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We report the application of Langevin dynamics to the physics-
based united-residue (UNRES) force field developed in our labora-
tory. Ten trajectories were run on seven proteins [PDB ID codes
1BDD (�; 46 residues), 1GAB (�; 47 residues), 1LQ7 (�; 67 residues),
1CLB (�; 75 residues), 1E0L (�; 28 residues), and 1E0G (���; 48
residues), and 1IGD (���; 61 residues)] with the UNRES force field
parameterized by using our recently developed method for ob-
taining a hierarchical structure of the energy landscape. All �-
helical proteins and 1E0G folded to the native-like structures,
whereas 1IGD and 1E0L yielded mostly nonnative �-helical folds
although the native-like structures are lowest in energy for these
two proteins, which can be attributed to neglecting the entropy
factor in the current parameterization of UNRES. Average folding
times for successful folding simulations were of the order of
nanoseconds, whereas even the ultrafast-folding proteins fold
only in microseconds, which implies that the UNRES time scale is
approximately three orders of magnitude larger than the experi-
mental time scale because the fast motions of the secondary
degrees of freedom are averaged out. Folding with Langevin
dynamics required 2–10 h of CPU time on average with a single
AMD Athlon MP 2800� processor depending on the size of the
protein. With the advantage of parallel processing, this process
leads to the possibility to explore thousands of folding pathways
and to predict not only the native structure but also the folding
scenario of a protein together with its quantitative kinetic and
thermodynamic characteristics.

Langevin dynamics � mesoscopic models � restricted free energy

There are two protein-folding problems in contemporary
computational biology. The first problem is to predict pro-

tein structure from sequence, and the second one is to predict
protein-folding pathways. There are many approximate methods
to attack the folding problem, which belong to two broad
categories of physics and knowledge-based methods (1–3). Mo-
lecular dynamics (MD) is the only computational method that
provides a time-dependent analysis of a system in molecular
biology and, consequently, can be implemented to solve the
second protein-folding problem.

Ideally, both the protein and the surrounding solvent should
be represented at the all-atom level (4) because this approach is
the closest to experiment. However, there are two severe limi-
tations to such a treatment, namely the multidimensionality of
the system (typically, �104 degrees of freedom with explicit
solvent) and the small values of the time step in integrating the
equations of motion (of the order of femtoseconds). Because of
these two limitations, explicit-solvent all-atom MD algorithms
can simulate events in the range of 10�9 to 10�8 s for typical
proteins and 10�6 s for very small proteins (4–6). These time
scales are at least one order of magnitude smaller than the
folding times of proteins (4). Consequently, all-atom simulations
of real-size proteins are usually limited to unfolding the native
structure of the proteins, followed by subsequent refolding (4, 5),
or by umbrella-sampling methods, in which selected reaction

coordinates (usually the fraction of native contacts and the
radius of gyration) are controlled along the folding pathway (7).
Such approaches combined with experimental data provide
valuable insights into the folding pathways (4).

One famous example of a successful explicit-solvent all-atom
MD simulation is that of Duan and Kollman (8) on the 36-
residue villin headpiece. They observed short-living folding
intermediates in a 1-�s-long run. The advent of distributed
computing provides hope that this approach could be extended
to larger systems in the future (9). Recently, a stochastic
difference equation approach (10, 11) has been devised to study
the folding pathways at the all-atom level. However, this method
requires a priori knowledge of both the unfolded and folded
states.

The dimensionality of a system containing the protein and the
surrounding solvent can be reduced when the solvent is treated
implicitly. The free energy of interaction of a solvent with a
biomolecule is usually described by the generalized Born model
(12). With the implicit-solvent approach, ab initio folding sim-
ulations seem feasible for small proteins. One such example is
the simulation of the B domain of staphylococcal protein A (a
46-residue protein) using the all-atom AMBER force field and the
generalized Born model, carried out by Jang et al. (13). However,
even the use of implicit-solvent models does not reach the time
scales necessary for folding larger proteins.

