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Abstract

Researchers have developed missing data handling techniques for estimating interaction effects in 

multiple regression. Extending to latent variable interactions, we investigated full information 

maximum likelihood (FIML) estimation to handle incompletely observed indicators for product 

indicator (PI) and latent moderated structural equations (LMS) methods. Drawing on the analytic 

work on missing data handling techniques in multiple regression with interaction effects, we 

compared the performance of FIML for PI and LMS analytically. We performed a simulation 

study to compare FIML for PI and LMS. We recommend using FIML for LMS when the 

indicators are missing completely at random (MCAR) or missing at random (MAR) and when they 

are normally distributed. FIML for LMS produces unbiased parameter estimates with small 

variances, correct Type I error rates, and high statistical power of interaction effects. We illustrated 

the use of these methods by analyzing the interaction effect between advanced cancer patients’ 

depression and change of inner peace well-being on future hopelessness levels.
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Missing data represent “one of the most important statistical and design problems in 

research” (Azar, 2002, p. 70). Inappropriate handling of missing data can result in 

substantially biased parameter estimates and invalid statistical inferences. Missing data can 

be classified into three types based on missingness mechanisms: missing completely at 

random (MCAR), missing at random (MAR), and missing not at random (MNAR) (Enders, 
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2010; Little & Rubin, 2002; Van Buuren, 2012). MCAR assumes that the probability of 

missingness does not depend on any observed or missing values. MAR assumes that the 

probability of missingness depends on the observed values but not on the missing values. 

MNAR assumes that the probability of missingness depends on the missing values. In the 

past decades, there has been an increasing interest in missing data handling approaches for 

all these mechanisms. For example, multiple imputation and full information maximum 

likelihood estimation handle MAR data, and selection modeling and pattern mixture 

modeling are employed when the data are MNAR (Enders, 2010; Little & Rubin, 2002). 

Most of these approaches assume linear relationships among variables. In recent years, 

researchers have developed and investigated missing data handling techniques for estimating 

interaction effects in multiple regression (Bartlett, Seaman, White, & Carpenter, 2015; 

Doove, Van Buuren, & Dusseldorp, 2014; Enders, Baraldi, & Cham, 2014; Kim, Sugar, & 

Belin, 2015; Seaman, Bartlett, & White, 2012; vonHippel, 2009). Specifically, these 

approaches handle incompletely observed predictors in multiple regression with interaction 

effects.

On the other hand, there is a lack of research on proper approaches to handle incompletely 

observed indicators in latent variable interactions when the predictors are not measured 

directly, but are represented by a confirmatory factor model with indicators in latent variable 

interactions. To address this issue, we investigated full information maximum likelihood 

(FIML) estimation for two latent variable interaction methods: product indicator (PI; Kenny 

& Judd, 1984) and latent moderated structural equations (LMS; Klein & Moosbrugger, 

2000; Moosbrugger, Schermelleh-Engel, & Klein, 1997; Schermelleh-Engel, Klein, & 

Moosbrugger, 1998). We investigate three variants of the PI method: constrained product 

indicator (CPI; Jöreskog & Yang, 1996; Kenny & Judd, 1984), generalized appended 

product indicator (GAPI; Wall & Amemiya, 2001), and unconstrained product indicator 

(UPI; Marsh, Wen, & Hau, 2004). These latent variable interaction methods are available in 

the major SEM software packages; Mplus (Muthén & Muthén, 1998–2015), R package 

lavaan (Rosseel, 2012), and LISREL (Jöreskog & Sörbom, 2015) can be used for PI; Mplus 
and R package nlsem (Umbach et al., 2015) can be used for LMS. We conducted a 

simulation study to investigate whether FIML produces unbiased parameter estimates, which 

leads to valid statistical inferences for these methods.

