Skip to main content
. 2017 Jun 28;284(1857):20170356. doi: 10.1098/rspb.2017.0356

Table 2.

Statistical models fitted to untransformed data for scaling 2D (mm) to 4D (mm) in the right hand. AIC, Akaike's information criterion; ΔAIC, Akaike difference.

model AIC ΔAIC inference
Straight line, no intercept, with lognormal heteroscedastic error 1984.1 61.0 no empirical support
Straight line, no intercept, with normal, heteroscedastic error 1983.7 60.6 no empirical support
 Failed to converge. Convergence criterion changed to 0.011
Straight line, no intercept, with normal, homoscedastic error 1979.9 56.8 no empirical support
Three-parameter power function with normal, heteroscedastic error 1929.0 5.9 plausible alternative
 Failed to converge. Convergence criterion changed to 0.014
Two-parameter power function with normal, heteroscedastic error 1928.8 5.7 plausible alternative
 Failed to converge. Convergence criterion changed to 0.013
Straight line, intercept, with lognormal heteroscedastic error 1928.1 5.1 plausible alternative
Straight line, intercept, with normal, heteroscedastic error 1927.3 4.3 plausible alternative
 Failed to converge. Convergence criterion changed to 0.01
Three-parameter power function with lognormal, heteroscedastic error 1926.5 3.5 plausible alternative
 Failed to converge. Equation rearranged and converged
Two-parameter power function with lognormal, heteroscedastic error 1925.9 2.8 plausible alternative
Straight line, intercept, with normal, homoscedastic error 1924.6 1.6 essentially equivalent
Three-parameter power function with normal, homoscedastic error 1923.8 0.8 essentially equivalent
 Failed to converge. Equation rearranged and converged
Two-parameter power function with normal, homoscedastic error 1923.1 0 best