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Methods: In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels
of transforming growth factor B1, vascular endothelial growth factor, and collagens were analyzed by
enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A,

fgﬁ:‘:ergiecreﬁon phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed by Western
ERK1/2 blotting.
ginseng total protein Results: Our results showed that GTP promoted cell proliferation and increased the percentage of cells in
NIH/3T3 fibroblasts S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the
proliferation secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of
collagen such as transforming growth factor 1 and vascular endothelial growth factor. In addition, the
phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP.
Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3
cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting
wound healing.
© 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction ginseng protein, and ginseng polysaccharides. It has previously
been reported that ginseng has positive effects on human diseases,
Panax ginseng Meyer (ginseng), the most popular herbal medi- including atherosclerosis, postmenopausal disorder, liver dysfunc-
cine, has been widely used in Eastern Asia for more than 2,000 yr [1]. tion, cerebrovascular diseases, and cancers [1—3]. Of note, the pu-
Ginseng has multiple active components, including ginsenosides, rified ginsenosides or the extracts of ginseng root have beneficial
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effects on damaged skin. For example, red ginseng root extract
protected skin from acute UVB irradiation [4], and ginsenoside Rb1
promotes the healing process of burn wounds by enhancing
angiogenesis [5]. Recently, protein from ginseng was studied and
used for treatment of several kinds of diseases [6—10]. However, the
effect of ginseng total protein (GTP) on proliferation and wound
healing in fibroblast cells remains unclear.

The recovery process of skin wounds involves complex biolog-
ical mechanisms, which include inflammation, repair or prolifera-
tion, and tissue remodeling [ 11]. The proliferation of fibroblast cells
within the wound site plays a key role in the formation of granu-
lation tissue. Collagens that are synthesized by fibroblasts are
extracellular matrix (ECM) fibrillar molecules in dermal connective
tissue and comprise about 80% of the extracellular material,
contributing to its strength and facilitating elasticity, tightening,
and the cell integrity of the skin [12]. Therefore, fibroblast prolif-
eration and its collagen synthesis capacity are very important for
wound healing.

During wound healing, transforming growth factor 1 (TGF-p1)
contributes to the fibrotic process by recruiting fibroblasts and
stimulating their synthesis of collagens, proteoglycans, fibronectin,
and other ECM components. Besides TGF-$1, vascular endothelial
growth factor (VEGF) as an endothelial cell mitogen and inducer of
vascular permeability is unique for its effects on multiple compo-
nents of wound-healing cascade, including angiogenesis and
collagen deposition [13]. Importantly, the mitogen-activated pro-
tein kinase/extracellular signal-related kinase (MAPK/ERK)
pathway plays an important role in cell proliferation, cell cycle
progression, and collagen biosynthesis [14—16].

In our study, the possible effects of GTP on wound healing were
investigated in vitro. The results showed that GTP promoted pro-
liferation and wound healing in fibroblast cells. We also found that
GTP induced the secretion of type I collagen and increased the
expression of related factors, such as TGF-B1 and VEGF. The wound-
healing effect of GTP was partially mediated through the activation
of the ERK pathway. Our data shed light on a potential function of
GTP in promoting wound healing.

2. Materials and methods
2.1. Materials

Dimethyl sulfoxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT), bFGF, penicillin, strepto-
mycin, Dulbecco’s modified Eagle’s medium (DMEM; high glucose),
and new bovine serum (NBS) were purchased from Sigma Chemical
Co. (St. Louis, MO, USA). Propidium iodide kit was acquired from BD
Biosciences (San Diego, CA, USA). Mouse type I and III collagens,
TGF-B1, and VEGF enzyme-linked immunosorbent assay (ELISA)
kits were purchased from IBL (International GmbH, German).
Rabbit primary antibodies against cyclin A, p-ERK 1/2 (Thr202/
Tyr204), ERK1/2, TGF-B1, VEGF, and B-actin, and secondary anti-
bodies were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). All other chemicals were of reagent grade.

2.2. GTP extraction, purification, and hydrolysis

Five-year-old ginseng plants grown in JingYu (Jilin Province,
China) were collected and identified to fit the regulation of the
Chinese Pharmacopoeia (2015). Fresh ginsengs (1 kg) were milled
in liquid nitrogen and soaked in phosphate-buffered saline (PBS)
for 4 h at 4°C. The supernatant from ginsengs was centrifuged at
8,500g and condensed with hollow-fiber membrane (30 kDa).
Then the concentrating solution was separated and collected
with Sephadex G50 to obtain GTP, the purity of which reached

90.2%. In addition, we hydrolyzed GTP by proteinase K (50 pg/
mL) for 30 min at 37°C, and inactivated proteinase K for 1 h at
85°C. GTP and its hydrolysate were used for functional research
analysis.