The structure of the manuscript is the following. First, we reviewed three approaches to 

handle incompletely observed predictors in multiple regression with interaction effects that 

were relevant to FIML for latent variable interaction methods: listwise deletion, “just 

another variable” (JAV) multiple imputation, and FIML estimation. We evaluated them 

theoretically and in light of published simulation studies. We discussed other missing data 

handling approaches in the General Discussion section. Second, we introduced the latent 

variable interaction methods (PI and LMS) and provided the details of how FIML handles 

incompletely observed indicators in each method. Third, we conducted a simulation study to 

investigate how FIML performed under various conditions, including sample sizes, 

interaction effect sizes, missing data rates, and missing data mechanisms. Fourth, we applied 

these methods to a substantive example with incompletely observed indicators. Finally, we 

discussed our results and findings. Throughout the manuscript, we focused on the situation 

where the predictors (or indicators of predictors) had missing values. We discussed the 
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situation where the outcome (or indicators of outcome) had missing values in the General 

Discussion section.

Multiple regression with interaction effects

Without loss of generality, we consider the interaction effect between two predictors ξ1 and 

ξ2 of outcome η (Equation [1]):

(1)

where ξ1 ξ2 is the interaction term (product of ξ1 and ξ2); ζ is the disturbance; γ0 is the 

intercept; γ1, γ2, and γ3 are the regression coefficients. In this section, we described and 

evaluated three approaches to handle incompletely observed predictors in multiple 

regression with interaction effects.

Listwise deletion

In listwise deletion (or complete-case analysis), participants are eliminated from the analysis 

when they have missing values in any variables (ξ1, ξ2, η). Little’s (1992) theoretical work 

has shown that listwise deletion leads to unbiased γ0, γ1, γ2, γ3 estimates and valid 

statistical inferences in two situations: (a) predictors are MCAR, and/or (b) the missingness 

of a predictor depends on the observed values of other predictors. These two conditions are 

more restrictive than MAR. Another important disadvantage is that, compared to JAV and 

FIML (discussed later), both which use all observed data, listwise deletion often has lower 

statistical power due to reduced sample sizes. Simulation studies by Enders et al. (2014) and 

Seaman et al. (2012) have shown that when ξ1 and/or ξ2 are MCAR, listwise deletion results 

in unbiased γ0, γ1, γ2, γ3 estimates. However, the lower-order effect (γ0, γ1, γ2) estimates 

have larger variances compared to those by JAV and FIML. When ξ1 and/or ξ2 are MAR, 

listwise deletion can produce biased γ0, γ1, γ2, γ3 estimates with smaller variances 

compared to those by JAV and FIML. Therefore, listwise deletion is not recommended. We 

do not consider this approach for latent variable interactions.

Just another variable

Just another variable (JAV) is a Bayesian parametric multiple imputation approach (Bartlett 

et al., 2015; Enders et al., 2014; Kim et al., 2015; Seaman et al., 2012; von Hippel, 2009). 

Without loss of generality, consider that ξ1 is incompletely observed and ξ2 and η are 

completely observed in Equation (1). When ξ1 has missing values, the interaction term ξ1 ξ2 

is also incompletely observed. JAV assumes that the conditional distribution of the 

incompletely observed variables (ξ1 and ξ1 ξ2) on the completely observed η and ξ2 is 

multivariate normal (MVN; Equation [2]):

(2)
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where ξ1 and ξ1 ξ2 are linearly conditional on η and ξ2 with parameters βs and τs; βs are 

the regression coefficients; τs are the residual variances and covariances; JAV is an iterative 

process between two steps. In the first step, missing values of ξ1 and ξ1 ξ2 are imputed 

using Equation (2). We use the observed values of η and ξ2 and the estimates of βs and τs to 

impute ξ1 and ξ1 ξ2. In the second step, the estimates of βs and τs are updated by random 

draws from the β and τ matrices in Equation (2), which are based on the observed values of 

η and ξ2, imputed values of ξ1 and ξ1 ξ2, and the specified prior distributions of βs and τs.1 

Data sets with imputed values are created after every specified number of cycles. Data 

augmentation algorithm (Enders 2010; Little & Rubin, 2002) or multivariate imputation via 

chained equations algorithm (Van Buuren, 2012) can be employed in the imputation 

processes.2 After creating multiple complete data sets with imputed values, we estimate the 

interaction model in Equation (1) for each data set. Each data set shall provide different sets 

of regression coefficient estimates and statistical inferences of the regression coefficients. 