Reduced (mesoscopic) models of proteins, in which each
amino acid residue is represented by only a few interaction sites,
offer additional extensions of the time scale. This approach is
used mainly to study general characteristics of protein folding
rather than to predict folding pathways of real proteins (14, 15).
Quite often, the interaction potentials are intentionally biased
toward the experimental structure (the Go� -like models) (16, 17).
The models that have been applied with some success in folding
simulations of real proteins by using MD can be termed semime-
soscopic, because the backbone is represented at the all-atom
level, whereas the side chains are treated as united-interaction
sites (18, 19). Also, Monte Carlo dynamics with lattice meso-
scopic models and knowledge-based potentials is applied with
success to study folding of real proteins (20). A physics-based
mesoscopic model and MD algorithm based on generalized
Lagrange equations of motion were developed recently for
nucleic acids by Rudnicki et al. (21)

For the past several years, we have been developing a physics-
based united-residue (UNRES) force field (22–26). Each amino
acid residue is represented by only two interaction sites, which
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annealing; dC, C� atoms linked together by backbone virtual bond; SC, united side chain;
dX, SCs connected to the backbone by the virtual bond; p, united peptide; rmsd, rms
deviation.
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makes the model simple enough to carry out large-scale simu-
lations. The advantage of UNRES compared with other meso-
scopic protein force fields is that it has been derived carefully as
a potential of mean force of the UNRES chain (24) and
ultimately parameterized (25, 26) based on the concept of a
hierarchical protein energy landscape (18).

In connection with the efficient conformational space anneal-
ing (CSA) (27) method of global optimization, UNRES is able
to predict the structures of real-size proteins without ancillary
information from structural databases (26, 28). Therefore,
UNRES seems to be a good mesoscopic force field for studying
the folding pathways of proteins in real time. Therefore, we
recently (M.K., A.L., H.A.S., and A. Jagielska, unpublished
data) implemented the use of this force field in MD. In this
article, we provide an overview of dynamics with the UNRES
force field and the initial application of the method to simulate
ab initio folding pathways of a set of proteins of different sizes
and fold types.

Methods
UNRES Force Field. In the UNRES model (22–26), a polypeptide
chain is represented as a sequence of �-carbon (C�) atoms. The
C� atoms are linked together by backbone virtual bonds (des-
ignated as dCs), which constitute the backbone. United side
chains (SCs) are connected to the backbone by the virtual bonds
(dXs). United peptide (p) groups are in the centers of the dCs.
The centers of mass of the side chains are at the ends of the dXs
(Fig. 1). The interaction sites are the united p groups in the
middle of the dCs, and the SCs at the ends of the dXs. The p
group centers represent only the C�, O, N, and H atoms of the
peptide groups, whereas the C� atoms are included in the SC
centers. Consequently, the positions of the C� atoms are geo-
metric points and not interaction sites.

UNRES is a physics-based force field that is derived as a
restricted free-energy function of a polypeptide chain. The
restricted free energy is defined as the free energy of a given
coarse-grain conformation obtained by integrating the Boltz-
mann factor of the all-atom (i.e., the polypeptide chain-plus-
solvent) energy over the degrees of freedom that are neglected

in the UNRES model (24). The complete UNRES potential-
energy function is expressed by Eq. 1.
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The terms USCiSCj
correspond to the mean free energy of

hydrophobic (hydrophilic) interactions between the side chains.
These terms implicitly contain the contributions from the inter-
actions of the side chain with the solvent. The terms USCipj

correspond to the excluded-volume potential of the side-chain–
peptide group interactions. The terms Upipj

represent the energy
of average electrostatic interactions between backbone peptide
groups. The terms Utor and Utord are the torsional and double-
torsional potentials, respectively, for the rotation about a given
virtual bond or two consecutive virtual bonds. The terms Ub and
Urot are the virtual-angle-bending and side-chain-rotamer po-
tentials. The terms Ucorr