2.3. Cell culture

Mouse NIH/3T3 fibroblast cells, obtained from the American
Type Culture Collection (Manassas, VA, USA), were grown in DMEM
medium supplemented with 10% (v/v) NBS, 100 U/mL penicillin,
and 100 pg/mL streptomycin, and cultured at 37°C in a humidified
incubator containing 5% CO,.

24. Cell viability assay

NIH/3T3 cells was seeded in 96-well plates and treated with
different concentrations of GTP and its hydrolysate for 24 h. For
viability analysis, MTT solution (0.5 mg/mL) was added to each well,
and incubated for 4 h at 37°C. After the incubation, the formazan
crystals were dissolved in 100 pL DMSO, and optical density was
measured on a microplate reader at 490 nm [17].

2.5. Cell cycle analysis

After the treatment with GTP for 24 h, cells were washed with PBS,
fixed with 70% ethanol at —20°C overnight, and incubated with RNase
(100 mg/mL; Sigma-Aldrich, St. Louis, MO, USA) for 5 min. After the
addition of propidium iodide (50 pg/mL in PBS), DNA content was
analyzed using a FACS Calibur flow cytometer (BD Biosciences).

2.6. ELISA for collagen and growth factors

NIH/3T3 cells were plated into each well of 24-well plates and
cultured for 24 h. Then, DMEM containing different concentrations of
GTP or 50 ng/mL bFGF was added, and the cells were cultured for 48 h.
The content of type I and III collagens in the supernatant and intra-
cellular TGF-B1 and VEGF levels were measured using commercially
available ELISA Kkits according to the manufacturer’s protocol.

2.7. Wound healing assay

Wound healing assay was performed as previously reported [ 18]
with some modifications. Fibroblasts kept in serum-free medium
for 24 h were wounded with a plastic micropipette tip with a large
orifice. After washing, medium was replaced by control medium
with GTP or bFGF. Photographs of the wounded area were taken
after 12 h or 24 h by a cell imaging multifunctional test system
Cytation 3 (Bio-Tek Instruments, Winooski, VT, USA).

2.8. Western blotting

Western blot analysis was performed as previously reported
[19], with some modifications. Briefly, cells were lysed with Triton
X-100-based lysis buffer for 30 min on ice and centrifuged at
10,000g for 10 min at 4°C. Protein concentration was determined
using the Bradford method. Equal amounts of proteins were sepa-
rated by sodium dodecyl sulfate-polyacrylamide gel electropho-
resis (SDS-PAGE) (12%) and transferred to a PVDF membrane (GE
Healthcare, PA, USA). Membranes were blocked with 5% (w/v)
nonfat milk for 1 h and incubated with the following primary an-
tibodies: cyclin A, p-ERK1/2, ERK1/2, and B-actin overnight, at 4°C.
After the incubation with secondary antibody for 1 h at room
temperature, proteins were detected using Enhanced Chem-
iluminescence Western blotting Detection System Plus (GE
Healthcare).
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2.9. Immunofluorescence staining

After the treatment with GTP, cells were fixed with 3% formal-
dehyde in PBS, permeabilized with 70% ethanol, and incubated
with anti-TGF-B1, VEGF, and p-ERK1/2 antibodies in a microscopy
buffer (2% bovine serum albumin and 0.1% Triton X-100 in PBS),
followed by fluorescein isothiocynate conjugated secondary anti-
bodies. The nucleus was stained with DAPI (4/,6-diamidino-2-
phenylindole). Image acquisition and postprocessing were per-
formed with a cell imaging multifunctional test system Cytation 3.

2.10. Statistical analysis

All values are shown as the mean =+ standard deviations from
three different experiments. Statistical comparisons between con-
trols and treated experimental groups were performed using Stu-
dent t test. Statistical evaluation was performed using GraphPad
prism, version 5.0 (Graphpad Software, San Diego, CA, USA). We
considered p < 0.05 to be statistically significant.

3. Results

3.1. GTP, but not protein hydrolysate, promotes NIH/3T3 cells
proliferation

To investigate the function of GTP in NIH/3T3 cells function,
specifically cell proliferation and collagen secretion, we first puri-
fied GTP and identified the purity and content using gel chro-
matograms (Fig. 1A) and SDS-PAGE (Fig. 1B) analysis. In Fig. 1A, peak
1 is GTP, and peak 2 may be nucleic acid. GTP was composed of
protein subunits with molecular weights of about 16 kDa, 22 kDa,
and 68 kDa, of which the concentration of the 22-kDa protein
subunit was the highest.

