (Benford et  al. 2010). Tumors formed in 
the tongue, esophagus, forestomach, liver, and lung tissues. 
The lung tumor incidence numbers as reported by Culp 
et al. (1998) were used to model the cancer dose–response 
using BMDS. Since the tumor incidence plateaus in the 
highest dose groups (13.4 and 22.0  mg BaP equivalents/
kg-bw/day), those dose groups were removed from the 
BMD analysis to improve model fit. The data were mod-
eled as dichotomous tumor incidence and were run against 
all degrees of the multistage model. The BMR was set to 
10% extra risk as recommended by the Benchmark Dose 
Technical Guidance document (USEPA 2012). The best 
model for each dataset was selected based on the lowest 
AIC value, excluding models with a BMD higher than the 
highest dose, a BMD/BMDL ratio greater than 5.0, and a 
goodness-of-fit P < 0.1.

Results

In three separate studies, adult male Muta™Mouse speci-
mens were administered three doses of three PAH-con-
taining mixtures (i.e., 4PAH-Mix, 8PAH-Mix, and CT-
Mix) for 28 consecutive days by gavage. For the defined 
mixtures, the PAHs were mixed according to their propor-
tional amounts in the complex coal tar extract. The expo-
sure regime did not cause any overt signs of toxicity and 

http://www.epa.gov/ncea/bmds/


2606	 Arch Toxicol (2017) 91:2599–2616

1 3

there was no significant body weight loss in any of the 
exposed mice compared to vehicle treated controls. Lung 
tissue was collected three days after the final exposure, and 
global changes in the lung transcriptome were assessed. 
PAH mixture-specific transcriptomic profiles were estab-
lished, and the results were quantitatively compared with 
transcriptomic profiles from pulmonary tissue of mice sim-
ilarly exposed to eight individual PAH congeners that are 
constituents of the mixtures examined herein (Labib et al. 
2012, 2015). The comparisons of the transcriptomes were 
used to investigate whether individual mixture components 
(i.e., individual PAHs) induce transcriptomic responses that 
are similar to those induced by PAH mixtures, and whether 
pathway perturbations induced by individual PAHs and an 
assumption of additivity can be used to predict the extent of 
pathway perturbations elicited by the examined mixtures.

General overview of mixture microarray results

The 4PAH-Mix, 8PAH-Mix, and CT-Mix induced sig-
nificant changes in the expression of many genes in lung 
tissue. MAANOVA analysis revealed 720, 921, and 460 
unique DEGs in at least one dose group following expo-
sures to the 4PAH-Mix, 8PAH-Mix, and CT-Mix, respec-
tively (Fig. 2a). Online Resource 2 provides details of all 
DEGs, including gene names, gene accession numbers, P 
values, and fold changes. Hierarchical cluster analysis on 
all DEGs revealed that each PAH mixture group clustered 
separately from the other (Online Resource 3A), thus a dis-
tinct treatment effect was observed as a result of exposure 
to each of the mixtures. A VENN analysis of the DEGs 
from all treatment groups revealed 235 DEGs common 
between the 4PAH-Mix, 8PAH-Mix, and CT-Mix expo-
sures (Fig. 2b).

Figure 2c summarizes all of the molecular pathways and 
biological processes that are altered in lung tissue follow-
ing exposure to each PAH mixture. This analysis includes 
all significantly altered gene ontologies (EASE P ≤ 0.05), 
KEGG pathways (EASE P  ≤  0.05), and IPA canonical 
pathways (P  ≤  0.05), as described in the Methods. Six 
main functional categories of pathways and processes 
were perturbed: DNA damage response, altered cell sign-
aling, altered metabolism, immune/inflammatory response, 
cytoskeletal reorganization, and cellular homeostasis.

Clustering analysis of DEGs induced by the mixtures 
and individual PAH exposures (Labib et  al. 2012, 2015) 
revealed that each PAH mixture clustered separately from 
the individual PAHs (Online Resource 3B), indicating 
that the mixture effect is distinct from that elicited by the 
individual PAHs and that the mixtures are more similar to 
each other than any other individual PAHs. Furthermore, 
the three mixtures clustered on the same branch as DBahA 
and BbF, indicating that there is greater similarity between 

these two PAHs and the mixtures compared to the other 
PAHs tested.

Prediction of mixture pathway perturbations

Step 1: Transcriptomic profiles of individual PAHs. The 
pulmonary transcriptome induced following exposures 
to eight individual PAHs contained in the 4PAH-Mix and 
8PAH-Mix, including details of perturbed pathways and 
processes, are published previously by Labib et al. (2012, 
2013, 2015). Of the many pathways enriched by the indi-
vidual PAHs, eight biological pathways and processes, 
which were significantly enriched in at least one individual 
PAH-treated group, were identified as being relevant to 
PAH-induced carcinogenesis (i.e., AHR Signaling, Angio-
genesis Signaling, Apoptosis Signaling, B Cell Receptor 
Signaling, Cell Cycle Signaling, Circadian Rhythm Sign-
aling, P53 Signaling, and Xenobiotic Metabolism Signal-
ing pathways). These pathways can be grouped under five 
main functional categories: DNA damage response, altered 
cell signaling, altered metabolism, immune/inflamma-
tory response, and cellular homeostasis, all of which play 
an important role in initiation and/or promotion of cancer. 
These pathways are employed for the quantitative analyses 
in steps 2 and 3 below.