�m� correspond to the correlations (of order
m) between peptide-group electrostatic and backbone-local
interactions. The terms Uvib(di), di being the length of the ith
virtual bond introduced in this work, are simple harmonic
potentials. The w values represent weights of the various energy
terms. They were determined in our earlier work (25, 26) by our
hierarchical method for optimizing the energy landscape that is
aimed at lowering energy as more and more native-like structural
elements are formed in a specific order, which is intended to be
identified in a rough way with the folding pathway. This feature
distinguishes our approach from methods that are aimed at
lowering energy with increasing bulk similarity to the native
structure expressed, e.g., as the rms deviation (rmsd) from the
native structure (29, 30). The weight wvib was arbitrarily set at 1.
In this work, we used our recently derived 4P force field (26)
based on optimizing the energy landscapes of PDB ID codes
1GAB (31) (a 47-residue �-protein), 1E0L (32) (a 28-residue
�-protein), 1E0G (33) [a 48-residue (���) protein], and 1IGD
(34) [a 61-residue (���) protein].

MD with the UNRES Model. We implement the Lagrange formalism
and gather the virtual-bond vectors shown in Fig. 1 into a vector
of generalized coordinates q 	 (dCo, dC1, …, dCn, dX1, dX2, …,
dXn)T. The vector dCo specifies the position of the first C� atom
of the chain, dCi specifies the Ci

�… Ci�1
� virtual-bond vector, and

dXi specifies the Ci
����SCi virtual-bond vector. These coordinates

have the sense of local Cartesian coordinates and not curvilinear
coordinates such as virtual-bond angles and virtual-bond-
dihedral angles. The vectors q̇ and q̈ denote generalized veloc-
ities and generalized accelerations, respectively. We assume that
the virtual bonds are elastic rods with mass distribution that
scales with the length of a rod. The Cartesian coordinates of the
interacting sites x 	 (rp1

, rp2
, …, rpn�1

, rSC1
, rSC2

, …, rSCn
)T are

related to the generalized coordinates by a linear transformation
x 	 Aq, where A is a constant matrix such that ai(k),j 	 0 [i(k)
being a Cartesian coordinate of site k] if the coordinates up to
j correspond to virtual-bond vectors of the part of the chain to
the right of site k, ai(k),j 	 1 if the coordinates correspond to the
virtual-bond vectors to the left of site k or to a C����SC virtual
bond containing the side chain with index k, and ai(k),j 	 1�2 if
the coordinates correspond to the virtual-bond vector containing

Fig. 1. UNRES model of the polypeptide chain. Filled circles represent p
groups, and open circles represent the C� atoms, which serve as geometric
points. Ellipsoids represent side chains, with their centers of mass at the SCs.
The p groups are located halfway between two consecutive C� vectors or dCs.
The SCs are located at the end of the C����SC vectors or the dXs. The variables
to change the conformation of the polypeptide chain are the virtual-bond
angles �, the virtual-bond dihedral angles �, and the angles �SC and �SC, which
define the location of a side chain with respect to the backbone.
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the peptide group with index i(k). The same relationship holds
between the time derivatives of x and q.

In matrix notation, the complete equations of motion for
Langevin dynamics with the UNRES force field can be written
as Eq. 2,

�ATMA � H� q̈ � ��qU�q� � AT�Aq̇ � ATf rand, [2]

where M is the diagonal matrix of masses of the sites (p groups
and SCs) such that mii is the mass of the site corresponding to
the ith generalized coordinate, H (a diagonal matrix) is the part
of the inertia matrix corresponding to the internal stretching
motion of the virtual bonds with hii 	 (1�12)mp (mp being the
mass of a peptide group) for peptide groups and hii 	 (1�3)mSCj(i)

(mSCj(i)
being the mass of the side chain corresponding to the ith

generalized coordinate) for side chains, � is the diagonal friction
tensor (represented by the friction matrix) acting on the inter-
acting sites such that �ii is the coefficient of the site correspond-
ing to the ith coordinate, f rand is the vector of random forces
acting on interacting sites, U is the UNRES potential energy
defined by Eq. 1, and …q denotes the gradient in q. We use Eq.
3 to compute friction coefficients,