To further test our rationale that GTP had an important role in
cell biological functions, we also observed the effect of hydrolyzed
GTP by proteinase K on cell biological functions. Through a series
of experiments, we found that cell viability was significantly

A - Eractons

enhanced with GTP compared with control (Fig. 2A). However, we
did not find any influence of GTP hydrolysate on the viability of
NIH/3T3 cells (Fig. 2B). These results indicated that the effect of
promoting NIH/3T3 cell proliferation was attributed to GTP, but not
to GTP hydrolysate.

We further tested the effect of GTP on cell cycle distribution
using flow cytometric analysis. After the treatment of GTP, the
percentage of NIH/3T3 cells in S phase was increased, whereas the
proportion of cells in G2 phase was decreased compared with the
control. At the concentration of 12.5 ug/mL GTP, the percentage of
cells in the S phase was 1.9-fold higher than that of control. These
results demonstrated that GTP could promote cell cycle progression
by increasing the percentage of cells in the S phase (Fig. 2C).

Cyclin A is the main regulator of S phase progression; therefore,
we examined the effect of GTP on the expression of cyclin A.
Western blot analysis showed that GTP remarkably increased cyclin
A, which was better than bFGF, as a positive control (Fig. 2D). The
results suggest that GTP promoted cell cycle progression through
the upregulation of cyclin A.

3.2. GTPincreased secretion of type I collagen and promoted wound
healing in NIH/3T3 cells

Collagens, ECM proteins, are the main regulators in the forma-
tion of granulation and tissue reconstruction; therefore, they play a
vital role in tissue repair [20,21]. We examined the effects of GTP on
collagen secretion by measuring the level of type I and type III
collagens using ELISA kits. As shown in Fig. 3A and B, GTP signifi-
cantly increased the secretion of type I collagen in a dose-dependent
manner, but exerted no change on the secretion of type III collagen.
To further examine the effect of GTP on wound healing in fibroblasts,
NIH/3T3 cells were scratched by plastic micropipette and then
cultured for 12 h or 24 h under non-, GTP-, or bFGF-treated condi-
tions. As shown in Fig. 3C, the wound-healing abilities of fibroblasts
were markedly increased by GTP and bFGF compared to nontreated
conditions. These data suggest that GTP promoted wound healing
by increasing the secretion of type I collagen.
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Fig. 2. Effects of GTP on proliferation and cell cycle distribution of NIH/3T3 cells. Cell viability was assessed after 24 h of treatment with GTP and its hydrolysate, as described in
Materials and methods. (A) GTP. (B) GTP hydrolysate. (C) GTP accelerated the percentage of NIH/3T3 cells in S phase and G2 phase. (D) Western blotting analysis for the expression of
cyclin A in NIH/3T3 cells after 48 h at different concentrations of GTP (6.25 pg/mL, 12.5 pg/mL, and 25 pug/mL). Values represent the mean + SD of three independent experiments
(significant at *p < 0.05 and **p < 0.01 against respective controls). GTP, ginseng total protein; SD, standard deviation.

3.3. Effects of GTP on expressions of TGF-31 and VEGF in NIH/3T3
cells

It has been reported that the synthesis of collagen was regulated
by TGF-B1 and VEGF [22—25]. Therefore, the effect of GTP on the
expression of TGF-f1 and VEGF was observed and analyzed by
ELISA kit and immunofluorescence staining. As shown in Fig. 4A
and B, ELISA analysis showed that GTP treatment led to a significant
increase in the expression of TGF-B1 and VEGF. Moreover, similar
results on the expression of TGF-f1 and VEGF induced by GTP were
observed via fluorescence staining, which was similar to cells
stimulated by bFGF (Fig. 4C and D). These data indicated that GTP
induced the secretion of type I collagen by increasing the expres-
sion of TGF-B1 and VEGFE.

3.4. Effects of GTP on phosphorylation of ERK1/2 in NIH/3T3 cells

Our experimental results described above have shown that GTP
enhanced cell proliferation and promoted the secretion of type I
collagen in NIH/3T3 cells. MAPK/ERK signaling is an important
pathway that affects cell proliferation, and can be activated by growth
factors such as TGF-f1 [26—28]. Because our data showed that GTP
induced the expression of TGF-f1, we therefore examined the effect of
GTP on ERK signaling pathway by Western blotting and immunoflu-
orescence staining. As shown in Fig. 5A and B, GTP induced an obvious
increase in the phosphorylation of ERK1/2 at the concentration of
25 pg/mL. However, bFGF had no effect on the phosphorylation of

ERK1/2 in NIH/3T3cells. These results indicated that GTP promoted
the phosphorylation of ERK1/2 at Thr202/Tyr204 in NIH/3T3 cells.