Step 2: Pathway selection for quantitative prediction of 
mixture responses. Pathways associated with cancer forma-
tion that were identified in our earlier PAH studies (Labib 
et  al. 2012, 2015) were scrutinized to determine if they 
were also perturbed following exposures to the 4PAH-Mix, 
the 8PAH-Mix, and the CT-Mix. Each of the eight cancer-
related pathways were perturbed by at least one PAH-
containing mixture, with both similarities and differences 
noted in terms of the identity of the pathways perturbed, 
and the number of genes perturbed for each pathway 
(Fig.  3a). Of the eight pathways, Angiogenesis Signaling 
was significantly affected only by the 4PAH-Mix and the 
8PAH-Mix, B Cell Receptor Signaling was affected only 
by the 4PAH-Mix, and P53 Signaling, Apoptosis Signaling, 
Cell Cycle Signaling, AHR Signaling, Circadian Rhythm 
Signaling, and Xenobiotic Metabolism Signaling were sig-
nificantly affected by all three PAH mixtures. Thus, the six 
latter pathways, which were perturbed by all three types of 
mixtures, were selected for further analysis.

Following selection of the relevant pathways, the 
median percent change in gene expression relative to con-
trols for genes associated with a pathway and the maxi-
mal effect levels (i.e., largest median percent change in 
gene expression relative to controls for genes associated 
with a pathway across all tested doses) for each pathway 
were derived for each treatment. Online Resource 4 pre-
sents the median and mean gene expression changes for 
each PAH for all doses and pathways, as well as the fold 
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change of the most affected gene for each pathway. Dif-
ferences in maximal effects at the doses tested ranged 
from 48% for CHR and BghiP to 108% for BbF for AHR 
Signaling, from 56% for BkF to 71% for IP for Apoptosis 
Signaling, from 59% for BghiP, BkF, and CHR to 75% 
for BaP for Cell Cycle Signaling, from 58% for DBahA 
to 167% for IP for Circadian Rhythm Signaling, from 
62% for BaA to 174% for CHR for the P53 Signaling, and 
from 48% for BaA to 106% for IP for Xenobiotic Metab-
olism Signaling.

Curve fitting and BMD analysis for both probes and 
pathways altered following exposure to individual PAHs 
was conducted using BMDExpress. BMD analysis was 
conducted for a range of BMRs based on the maximum 

effect levels for the individual PAHs, and median pathway 
BMD values were calculated for each BMR. Median BMD 
values at BMR 10% are shown in Fig.  3b. The median 
BMD values for AHR Signaling ranged from 2.77  mg/
kg-bw/day for DBahA to 106.6  mg/kg-bw/day for CHR; 
Apoptosis Signaling from 3.83 mg/kg-bw/day for DBahA 
to 94.71  mg/kg-bw/day for CHR; Cell Cycle Signaling 
from 3.11  mg/kg-bw/day for DBahA to 79.74  mg/kg-bw/
day for CHR; Circadian Rhythm Signaling from 3.61 mg/
kg-bw/day for DBahA to 42.15  mg/kg-bw/day for BkF; 
P53 Signaling from 2.92  mg/kg-bw/day for DBahA to 
39.51  mg/kg-bw/day for CHR; and Xenobiotic Metabo-
lism Signaling from 5.02  mg/kg-bw/day for DBahA to 
68.73 mg/kg-bw/day for CHR.
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Fig. 2   a Table of pulmonary DEGs for each dose group of each 
PAH-containing mixture. b VENN diagram showing overlap between 
DEGs in at least one dose group of the three PAH-containing mix-
tures. c All pathways significantly enriched by each of the PAH-con-

taining mixtures, and their commonalities. Each column represents 
a dose group, and each row represents a gene. All red and green 
colored cells represent genes with fold change ≥1.5 in either direc-
tion (color figure online)
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Step 3: Mixture prediction using mathematical models 
of additivity. In order to determine if pathway perturbations 
elicited by exposures to individual PAHs, and an assump-
tion of additivity, can be used to realistically predict path-
way perturbations elicited by PAH mixtures, we compared 
predicted mixture pathway perturbations obtained using 
CA, GCA, and IA component-based models to pathway 
perturbations induced by the three tested mixtures. Next, 
the best predictive model was identified by comparing the 
BMD values for the predicted and observed dose–response 
functions. The model (CA, GCA, or IA) that yielded a 
predicted BMD that is closest to the observed BMD was 
denoted the best model. The results obtained using each of 
the component-based models are outlined below.