These sets of results are combined (pooled) to one set of regression coefficients estimates 

and statistical inferences (Enders, 2010; Little & Rubin, 2002).

Theoretical work by Bartlett et al. (2015) and Seaman et al. (2012) has shown that JAV only 

produces consistent γ0, γ1, γ2, γ3 estimates when ξ1 is MCAR. The key reason is that ξ1 ξ2 

is nonlinearly related to ξ2. In fact, the distribution of ξ1 ξ2 is a nonlinear function that 

involves ξ2 (Aroian, 1944; Bohrnstedt & Goldberger, 1969). Therefore, the imputation 

model for ξ1 ξ2 in Equation (2) is misspecified. Another reason is that the distribution of ξ1 

ξ2 is nonnormal, which also violates the assumption of the conditional distribution of ξ1 ξ2. 

Given these reasons, Seaman et al. (2012) have shown that the estimates of βs and τs are 

only consistent when ξ1 is MCAR. Only consistent estimates of βs and τs produce imputed 

values of ξ1 and ξ1 ξ 2 that result in consistent γ0, γ1, γ2, γ3 estimates. In addition to the 

theoretical work, simulation studies by Bartlett et al. (2015), Enders et al. (2014), Kimet al. 

(2015), and Seaman et al. (2012) have investigated the biases and variances of γ0, γ1, γ2, γ3 

estimates. When ξ1 is MCAR, JAV produces unbiased γ0, γ1, γ2, γ3 estimates. Moreover, 

the lower-order effect estimates have smaller variances compared to those obtained by 

listwise deletion. When ξ1 is MAR and normal, JAV produces unbiased γ3 estimates. When 

ξ1 is MAR and nonnormal, JAV can result in biased γ3 and lower-order effect estimates with 

larger variances compared to those produced by listwise deletion. The bias of γ3 becomes 

more pronounced with the increase of interaction effect size.

1In standard multiple imputation applications, we use noninformative prior distributions of parameters (e.g., Bartlett et al., 2015). As 
an alternative method to update the estimates of βs and τ s, we can use the random draws from the mean vector and covariance matrix 
from the conditional distribution of ξ1 and ξ1ξ2 (Equation [2]). Then, we transform these estimates into βs and τs.
2Data augmentation algorithm iteratively cycles between imputation step (I-step) and permutation step (P-step). I-step is the first step 
and P-step is the second step described in the main text. In the multivariate imputation via chained equations algorithm, the missing 
values of ξ1 and ξ1ξ2 are imputed sequentially, one variable at a time. For example, ξ1 is imputed before ξ1ξ2. To impute ξ1, first, 
we assume the conditional distribution of ξ1 on the observed values of η and ξ2 and the imputed values of ξ1ξ2 are normal. Second, 
the parameters of this conditional distribution are estimated by random draws from their Bayesian estimated posterior distributions, 
which are based on the observed values of η and ξ2, imputed values of ξ1ξ2, and the specified prior distributions of parameters. 
Third, the imputed values of ξ1 are updated using the parameter estimates, observed values of η and ξ2, and imputed values of ξ1ξ2. 
To impute ξ1ξ2, we assume the conditional distribution of ξ1ξ2 on the observed values of η and ξ2 and the imputed values of ξ1 is 
normal. We follow the same steps above to impute ξ1ξ2. The distributional assumptions of ξ1 and ξ1ξ2 in this algorithm are identical 
to the distributional assumption in equation 2. Therefore, data augmentation algorithm and multivariate imputation via chained 
equations algorithm are the same in JAV approach (Van Burren, 2012, p. 116).
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Full information maximum likelihood estimation

Without loss of generality, we continue to consider the same scenario that ξ1 is incompletely 

observed and ξ2 and η are completely observed. Full information maximum likelihood 

estimation (FIML) maximizes the sample log-likelihood function (Equation [3]) to estimate 

γ0, γ1, γ2, and γ3.