4. Discussion

In the present study, we demonstrated for the first time the
potential function of GTP in promoting cell proliferation and
inducing the secretion of collagen I through the activation of ERK
signaling pathway in fibroblast cells, which suggests GTP as a new
natural product for promoting wound healing.

Optimum wound healing requires a well-orchestrated integra-
tion of complex biological and molecular events, including cell
migration, proliferation, ECM deposition, and remodeling. There-
fore, the activities of key cells are essential to mediate successful
wound healing. Fibroblasts are the single most important cell type
as they have numerous functions, including production of collagen,
growth factors, antioxidants, and a balance of matrix-producing
proteins and protease enzymes. Fibroblasts also play an essential
role in initiating tissue remodeling during wound recovery.

Proliferation of fibroblast is one of the main manifestations in
the process of wound healing [29], which is a normal physiological
function obtained from the process of biological evolution. An
important characteristic of cell proliferation is the upregulation of
cyclin A and an increase of cells in the S phase of the DNA cell cycle
[30]. S phase is responsible for DNA replication, and cyclin A plays
an important role in the accurate separation of chromosome [31],
driving G1 phase into S phase and enhancing cell proliferation. In
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Fig. 3. Effects of GTP on the secretion of type I collagen and wound healing in NIH/3T3 cells. Level of collagen was measured in cellular supernatant after 48 h of GTP treatment at
different concentrations (6.25 pg/mL, 12.5 pg/mL, and 25 pg/mL) and bFGF (50 ng/mL) treatment. (A) Type I collagen. (B) Type III collagen. (C) Cell were scratched with plastic
micropipette and cultured with control medium with GTP or bFGF for 12 h or 24 h. Photographs of the wounded area were taken. Results are expressed as means & SEM (n = 3);
*p < 0.05, **p < 0.01 versus control. bFGF, basic fibroblast growth factor; GTP, ginseng total protein; SEM, standard error of the mean.

our research, GTP increased the expression of cyclin A and the cell
ratio of S phase, thus enhancing the proliferation of NIH/3T3 cells.
Our results indicate that GTP may possess functions of wound
repair.

Human skin fibroblasts play key roles in wound healing by
inducing the secretion of collagens and cytokines [32,33]. Collagens
secreted by fibroblasts play an important role in wound healing.
Once at the wound site, collagen III is quick to produce, with the
early matrix acting as a barrier to pathogens and to loss of serum
and fluids. This is later degraded by proteases and remodeled by the
fibroblasts to be replaced by collagen I, which has a much higher
tensile strength, but takes longer to deposit [34]. In our study, GTP
significantly increased the secretion of collagen I, but induced no
change in the expression of collagen III in NIH/3T3 cells treated
with GTP for 48 h. So, we speculated that this phenomenon about
the secretion of different collagens induced by GTP was dependent
on the time that fibroblast cells were treated, which would be
investigated in the future.

TGF-B1 regulates various cell functions such as proliferation,
differentiation, apoptosis, cell adhesion, cell motility, and produc-
tion of ECM [35]. Expression of TGF-f31 was upregulated when cells
were treated by GTP (Fig. 4A and C), which led to significant in-
crease of collagen . Then, collagen bundles are typically formed and
mutually cross-link, which strengthens the flexibility of the cells

[36]. VEGF could supply the necessary nutrients to the tissue, which
is the main determinant of tissue repair [37,38]. In this study, we
demonstrated that GTP promotes the synthesis of VEGF (Fig. 4B and
D), which is involved in the process of angiogenesis, providing
nutrition for tissue metabolism.

MAPK/ERK is a crucial signal transduction pathway, which is
stimulated and activated by growth factors. The MAPK/ERK
pathway is a well-conserved three-tiered kinase cascade, which is
Raf-MEK1/2-ERK1/2, and then phosphorylated ERK enters the nu-
cleus through translocation, and combines with downstream sub-
strates, initiating transcription and translation [39]. MAPK/ERK
participates in cell cycle regulation and proliferation [40]. It has also
been reported that activated ERK can initiate transcription of genes
coding for proteins involved in DNA replication, accelerating the
transformation of G1 phase to S phase [41], thus promoting cell
proliferation. In addition, ERK1/2 signaling can also regulate the
progress of collagen biosynthesis [42]. In this study, we found that
GTP enhanced the intracellular level of p-ERK1/2, thus activating
the MAPK/ERK signal pathway. This suggested the possibility that
GTP may increase cell proliferation and collagen synthesis in NIH/
3T3 cells through the activation of the MAPK/ERK signal pathway.

In summary, our findings provide a better understanding of the
function of GTP in the wound healing process and raise the possi-
bility of therapeutic usage of GTP in wound healing.
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