�x � 6	�rx � rwat�
watmax
Sx��4	rx
2� , 0.1�� , [3]

where rx is the radius of a peptide group or a side chain, rwat is
the radius of a water molecule taken here as 1.4 Å, 
wat is the
viscosity of water, and Sx is the solvent-accessible surface area.
We adapted the algorithm from the TINKER package (ref. 35;
http:��dasher.wustl.edu�tinker) to calculate the surface area.
Because the surface areas of the UNRES sites often happen to
decrease to 0, we set a lower limit of 0.1 on the ratio of the
solvent-exposed surface area of a site to its full surface area (Eq.
3). The scaling factor � should be between 0.001 (low-friction
limit) to 0.1 (overdamped limit) according to other works
on united-residue Langevin dynamics (14). In this work, we set
� 	 0.01.

The vector f rand consists of random forces acting on the
interaction sites, the components of which at a given step of
integration are calculated from the normal distribution accord-
ing to Eq. 4 (14, 16, 36),

f i
rand � �2�iRT

�t
N�0, 1�, [4]

where f i
rand is the ith component of the random force vector f rand,

�i is the friction coefficient associated with the ith coordinate of
the interaction sites, R is the universal gas constant, T is the
absolute temperature, �t is the integration time step, and N(0, 1)
is the normal distribution with zero mean and unit variance.
Together, the stochastic and friction forces constitute a thermo-
stat that maintains the average temperature at the preset value.

We use the velocity Verlet algorithm (37) with variable time
step for the UNRES model to integrate the equations of motion.
For the Langevin dynamics simulations, we developed its mod-
ified version, which can be written as Eqs. 5 and 6, respectively.

Step 1 is (updating coordinates):

q� t � � t� � q� t� � q̇� t�� t �
1
2

� q̈�� t� � q̈fric� t� � q̈x
rand� t�� t2.

[5]

Step 2 is (updating velocities):

q̇� t � � t� � q̇� t� � � 1
2

� q̈�� t� � q̈�� t � � t� � q̈fric� t�

� q̈v
rand� t�� � t , [6]

with

q̈�� t� � �G�1�qU�q� t� [7]

q̈�� t � � t� � �G�1�qU�q� t � � t� [8]

q̈fric� t� � �G�1AT�Aq̇� t� [9]

q̈rand � �G�1f rand, [10]

where the matrix G is defined as ATMA � H. The subscripts x and
v at q̈rand indicate that the random forces are sampled independently
to compute the new coordinates and velocities, respectively.

We also adapted a more sophisticated stochastic velocity Verlet
algorithm (38, 39) in which the stochastic and friction forces are
integrated analytically in a given time step; however, it is prohibi-
tively expensive, because the friction matrix in UNRES coordinates
(AT�A) is not diagonal. Moreover, it does not perform better than
the simple and cheap algorithm defined by Eqs. 5 and 6.

We set the time step at 4.89 fs to yield stable trajectories.
However, this is only a formal time step, and because of the
reduction of the number of the degrees of freedom in UNRES,
the time step is several times larger compared with all-atom MD.

Test Systems and Procedures. We chose the following proteins to
test the approach: PDB ID codes 1BDD (40) (also referred to as
protein A), 1GAB (31), 1LQ7 (41), 1CLB (42) (�-proteins),
1E0L (32) (a �-protein), and 1E0G (33) and 1IGD (34) (���
proteins). The native structures of all proteins studied are global
energy minima with the 4P force field (26). The experimental
structures of all test proteins are shown in Fig. 2.