Predictivity analysis

As expected, the CA model (Eq.  1) predicted dose–
responses for pathway perturbations up to the maximal 
effect induced by the least responding individual PAH in 
the mixture (i.e., weak inducer of gene expression changes). 
For the 4PAH and 8PAH simple mixtures (Fig. 4a, b), the 
CA model-predicted dose–response curves are positioned 
to the left (at lower doses) of the observed dose–response 
curve for all six pathways tested, and the confidence bands 
for the predicted and observed pathway perturbations do 
not overlap. The CA predicted dose–response curves for 
the CT-Mix were also shifted to the left of the observed 
pathway perturbations induced by the CT-Mix (Fig.  5); 
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Fig. 3   Comparison of cancer-related pathways for individual PAHs 
and PAH-containing mixtures. a Selected cancer-related pathways 
significantly enriched by each of the individual PAHs and PAH-con-
taining mixtures, and their commonalities. Each column represents a 
dose group and each row represents a gene. All red and green colored 

cells represent genes with fold changes ≥1.5 in either direction. b 
BMD10 values in mg/kg-bw/day for each PAH and PAH-containing 
mixture derived using BMDExpress. The circles represent the BMD, 
and the lower bars represent the BMDL (color figure online)
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however, the CA model predictions correspond with the 
observed pathway perturbations of the AHR Signaling, Cir-
cadian Rhythm Signaling, P53 Signaling, and Xenobiotic 
Metabolism Signaling pathways. Additionally, there is a 
tendency for additivity for the Apoptosis Signaling and Cell 
Cycle Signaling pathways as the confidence bands between 
the predicted and observed responses are approaching each 
other in the low dose regions.

Next we used the GCA model (Eq.  2) to predict mix-
ture-induced pathway perturbations (Figs. 4, 5). This model 
yielded curves across the full range of doses for each mix-
ture. For the 4PAH-Mix, the GCA model prediction cor-
responds with the observed pathway perturbations for all 

six pathways tested (Fig. 4a). For the 8PAH-Mix, the GCA 
model prediction corresponds with the observed pathway 
perturbations for AHR Signaling, Apoptosis Signaling, Cell 
Cycle Signaling, and Xenobiotic Metabolism Signaling 
pathways (Fig.  4b). For the CT-Mix, GCA model predic-
tions correspond with the observed perturbations for the 
Circadian Rhythm Signaling pathway and a tendency for 
additivity was observed for the P53 Signaling and Xeno-
biotic Metabolism Signaling pathways as the confidence 
bands between the predicted and observed responses are 
approaching each other (Fig. 5).

Finally, we predicted the mixture-induced pathway 
perturbations using the IA model (Eq.  3) generally used 

Pe
rc

en
t c

ha
ng

e 
 in

 g
en

e 
ex

pr
es

si
on

 

Log PAH or Mixture dose (mg/kg-bw/day) 

Independent Action Concentration Addition Observed Mixture Generalized Concentration Addition 

a 

b 

Pe
rc

en
t c

ha
ng

e 
 in

 g
en

e 
ex

pr
es

si
on

 

Log PAH or Mixture dose (mg/kg-bw/day) 

0

50

100

150

200

0.01 0.1 1 10 100

AHR Signaling Pathway

0

50

100

150

200

0.01 0.1 1 10 100

Apoptosis Signaling

0

50

100

150

200

0.01 0.1 1 10 100

Cell Cycle Signaling

0

50

100

150

200

0.01 0.1 1 10 100

Circadian Rhythm Signaling

0

50

100

150

200

0.01 0.1 1 10 100

P53 Signaling Pathway

0

50

100

150

200

0.01 0.1 1 10 100

Xenobiotic Metabolism Signaling

0

50

100

150

200

0.01 0.1 1 10 100

P53 Signaling Pathway

0

50

100

150

200

0.01 0.1 1 10 100

AHR Signaling Pathway

0

50

100

150

200

0.01 0.1 1 10 100

Apoptosis Signaling

0

50

100

150

200

0.01 0.1 1 10 100

Cell Cycle Signaling

0

50

100

150

200

0.01 0.1 1 10 100

Circadian Rhythm Signaling

0

50

100

150

200

0.01 0.1 1 10 100

Xenobiotic Metabolism Signaling

Fig. 4   Comparisons of predicted and observed mixture effects for a 
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dose–response curves are represented by solid black lines. Thin lines 
represent 95% confidence bands (color figure online)
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for chemicals with dissimilar modes of action. The IA 
model provided reasonable predictions that corresponded 
to observed pathway perturbations for all six pathways 
(Figs. 4, 5) for the 4PAH-Mix, 8PAH-Mix, and CT-Mix.