(3)

where l is the sample log-likelihood function;  is the summation function across 

cases 1 to N; ln(·) is the natural logarithm function; f(wi) is the probability density function 

for the vector of variables w for case i. When all variables are completely observed in 

Equation (1), w = (η, ξ1, ξ2, ξ1ξ2). FIML allows cases with missing values on some 

variables. In other words, it utilizes all observed variables for each case, and thus the name 

“full information.” Equation (3) implies that we need to specify the distributions for w (i.e., 

specify f (wi)). FIML assumes that all variables (η, ξ1, ξ2, ξ1 ξ2) are linearly related with 

each other and are multivariate normally distributed. When ξ1 and ξ1 ξ2 are incompletely 

observed, FIML assumes that their conditional distribution on η and ξ2 is multivariate 

normal. The sample log-likelihood function in Equation (3) can be rewritten as Equation (4):

(4)

where (·)T is the matrix transpose function; | · | is the determinant function; (·)−1 is the matrix 

inverse function; ki is the number of completely observed variables for case i; μi and Σi are 

the elements of the model-implied mean vector and covariance matrix that correspond to the 

observed data (wi) for case i. The log-likelihood function is maximized to obtain the FIML 

parameter estimates.

FIML is closely related to JAV. Both assume that the incompletely observed variables (ξ1 

and ξ1 ξ2) are linearly related to the completely observed variables (η and ξ2). Both make 

the same assumption about the conditional distribution of ξ1 and ξ1 ξ2. In fact, JAV is 

equivalent to FIML asymptotically (Little & Rubin, 2002, p. 201). The theoretical 

justification by Bartlett et al. (2015) and Seaman et al. (2012) that JAV can only produce 

consistent γ0, γ1, γ2, γ3 estimates when ξ1 is MCAR is generalizable and applicable to 

FIML asymptotically. This is also supported by Yuan’s (2009) and Yuan and Savalei’s 

(2014) theoretical work. In the more general settings to multiple regression with interaction 

effects, they have shown that FIML estimation that maximizes Equation (4) does not 

produce consistent covariance estimates of the variables when the MAR variables (here, ξ1 

and ξ1 ξ2) and the completely observed variables accounting for the missingness (here, η 
and ξ2) are nonlinearly related. As a result, γ0, γ1, γ2, γ3 estimates, which are derived from 

these covariance estimates, are not consistent. The simulation studies by Enders et al. (2014) 
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have shown that the biases and variances of γ0, γ1, γ2, γ3 estimates are nearly the same 

between FIML and JAV when sample size ≥ 200. The results further support the equivalence 

between FIML and JAV for multiple regression with interaction effects.

Latent variable interactions

Multiple regression makes two assumptions about the predictors ξ1 and ξ2. First, it is 

assumed that ξ1 and ξ2 are perfectly reliable. Second, the underlying constructs of ξ1 and ξ2 

are represented by a single variable. When ξ1 and ξ2 are not perfectly reliable and the 

underlying constructs are represented by confirmatory factor models, latent variable 

interaction methods are appropriate to model the interaction effects between ξ1 and ξ2 on 

outcome η. In this section, we introduced two methods to model latent variable interactions: 

product indicator (PI) and latent moderated structural equations (LMS). For each method, 

we described and evaluated how FIML handles the incompletely observed indicators of ξ1 

and ξ2. For simplicity of the presentation, we treated outcome η as a single variable, 

although in both PI and LMS, η could be a factor with multiple indicators.

Product indicator

In latent variable interactions, the interaction term ξ1 ξ2 is the product of factors ξ1 and ξ2. 