We carried out two types of simulations: (i) simulations in
which a system was coupled to the Berendsen thermostat, but no
explicit friction or stochastic forces were present, and (ii) full-
blown Langevin simulations in which friction and stochastic
forces were present explicitly. We set the coupling constant to
the thermal bath at 0.0489 ps in simulations with the Berendsen
thermostat. We set the working temperature at 800 K; this value
was established empirically to achieve a compromise between
quick folding time and long-enough stability of the native-like
structures. Because the force field used here was parameterized
without taking into account the physical folding temperature of

Fig. 2. Experimental structures of the proteins used to run UNRES�MD
simulations. The N termini are marked for tracing purposes.
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any of the training proteins, the folding temperatures for this
force field need not correspond to physical temperatures. For
each protein and each simulation procedure (the Berendsen
thermostat or Langevin dynamics), we ran 10 independent
trajectories, each starting from a completely extended structure.
The duration of a run was from �10 to �20 ns.

To characterize the MD runs for trajectories that resulted in
native-like structures, we computed the folding time (�f) defined
as the time at which the rmsd from the corresponding experi-
mental structures decreases below a given cut-off value, cut. The
values of cut were 3.5 Å for 1E0L, 4 Å for 1BDD and 1GAB, 5
Å for 1LQ7, 5.5 Å for 1CLB and 1E0G, and 6 Å for 1IGD. For
1E0G, additionally, we set �cut 	 3.5 Å on the nonlocal �-sheet
fragment (Fig. 2).

Results and Discussion
Table 1 summarizes the characteristics of the trajectories defined
in the preceding sections, the CPU times per nanosecond, the
lowest C� rmsd values from the experimental structures, the
lowest potential energies obtained in MD searches of all proteins
studied, and the rmsd and potential-energy values for the
lowest-energy structures obtained in CSA searches from our
earlier work (26). It should be noted that native-like structures
of all proteins studied are global minima of their energy surfaces,
as found by the CSA method (Table 1). It can be seen that
native-like structures were obtained in at least one trajectory for
all �-proteins, although for 1LQ7 only one and two trajectories

converged to the native structure for the Berendsen and Lan-
gevin simulations, respectively.

For the successful simulations, the average folding times are
of the order of nanoseconds, whereas it is known from experi-
ment that the folding time is of the order of microseconds even
for the fastest folders (6). This result confirms our observation
(M.K., A.L., and H.A.S., unpublished data) that the time scale
of UNRES dynamics is approximately three orders of magnitude
larger than that of all-atom dynamics, owing to averaging the
secondary degrees of freedom, which usually correspond to fast
motions. Except for 1E0G, the folding time is shorter for
simulations with the Berendsen thermostat compared with the
Langevin dynamics simulations even with low-friction coeffi-
cients. The reason for this result is most probably that there are
no explicit stochastic and friction forces [the latter oppose
especially concerted motion of larger fragments (36) such as,
e.g., �-helices] in simulations with the Berendsen thermostat,
and maintaining the average temperature is achieved by scaling
down the velocities. It can also be seen (Table 1) that the CPU
time required per 1 ns of Berendsen dynamics is up to two times
shorter than that required for Langevin dynamics, which is
caused by the fact that more algebraic operations are involved in
a single step of Langevin dynamics compared with the Be-
rendsen dynamics.

Of the three � and ��� proteins, only 1E0G folded to the
native structure, whereas 1E0L and 1IGD did not. The most
persistent structures obtained in MD simulations of 1E0L and
1IGD were �-helical; for 1E0L this was an HTH motif and for
1IGD, a distorted three-helix bundle (these structures are shown
in Fig. 3 A and B, respectively). Short-lived structures appeared
with one of the hairpins of 1E0L and with the C-terminal hairpin
for 1IGD but only in a few runs; examples of such structures are
shown in Fig. 3 C and D, respectively. Such partially folded
structures appeared early in a run (after �1 ns) and then
changed to fully �-helical structures that persisted until the end
of a run. It therefore can be safely stated that the failure to fold
1E0L and 1IGD was not caused by insufficient simulation time.