Please note that in order to assess the impact of filtering 
the transcriptome data by P value and fold change Steps 2 
and 3 were repeated without the application of any filters. 
More specifically, as in the analysis described above, path-
way perturbations were measured as the change in gene 
expression for all genes annotated to a pathway that passed 
the BMDExpress filter relative to controls; however, only 
genes that had a “present” call in at least one dose group 
were modeled. The results of this analysis were comparable 
with the results detailed above (Online Resource 5). Briefly, 
the CA model-predicted dose–response curves were posi-
tioned to the left of the observed dose–response curves for 
all pathways and mixtures tested, the GCA model predic-
tions corresponded with the observed pathway perturba-
tions for several pathways for the defined mixtures but did 
not correspond with the observed pathway perturbations for 
the CT-Mix, and the IA model yielded the most reasonable 
predictions that corresponded to the observed pathway per-
turbations for all pathways and mixtures tested.

BMD comparisons

For the CA model, the predicted BMD50 values for the 
4PAH-Mix ranged from a factor of 2.7- (AHR Signaling) to 
9.3-fold (P53 Signaling) less than the observed values. For 

the 8PAH-Mix, the predicted BMD50 values ranged from 
a factor of 14.5- (Cell Cycle Signaling) to 30.2-fold (Cir-
cadian Rhythm Signaling) less than the observed values. 
For the CT-Mix, the predicted BMD50 values ranged from 
a factor of 1.3- (AHR Signaling) to 3.5-fold (Circadian 
Rhythm Signaling) less than the observed values (Table 1).

For the GCA model, the predicted BMD50 values for 
the 4PAH-Mix and 8PAH-Mix were close to the observed 
BMD50 values. For the 4PAH-Mix, the BMD50 values 
ranged from a factor of 1.3- (P53 Signaling) to 1.4-fold 
(Circadian Rhythm Signaling) less than the observed values 
to a factor of 3.2- (Xenobiotic Metabolism Signaling) to 
5.6-fold (Cell Cycle Signaling) greater than observed. For 
the 8PAH-Mix, the BMD50 values ranged from a factor of 
1.1- (AHR Signaling) to 4.1-fold (Circadian Rhythm Sign-
aling) less than observed to 1.1-fold (Apoptosis Signaling 
and Cell Cycle Signaling) greater than the observed values. 
For the CT-Mix, the predicted BMD50 values ranged from 
a factor of 2.1- (Circadian Rhythm Signaling) to 5.2-fold 
(Xenobiotic Metabolism Signaling) greater than observed.

For the IA model, the predicted BMD50 values for the 
4PAH-Mix, 8PAH-Mix, and CT-Mix were close to the 
observed BMD50 values. Specifically, for the 4PAH-Mix 
BMD50 values ranged from a factor of 1.2- (Circadian 
Rhythm Signaling) to 3.5-fold (AHR Signaling) greater. 
For the 8PAH-Mix, the predicted BMD50 values were the 
same as observed for Circadian Rhythm Signaling and 1.1- 
(Xenobiotic Metabolism Signaling) to 2.4-fold (Cell Cycle 
Signaling) greater than the observed values. Similarly, for 
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the CT-Mix, the predicted BMD50 values ranged from 
a factor of 1.3-fold (AHR Signaling, Circadian Rhythm 
Signaling) less than observed to 1.2- (Cell Cycle Signaling) 
to 1.7-fold (P53 Signaling, Xenobiotic Metabolism Signal-
ing) greater than observed.

Benchmark dose modeling of published cancer data

BMD modeling was conducted using the coal tar-induced 
lung tumor incidence data from the Culp et  al. (1998) 
study. BMD and BMDL values of 2.47 and 1.50 mg/kg-bw/
day, respectively, were determined using the best fit model 
(i.e., Multistage-Cancer 2°).

Discussion

In this study, we analyzed the pulmonary transcriptome of 
mice administered defined- and complex PAH mixtures 
by gavage daily for 28  days and compared these results 
with pulmonary transcriptomes of mice similarly exposed 
to individual PAHs (Labib et al. 2015) to evaluate several 
component-based models of PAH additivity. We found that 
(1) PAH-containing mixtures induce expression changes 
in genes associated with a wide variety of pathways and 

processes that may be implicated in carcinogenesis, and 
that (2) with few exceptions, the perturbed pathways were 
similar to those observed following exposure to individual 
PAHs. We then used our earlier work on individual PAHs 
to evaluate the ability of three component-based models of 
additivity to predict mixture responses at the pathway level. 
More specifically, we compared pathway perturbations pre-
dicted using these models with observed pathway perturba-
tions following exposures to the PAH-containing mixtures. 
The results were used to assess the validity of the assump-
tions related to the toxicological additivity of PAHs in sim-
plified and complex PAH mixtures.