Unlike multiple regression, we cannot multiply ξ1 and ξ2 to form the interaction term. To 

represent ξ1 ξ2, product indicator (PI) multiplies the indicators of ξ1 and ξ2 (product 

indicators) as indicators of ξ1 ξ2. There are three main issues when specifying the models in 

PI. The first issue is the selection of product indicators of ξ1 ξ2. Consider a widely studied 

situation where ξ1 and ξ2 have three indicators each (X1, X2, X3 and X4, X5, X6) (e.g., 

Cham, West, Ma, & Aiken, 2012; Kelava et al., 2011; Marsh et al., 2004; Wall & Amemiya, 

2001), so there are nine possible product indicators (X1X4, X1X5, X1X6, X2X4, X2X5, 

X2X6, X3X4, X3X5, X3X6). Simulation studies suggest creating three product indicators 

using the three most reliable indicators of ξ1 and ξ2, respectively (Jackman, Leite, & 

Cochrane, 2011; Marsh et al., 2004; Wu, Wen, Marsh, & Hau, 2013). This produces 

unbiased γ3 estimates with unbiased estimated standard errors. It also reduces the 

complexity of model specification in SEM software, and it can be employed in scenarios 

with any number of indicators of ξ1 and ξ2.3 The second issue is centering the indicators of 

ξ1 and ξ2 in the presence of missing values. Centering indicators at their means and then 

computing the product indicators can simplify the model specification by fixing the latent 

intercepts of the indicators and product indicators to zero. This greatly increases the chances 

of successful model convergence (Algina & Moulder, 2001). When the indicators of ξ1 and 

ξ2 have missing values, we suggest using the FIML estimated means of the indicators. 

Adopting these two solutions and assuming all indicators have equal reliabilities, the 

measurement model of ξ1, ξ2, and ξ1 ξ2 can be expressed as in Equation (5):

3In addition to the suggested method, Foldnes and Hagtvet (2014) suggest a post-hoc analysis to examine how γ0, γ1, γ2, γ3 
estimates are affected by choosing different product indicators of ξ1 ξ2.
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(5)

where λs are the factor loadings; δs are the unique factors, which are set to be uncorrelated 

with all other unique factors. The subscripts of λs and δs correspond to the indicators. The 

third issue is the choice of PI method out of its three variants: constrained product indicator 

(CPI), generalized appended product indicator (GAPI), and unconstrained product indicator 

(UPI). The three variants of PI add model constraints related to ξ1 ξ2, which provide more 

information to describe the distribution of ξ1 ξ2 (Aroian, 1944; Bohrnstedt & Goldberger, 

1969; Jöreskog & Yang, 1996). Table 1 summarizes the constraints for each PI variant (see 

also Cham et al., 2012; Kelava et al., 2011). CPI has the most constraints, followed by GAPI 

and UPI. Simulation studies find that CPI produces unbiased γ3 estimates with higher 

statistical power than GAPI and UPI when the indicators of ξ1 and ξ2 are normally 

distributed. When these indicators are nonnormally distributed, CPI produces biased γ3 

estimates. GAPI and UPI produce unbiased γ3 estimates when sample size ≥ 500 (Cham et 

al., 2012; see also Coenders, Batista-Foguet, & Saris, 2008; Marsh et al., 2004; Wall & 

Amemiya, 2001). Note that these simulation studies only investigate the situation where the 

indicators of ξ1 and ξ2 are completely observed.

When the indicators of ξ1 and/or ξ2 have missing values, FIML can be used with PI (Zhang, 

2010). FIML for PI is an extension of FIML for multiple regression with interaction effects. 