The fact that some of the proteins considered do not fold to
the native structures in MD simulations, although their global
minima are native-like, can be understood easily. When pa-
rameterizing the force field, we used the CSA method for the
generation of the decoy sets. The CSA method considers only
energy minima and is focused strictly on structures with a low
potential energy. From Table 1 it can be seen that the lowest
potential energies attained in MD runs are at least �160
kcal�mol higher than the lowest potential energies found by
the CSA method (27). This difference occurs because of

Fig. 3. Examples of misfolded structures of 1E0L and 1IGD obtained during
MD simulations. (A and B) The persistent all-helical structures of 1E0L and
1IGD, respectively. (C) A short-lived most native-like structure of 1E0L. (D) A
short-lived most native-like structure of 1IGD.

Table 1. Summary of folding of test proteins with UNRES/MD only for those proteins that produced native-like
structure during simulations

PDB ID code
(no. of residues) N*

�f,† ns
min,‡

Å
CSA,§

Å
Emin,¶

Kcal�mol
ECSA,�

Kcal�mol
CPU,**

minMin Max Ave

1BDD (46) 10 (9) 0.3 (0.4) 4.8 (10.6) 1.8 (3.0) 2.7 (2.7) 5.5 �409 (�414) �597 19 (38)
IGAB (47) 3 (3) 0.4 (0.4) 1.5 (9.8) 0.8 (3.9) 1.9 (2.7) 2.9 �461 (�501) �669 22 (45)
1LQ7 (67) 1 (2) 2.1 (2.6) 2.1 (7.4) 2.1 (5.0) 1.7 (1.7) 2.3 �658 (�652) �937 44 (99)
1CLB (75) 5 (5) 0.3 (0.4) 4.5 (3.6) 1.9 (2.3) 4.0 (4.0) 5.1 �740 (�709) �1053 48 (111)
1E0G (48) 6 (3) 0.1 (2.7) 16.3 (8.1) 8.8 (5.0) 3.9 (3.2) 4.1 �405 (�380) �632 17 (39)

Data for the Berendsen simulation are given for each protein. Langevin simulation data are given in parentheses.
*Number of trajectories (of 10) that yielded native-like structures.
†Minimum (Min), maximum (Max), and average (Ave) folding time over all trajectories.
‡Minimum rmsd value over all trajectories.
§rmsd of the lowest-energy structure found by the CSA method.
¶Minimum potential energy over all trajectories.
�Lowest energy found by the CSA method.
**CPU time per 1 ns of simulations on a single AMD Athlon MP 2800� processor.
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thermal motion that is ignored when using global optimizers
such as CSA, which implement local energy minimization. Our
present method of hierarchical optimization of a protein
energy landscape (25, 26) uses the CSA method to generate
decoys and, consequently, largely ignores the entropy factor. It
should be noted that both 1E0L and 1IGD contain �-hairpins,
the formation of which involves a particularly severe decrease
of entropy because of the formation of long-range contacts
compared with the formation of an �-helix. The successful
folding of 1E0G can be explained by the fact that the strands
are stabilized by packing to �-helices; this feature was even
implemented when deriving the 4P force field by the hierar-
chical method (26). Analysis of successful folding trajectories
of 1E0G fully confirms this observation.

In Fig. 4, we present a sample Langevin dynamics trajectory
of 1CLB with the 4P force field. The very initial stage of
folding when �-helical segments are formed in the initially
fully extended chain is not shown for the sake of clarity of
presentation. This initial stage takes �100 ps, on average, in
the folding simulations of the model Ala10 polypeptide (M.K.,
A.L., H.A.S., and A. Jagielska, unpublished data). It can be
seen in Fig. 4 that folding occurs in a stepwise manner starting
from the formation of loose �-helices, through the formation
of the C-terminal EF-hand motif followed by the formation of
the C-terminal three-helix bundle and, finally, the formation
of the N-terminal �-helix and its packing to the final structure
composed of two EF-hand motifs.