Previous studies have used transcriptomic data to 
evaluate the validity of additivity assumptions and 
to provide evidence to support toxicological interac-
tions of mixture components (Kopec et  al. 2011; Staal 
et  al. 2007; Zucchi et  al. 2014). For example, Kopec 
et  al. (2011) applied individual gene expression data to 
evaluate additivity models using a select set of genes 
(Nqo1, Dysf, Pla2g12a, Serpinb6a, and Srxn1) differ-
entially expressed in livers of C57BL/6 mice treated 
with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 
2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153), or a binary 
mixture of the two. The authors applied statistical mod-
eling of the gene expression data and noted non-additive 

Table 1   Predicted and observed 
benchmark dose (BMD50) 
values for selected pathways 
perturbed by each mixture

BMDL is the lower 95% confidence limit

Pathway Observed  
(mg/kg-day)

CA (mg/kg-day) GCA (mg/kg-day) IA (mg/kg-day)

BMD BMDL BMD BMDL BMD BMDL BMD BMDL

4PAH-Mix

AHR signaling 8.30 5.60 3.04 2.30 27.54 13.24 29.04 19.57

Apoptosis 15.84 9.54 3.41 2.76 68.29 14.73 37.13 30.12

Cell cycle 15.07 8.67 3.72 3.01 84.43 26.59 36.17 26.23

Circadian rhythm 14.53 6.93 1.61 1.30 10.71 5.59 16.79 12.58

P53 signaling 16.06 9.94 1.73 1.40 12.47 8.21 24.03 20.80

Xenobiotic metabolism 20.97 12.16 3.63 2.77 66.67 46.38 41.25 28.22

8PAH-Mix

AHR signaling 25.71 16.04 1.63 0.85 24.27 15.39 31.05 22.07

Apoptosis 32.33 22.24 1.13 0.73 34.50 15.64 40.84 30.96

Cell cycle 18.63 10.93 1.28 1.04 20.97 1.36 43.96 31.57

Circadian rhythm 19.54 13.77 0.65 0.53 4.78 1.53 20.07 15.57

P53 signaling 23.68 16.09 1.04 0.88 11.03 5.34 34.19 28.97

Xenobiotic metabolism 32.86 15.90 1.13 0.86 26.86 15.25 36.41 24.86

CT-Mix

AHR signaling 2.24 1.32 1.71 0.79 7.19 5.03 1.73 1.28

Apoptosis 2.53 1.30 1.14 0.80 10.88 6.14 3.52 2.47

Cell cycle 3.02 1.47 1.29 1.05 11.11 6.19 3.69 2.78

Circadian rhythm 2.23 1.21 0.64 0.52 4.72 3.22 1.70 1.34

P53 signaling 1.61 1.03 1.09 0.92 7.29 5.08 2.71 2.32

Xenobiotic metabolism 1.85 1.09 1.18 0.90 9.67 5.87 3.24 2.24
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gene expression responses for several of the individual 
genes. Similarly, Zucchi et al. (2014) employed individ-
ual gene expression values from the ovaries and brains of 
female zebrafish exposed to drospirenone, progesterone, 
and a binary mixture of the two to investigate additivity 
of the substances. The study reported additive and less 
than additive effects for the three transcripts selected 
for analysis. In addition to single-gene data, Staal et al. 
(2007) employed gene expression changes for all DEGs 
from human hepatoma cells (HEPG2) exposed to binary 
mixtures of BaP and either DBahA, BbF, fluoranthene, 
or 1-methylphenanthrene to evaluate an additivity model 
based on the sum of the gene expression ratios (treated/
controls) for individual mixture components. Depend-
ing on the genes examined, the authors found additive, 
antagonistic, and synergistic effects. These studies pro-
vide excellent examples of early applications of toxicog-
enomics in mixtures toxicology, but they fail to address 
issues related to concentration and effect additivity. 
Indeed, the concentration-effect additivity dichotomy is 
germane to mixtures toxicology, and an improved under-
standing of the toxicological hazards of mixtures must 
examine both CA and IA approaches, thereby scruti-
nizing toxicological behaviors of substances present in 
complex mixtures and the biological processes driving 
these behaviors.

Although single genes may play important roles in dif-
ferent biological events, they do not reflect the complex 
interactions and associations that occur among and between 
genes that trigger biological signaling cascades and cellular 
pathways. Analysis at the pathway level reduces the com-
plexity of large transcriptomic datasets by relating gene 
expression changes to mechanistically relevant events. This 
approach reduces the dimensionality of the data to facilitate 
comparisons between different exposure scenarios by cat-
egorizing individual genes that are related to specific func-
tions. Thus, in the present study we used pathway perturba-
tions to scrutinize assumptions of additivity by evaluating 
several models of additivity using simple and complex 
mixtures of PAHs.

As stated earlier, ED50 values are traditionally used 
in these types of analyses; however, ED50 calculations 
require knowledge of the maximal effect level of a chemi-
cal. Thus, this can pose challenges when comparing chemi-
cals with different capacities to induce a maximal effect. 
Given these limitations, in place of ED50 modeling we 
used BMD modeling of the gene and pathway data, which 
does not require a maximal response and allows the genera-
tion of values based on non-asymptotic models (Burgoon 
and Zacharewski 2008). Thus, BMD analysis using a con-
stant BMR enables comparisons of both strong and weak 
inducers of a measured effect.