The sample log-likelihood function is the same as Equations (3) and (4); w is a vector of 

indicators of ξ1 and ξ2, product indicators of ξ1ξ2, and outcome η. In our example, w = (X1, 

X2, X3, X4, X5, X6, X1X4, X2X5, X3X6, η). We expect that the results for JAV and FIML for 

multiple regression with interaction effects are generalizable to FIML for PI; FIML for PI 

only produces consistent γ0, γ1, γ2, γ3 estimates when the indicators of ξ1 are MCAR. The 

first and the key reason is that FIML for PI also maximizes the sample log-likelihood 

function, which incorrectly assumes that the product indicators are linearly related to the 

indicators of ξ1 and ξ2. When the indicators of ξ1 are MAR, FIML estimation produces 

inconsistent covariance estimates of w (Yuan, 2009; Yuan & Savalei, 2014). As a result, γ0, 

γ1, γ2, γ3 estimates are not consistent. Second, FIML for PI incorrectly assumes that the 

conditional distribution of the product indicators on the completely observed elements in w 
is multivariate normal. Similar to the distribution of ξ1ξ2, the distribution of product 

indicators is nonnormal and nonlinearly related to the indicators of ξ1 and ξ2 (Aroian, 1944; 

Bohrnstedt & Goldberger, 1969). Third, η is nonnormally distributed even when the 

indicators of ξ1 and ξ2 are multivariate normally distributed (Klein & Moosbrugger, 2000; 

more later). Our expectation is supported by the simulation studies by Zhang (2010) that 
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have investigated FIML for CPI and UPI. When the indicators of ξ1 and ξ2 are MCAR, CPI 

and UPI produce unbiased γ3 estimates under normality of indicators. Only UPI produces 

unbiased γ3 estimates under nonnormality of the indicators. When the indicators are MAR, 

CPI and UPI lead to biased γ3 estimates in all indicator distribution conditions. The bias 

increases as the missing data rate increases. These results match the theoretical work for JAV 

and FIML for multiple regression with interaction effects. In the MCAR condition, the 

differences between CPI and UPI under different indicator distributions are consistent with 

those when the indicators are completely observed.

Latent moderated structural equations

Latent moderated structural equations (LMS) belong to a class of latent variable interaction 

methods termed distribution analytic methods (Kelava et al., 2011). In distribution analytic 

methods, the measurement model for ξ1ξ2 is not specified. Distribution analytic methods 

use estimation procedures to calculate model parameters (including γ0, γ1, γ2, γ3) and 

make statistical inferences directly. LMS begins by decomposing the vector of ξ1 and ξ2 as 

in Equation (6) (Klein &Moosbrugger, 2000, equation 8):

(6)

where ξ is a column vector of ξ1 and ξ2; A is a lower triangular matrix produced by the 

Cholesky decomposition of the covariance matrix of ξ; z is a column vector of variables z1 

and z2; z1 and z2 are mutually independent and are standard normally distributed. LMS also 

rewrites the interaction model in Equation (1) (Klein &Moosbrugger, 2000, equation 2):

(7)

where Γ is a row vector of regression coefficients of the lower-order effects except the 

intercept; Ω is a square matrix containing the interaction effect coefficient(s) in upper 

diagonal. Combining Equations (6) and (7), the interaction model can be decomposed into 

Equation (8) (Klein & Moosbrugger, 2000, equation 10):
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(8)

Equations (6) to (8) decompose the interactive relationship of ξ1 and ξ2 to η into linear and 

nonlinear components. The last line of Equation (8) shows that η is linearly related to z2, but 

nonlinearly related to z1. Because of the nonlinear component in Equation (8), η is 

nonnormally distributed even when ξ1 and ξ2 are multivariate normally distributed. This is 

why FIML for PI (as well as JAV and FIML for regression with interaction effects) 

incorrectly assumes that η is normally distributed.