An example of a successful folding trajectory of 1E0G (an
��� protein) is presented in Fig. 5. It can be seen that folding
starts with the formation of �-helical fragments in the whole

chain including those parts that form the �-sheet in the native
structure. These very early structures have a bent helix in the
middle part, which is the beginning of the formation of the native
HTH motif. Subsequently, the initially helical N-terminal and
the C-terminal parts start to pack against the middle helices and
straighten. This intermediate stage persists through most of the
folding trajectory. Late in folding, the strands start to pack to
form a �-sheet; Fig. 5 shows that initially incorrect packing,
which would lead to a parallel �-sheet, appeared. Last, the
protein leaves the short-lived misfolded intermediate and forms
the native-like structure. It seems that the stable �-sheet formed
here because favorable interactions induce extended conforma-
tion in the N- and the C-terminal parts of the chain.

Table 1 shows that even for the largest protein considered,
1CLB, it takes only 40 h on a single AMD Athlon MP 2800�
processor to run 20 ns of Langevin simulations. It should be
noted that the largest folding time for 1CLB with the 4P force
field was 3.6 ns of simulations; therefore, 20 ns is enough for
extensive folding simulations. Consequently, it is possible to
simulate the folding pathways of proteins in real time with the
UNRES�MD approach.

Conclusions
We applied the MD method with the UNRES model of polypep-
tide chains to a set of test proteins with sizes of 28–75 aa and
different folding types. The force field used in the study was
parameterized by using the decoy set generated by the CSA
method (27), i.e., not tuned to MD simulations. MD runs for
�-proteins successfully yielded native-like structures in most
cases, although not all trajectories converged to native-like
structures. However, we found that the two proteins containing
�-hairpins [1E0L (a three-stranded antiparallel �-sheet) and
1IGD (an ��� protein)] did not converge to the native struc-
tures, and �-helices were persistently formed instead of �-hair-
pins, although the global energy minima of these proteins are
native-like with this force field (and CSA search procedure) in
our previous study (25, 26). We attribute this result to the fact
that the decoy sets used in force-field parameterization consisted
of energy minima, and therefore the entropy factor was largely
unaccounted for in parameterization. Therefore, the UNRES
force field must now be reparameterized for MD simulations.
With the advantage of MD-generated ensembles, not only
qualitative information about the sequence of folding events but
also quantitative kinetic and thermodynamic characteristic of
folding can now be included.

Even given the limitation of the current force field, it can be
stated safely that the UNRES�MD approach will enable us to
carry out simulations of protein folding in real time. First,
although simplified, UNRES is fully based on the physics of
protein interactions and, unlike the Go� -like potential, need not
be parameterized every time to fold a specific protein. Second,
the reduction of the number of degrees of freedom results in
both reduction of computational cost and lengthening of the
time scale; it took only a few hours of computer time to fold
1CLB (a 75-residue protein). Based on the comparison of
all-atom and UNRES MD using a mean first-passage time
analysis of the model Ala10 polypeptide (M.K., A.L., H.A.S.,
and A. Jagielska, unpublished data), UNRES provides a three-
to four-order-of-magnitude speed-up relative to implicit- and
explicit-solvent all-atom MD simulations: (i) because of aver-
aging over secondary degrees of freedom, the UNRES time
scale is approximately four times larger than the all-atom time
scale (M.K., A.L., H.A.S., and A. Jagielska, unpublished data),
and (ii) for the same reason, the cost of computing the UNRES
energy is by orders of magnitude lower than the cost of
computing the all-atom energy. Therefore, with the advantage
of parallel processing, it is possible to run even thousands of
folding trajectories of a protein in a few hours of real time,

Fig. 4. Example of a fast folding pathway of 1CLB obtained in Langevin
dynamics simulations. The N terminus of the chain is marked for tracing
purposes.

Fig. 5. Example of a folding pathway of 1E0G obtained in Langevin dynamics
simulations. The N terminus of the chain is marked for tracing purposes.
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which will enable us to explore folding pathways and derive the
distribution of folding times. It can be noted also that all-atom
folding pathways can be obtained by converting the key
coarse-grained structures into an all-atom representation us-
ing the method developed in our laboratory (43, 44) and
carrying out limited all-atom MD simulations for each of them;
for example the ‘‘milestone’’ method developed recently by
Faradjian and Elber (11) seems to be very appropriate for this
task.
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