Pathway perturbations induced by PAHs or 
PAH‑containing mixtures

We found that several key pathways involved in PAH-
induced responses, including AHR binding, metabolic activa-
tion, DNA damage, and increased cellular proliferation, were 
all affected at the transcription level by individual PAHs, 
the 4PAH-Mix, the 8PAH-Mix, and the CT-Mix (Fig.  3a). 
The results suggest that, in general, the core transcriptomic 
responses elicited by exposures to PAHs are similar to the 
responses observed following exposures to the PAH-contain-
ing mixtures and supported the original hypothesis that car-
cinogenic PAHs and PAH mixtures act via mutagenic mode 
of action. However, some non-mutagenic pathways were 
also observed to be perturbed. For example, PPAR Signaling, 
PI3  K/AKT Signaling, PTEN Signaling, IGF-1 Signaling, 
Glucocorticoid Receptor Signaling, Steroid Biosynthesis, 
Integrin Signaling, FAK Signaling, and Paxillin Signaling 
were only perturbed by individual PAHs; whereas, Collagen 
Metabolism (4PAH-Mix), Leukocyte Migration (4PAH-Mix, 
8PAH-Mix), T Cell Signaling (CT-Mix), and mTOR Signal-
ing (CT-Mix) were uniquely perturbed by one or more of the 
mixtures examined. These pathways have been previously 
linked to exposures to BaP and other PAH-containing com-
plex mixtures. For example, increased collagen synthesis, 
which is suggested to play an early role in carcinogenesis, 
also occurs in lung organ cultures exposed to BaP (Bhatna-
gar et al. 1980). Leukocyte migration, also known as transep-
ithelial leukocyte migration, was induced by CT-Mix and is 
altered in human umbilical vein endothelial cells (HUVEC) 
following exposure to cigarette smoke, a complex mixture 
containing PAHs (Shen et al. 1996). T cell signaling, which 
was induced by the CT-Mix, is known to be disrupted by 
BkF, a PAH that is known to reduce T cell counts (CD4+ 
and CD8+) in mouse spleen (Jeon et al. 2005). MTOR sign-
aling induced by the CT-Mix has been shown to play an 
important role in BaP-induced cellular responses (Baumann 
et al. 2014), as demonstrated by proteomic analysis of BaP-
exposed Jurkat T cells. In addition, application of the mTOR 
inhibitor rapamycin reduced BaP-induced lung tumor forma-
tion, growth, and progression in A/J mice (Yan et al. 2006); 
however, the role of this signaling in BaP-induced tumor 
formation remains unclear. Thus, in addition to the pathways 
related to known mutagenic modes of action, perturbation of 
distinct signaling pathways uniquely induced by individual 
PAHs, or alternatively, by PAH-containing mixtures, sug-
gests contributions of additional sub-cellular phenomena in 
PAH-induced carcinogenesis. The perturbation of pathways 
and mechanisms other than those consistent with the muta-
genic mode-of action may explain non-additive behavior of 
the PAHs observed or predicted by the concentration addi-
tion model.
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Predicting pathway perturbations for mixtures of PAHs

In risk assessment, the carcinogenic risks associated with 
incidental ingestion of materials contaminated with PAHs 
are typically estimated using the CA approach, which 
requires an assumption that structurally similar PAHs with 
similar toxicological outcomes share a common mode of 
action, and moreover, that their contributions to the toxico-
logical properties of the mixture are additive. The approach 
employs the concentration of each PAH, and its potency 
relative to the well characterized reference compound BaP, 
to determine the contribution of each PAH to the over-
all toxicity of the mixture. However, the mathematical 
modeling of pathway perturbations using the CA model 
described herein, which applied pathway-level gene expres-
sion data to the traditional CA model, did not support the 
assumption that the effective doses of the 4PAH-Mix and 
the 8PAH-Mix can be determined by the contributions of 
each PAH in the mixture. This is consistent with previous 
studies reporting that the CA model can over-estimate the 
effective concentration (e.g., BaP equivalents) of a PAH 
mixture relative to the actual toxicological response elicited 
by the mixture itself. For example, Lemieux et  al. (2015) 
noted that the effective concentration determined by the CA 
approach yields a level of BaP equivalents that exceed that 
required to elicit effects observed in cultured cells. In other 
words, the actual toxicological properties of the mixture are 
far lower than those predicted by summing the contribu-
tions from priority PAHs. Such deviations from additivity 
emphasize the likely occurrence of antagonistic chemical 
interactions at the doses employed. Whereas Lemieux et al. 
(2015) argued that the sub-additive responses of cultured 
cells to complex PAH mixtures from contaminated soils are 
indicative of metabolic insufficiency related to competition 
for the enzymatic machinery required to generate reactive 
PAH metabolites, and comparison of the predictivity of the 
CA model for the synthetic mixtures and CT-Mix in this 
study suggests the potential presence of unknown mixture 
components that are skewing the estimates for the mixture. 
As such, PAHs make up only 15% of the entire CT-mix 
studied and in specific, the 8 PAHs attribute to a small frac-
tion (2%) of the CT-mix. In this case, the CA model tended 
toward additivity in the degree of pathway perturbations 
associated with CT-Mix exposures, whereas it over-esti-
mated the degree of pathway perturbations in the synthetic 
mixtures. The eight PAHs included in this study cover a 
wide range of genotoxic and carcinogenic potencies, and 
the published PEFs for these PAHs span two orders of 
magnitude (USEPA 1993; CCME 2010). In addition, their 
ability to induce DNA damage and mutations is also vari-
able (Labib et  al. 2015; Long et  al. 2016). However, pre-
vious studies have also shown that other PAHs such as 
dibenzo[def,p]chrysene (Chepelev et  al. 2016; Long et  al. 

2016), which are not regularly measured in PAH-contami-
nated samples, are more mutagenic than the priority PAHs 
investigated in the present study. The presence of such 
PAHs in the CT-Mix may explain the poor predictive power 
of CA for the CT-Mix, which can result in inaccurate risk 
estimates for materials contaminated with PAHs.

The GCA model is an extension of the original CA 
model that takes into consideration the inability of CA 
model to account for differences in maximal effects 
between mixture components (Howard and Webster 2009). 
This approach includes a function that accounts for maxi-
mal effect level of each component as well as the Hill 
slope values applicable to receptor-mediated interactions. 
Howard et  al. (2010) showed that this model was able to 
accurately predict joint effects of full agonist, partial ago-
nist, and near-competitive antagonist combinations of AHR 
ligands. In this study, the GCA model yielded improved 
predictivity compared to the CA model for the synthetic 
mixtures, but was a poor predictor of the response for the 
CT-Mix. In the context of the current work, binding and 
activation of the AHR by PAHs results in transcriptional 
activation of cytochrome P450 genes 1A1 and 1B1, which 
encode enzymes that catalyze the formation of dihydrodiol 
epoxides that react with DNA to form mutagenic bulky 
adducts. In addition, PAH-related AHR binding induces 
perturbations in a variety of toxicity and biochemical 
pathways involved in carcinogenesis (Dietrich and Kaina 
2010). Unfortunately, the addition of a metric to represent 
the maximal effect level may be a limitation of the GCA 
model in predicting complex mixture responses. The poor 
predictivity of the GCA model for the CT-Mix may reflect 
the presence of unknown mixture components with poten-
tially higher maximal effect levels. Thus, despite GCA’s 
inability to predict the CT-Mix pathway perturbations, for 
synthetic mixtures it provided improved predictions, rela-
tive to the CA approach.

The IA model provides predictions of mixture out-
comes by summing the toxic responses of each mixture 
component. In this study, the IA model provided the best 
predictions of pathway perturbations for both synthetic 
and complex PAH mixtures. More specifically, compari-
son of predicted and observed dose–response curves and 
BMD values across each of the selected pathways showed 
the closest correspondence in comparison to what was 
observed for the CA and GCA models. The IA model 
assumes that the individual mixture components act via 
dissimilar modes of action, and this contention is supported 
by our previous PAH study that provided evidence of dis-
tinct compound-specific biochemical mechanisms lead-
ing to carcinogenesis (Labib et  al. 2015). The combined 
results from this study and our previous studies suggest that 
application of CA alone may not be sufficient to predict the 
effects of the PAHs in mixtures and question the suitability 
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of CA in human health risk assessment of PAH-containing 
mixtures. Thus, the results of this study support the use of 
the IA model for PAH-containing mixtures.

It is important to note that although the dose of the coal 
tar mixture was far below the doses used for the synthetic 
PAH mixture (in BaP equivalents), at the molecular level 
they induced similar perturbations of pathways related to 
carcinogenesis. This suggests that the mechanisms under-
lying the carcinogenicity of PAH-containing mixtures are 
concordant. Previously, we showed that the pathways per-
turbed by the individual PAHs varied across PAHs and 
tissues (Labib et  al. 2015), yet the commonality in the 
pathways perturbed between the PAH mixtures, as well as 
between the mixtures and the individual components of the 
mixtures, suggests that the transcriptomic responses are 
sensitive enough to identify differences while still being 
specific enough to tease out commonalities related to carci-
nogenic transformation.

The identification of which PAH (if any) is the main 
contributor to a PAH-containing mixture’s carcinogenic-
ity is of particular interest. BaP has traditionally been used 
as a point of reference in the estimation of excess lifetime 
cancer risk posed by PAH-containing mixtures (CCME 
2010; EFSA 2008; Health Canada 2010). This is primar-
ily based on the fact that BaP’s carcinogenicity and toxico-
logical properties are well characterized and because of the 
abundance of information related to its occurrence in envi-
ronmental media. In the present study, hierarchical cluster 
analysis showed that DBahA and BbF co-clustered on the 
same branch as the three mixtures, whereas BaP clustered 
on an adjacent branch. These results suggest that DBahA 
and BbF may play a strong role in the response induced by 
the PAH-containing mixtures compared to the other PAHs 
tested, including BaP, and that perhaps BaP may not be 
an adequate representative for PAH-containing mixtures. 
These results are in alignment with the conclusions of our 
previously published study stating that BaP may not be an 
appropriate representative of carcinogenic PAHs (Labib 
et al. 2015). Thus, comparison of the pulmonary transcrip-
tomes from mice exposed to individual PAHs and PAH-
containing mixtures showed that DBahA and BbF may 
have greater influence in PAH-mixture-induced toxicologi-
cal response.

Quantitative comparisons of coal tar‑induced mouse 
pulmonary tumors with transcriptomic‑based pathway 
perturbations using predictive models of additivity

This work scrutinized the utility of transcriptomic data 
for evaluating different models of additivity to assess the 
toxicological properties of PAHs and PAH mixtures. Since 
the analyses are based on pathway perturbations related 
to carcinogenesis, the results have implications for the 

quantitative risk assessment of PAH-containing mixtures. 
To enhance the utility of transcriptomic profiling for quan-
titative risk assessment, we also compared the transcrip-
tional BMD values with those for a relevant apical endpoint 
(e.g., coal tar-induced lung tumor incidence). The CT-Mix 
transcriptional BMDs for the cancer-related pathways 
(Table  1) observed here (ranging from 1.61 to 3.02  mg/
kg-day) were similar to the Culp et al. (1998) lung tumor 
BMD value of 2.47  mg/kg-bw/day. Similarly, the BMDs 
for the cancer-related pathways generated by the IA model 
(ranging from 1.70 to 3.69 mg/kg-day) were also close to 
the lung tumor BMD value. It is important to note that the 
proportion of non-PAH content in the coal tar used in the 
Culp et al. (1998) study is not available and thus, it is dif-
ficult to accurately conclude if the observed carcinogenic 
responses in the feeding study are reflected in the tran-
scriptomic responses. Moreover, the background of the 
B6C3F1 mouse strain used in the Culp et al. (1998) study 
differs from the background of the Muta™Mouse (BALB/
C-DBA/2) used in this study. Despite of the stated differ-
ences, there was a high degree of concordance between the 
transcriptional and lung tumor BMD values. Thus, although 
based on only one PAH-containing mixture, the concord-
ance between the predicted cancer-pathway BMDs and 
lung tumor BMDs suggests that this type of cancer-related 
pathway data predicted using the IA model of additivity 
involving the eight genotoxic-carcinogenic PAHs might be 
a useful screening tool for the initial estimation of a PAH-
containing mixture’s cancer risk.

Conclusions

This study used transcriptomics-derived pathway perturba-
tions induced by individual PAHs to evaluate the applica-
bility of such data in deriving predictions of pathway per-
turbations for synthetic and complex mixtures of PAHs. 
We demonstrate a strategy that used pathway-level tran-
scriptional data and conventional mathematical models to 
evaluate several approaches to predict the effects of PAH-
containing mixtures. In contrast to the assumption of dose 
additivity that is commonly employed for PAH-containing 
mixtures (i.e., CA-based approach), our results imply that 
perturbations of toxicity pathways, some of which have 
been implicated in carcinogenesis, are best predicted by a 
model that assumes dissimilar modes of action for mixture 
components (i.e., IA-based approach). The median change 
in expression value for DEGs associated with perturbed 
pathways and dose–response analyses of the gene expres-
sion data for perturbed pathways were successfully incor-
porated into existing predictive models of additivity. The 
transcriptional BMDs generated using the mathematical 
models of additivity resulted in values consistent with lung 
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tumor development induced by coal tar (BMD: 2.5  mg/
kg-bw/day; BMDL: 1.5 mg/kg-bw/day). Since the pathway 
perturbations noted in our study are biologically linked to 
PAH-induced carcinogenesis, it is biologically plausible 
that the doses at which these pathways are affected might 
approximate the dose at which adverse outcome would be 
expected. As the public repository of genomics datasets 
for individual chemicals is populated, and the underlying 
mechanisms of toxicity are revealed, these types of data can 
be used for prioritizing mixtures for further toxicity testing.

Our comparisons of observed and predicted responses 
under different additive models indicate that CA, which 
is traditionally used for risk assessment of PAH mixtures, 
over-estimates the responses compared to what is actually 
observed. This suggests that the traditional additive para-
digm, which employs CA and PEFs to determine the effec-
tive amount of a reference compound (e.g., BaP), may yield 
conservative risk estimates. Additional work examining other 
PAH mixtures would be required to validate this conclusion.
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