LMS correctly specifies the nonlinear relationships between ξ1, ξ2, and η, as well as the 

nonnormal distribution of η. In turn, LMS correctly specifies the sample log-likelihood 

function of FIML to obtain the parameter estimates and other results. Assuming the 

indicators of ξ1 and ξ2 are multivariate normal, Klein and Moosbrugger (2000, p. 463) have 

shown that the conditional distribution of the indicators of all factors (ξ1, ξ2, and η) on z1 

are multivariate normal. Equivalently, the multivariate distribution of indicators of all factors 

(ξ1, ξ2, and η) is a mixture of multivariate normal distributions across the values of z1 

(Equation [9]; Klein &Moosbrugger, 2000, equation 15):

(9)

Different from PI, w = (X1, X2, X3, X4, X5, X6, η) because no product indicators are 

involved in LMS; ϕ(z1) is the normal density function of z1, which equals ; ϕ(w) is 

the multivariate normal density function of w, which equals 

; μ and Σ are the model-implied mean vector and 

covariance matrix of w; ∫(·) dz1 is the integration function across the values of z1 because z1 

is continuous. As discussed previously, LMS does not require any product indicators. Using 

Equations (3) and (9), the sample log-likelihood function of FIML for LMS is
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(10)

To maximize the sample log-likelihood function in Equation (10), the computational 

algorithm is tailored to include numerical integration algorithm(e.g., rectangular integration, 

Hermite-Gaussian quadrature integration) to approximate the integration (Klein & 

Moosbrugger, 2000, pp. 464–467). The numerical integration algorithm approximates by 

splitting the integration to a total of M dimensions, each with a different weight m and a 

different estimate for ϕ(w). As discussed, FIML for LMS correctly specifies the nonlinear 

relationships between ξ1, ξ2, and η. It correctly handles the no-normal distribution of η. It 

assumes that all indicators of ξ1 and ξ2 are multivariate normal. When the distributional 

assumption holds, FIML for LMS shall produce unbiased γ0, γ1, γ2, γ3 estimates for 

MCAR and MAR indicators of ξ1 and ξ2. Simulation studies find that when indicators of ξ1 

and ξ2 are completely observed and the distributional assumption holds, FIML for LMS 

produces unbiased γ0, γ1, γ2, γ3 estimates with lower variances compared to those by PI 

(Cham et al., 2012; Jackman et al., 2012; Marsh et al., 2004; Wu et al., 2013). When the 

distributional assumption is violated, FIML for LMS can produce biased γ3 estimates 

(Cham et al., 2012).

Current study

We conducted a simulation study to investigate how FIML for CPI, GAPI, UPI, and LMS 

performs when the indicators of ξ1 and/or ξ2 have missing values. We hypothesize that 

when the indicators are MCAR and multivariate normal, all methods lead to unbiased 

estimates and valid statistical inferences. LMS results in γ0, γ1, γ2, γ3 estimates with the 

smallest variances. When the indicators are MAR and multivariate normal, only LMS leads 

to unbiased γ0, γ1, γ2, γ3 estimates and valid statistical inferences. We applied these 

methods to a substantive example with incompletely observed indicators of ξ1 and ξ2.

Simulation study: Method

Population model

We investigated the interaction model in Equation (1). To set the values of γ0, γ1, γ2, γ3 and 

the variance of disturbance ζ, we assumed that ξ1, ξ2, and η were measured directly, 

perfectly reliable, and analyzed via multiple regression. We set γ1, γ2, and disturbance 

variance such that the linear effects of ξ1 and ξ2 yield a population ρ2 = 0.3. We 

manipulated three levels of γ3 in terms of ρ2 increment from linear model to interaction 

model (squared semipartial correlation, sr2) = 0 (no effect), 0.05 (small to medium effect), 

and 0.10 (medium effect; Cohen, 1992). We used the previous example where ξ1 had three 

indictors (X1, X2, X3) and ξ2 had three indicators (X4, X5, X6). To show that all methods are 
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applicable for η as a factor, we set η having three indicators. We set the values of factor 

loadings and unique factor variances so that Cronbach’s α of each construct = 0.7. All 

unique factors were uncorrelated with each other. We set the latent intercepts of X1 to X6 to 

an arbitrary value (= 5) to investigate the performance of using FIML to mean center X1 to 

X6. Table 2 summarizes the parameters.

Sample size

To adequately represent the common situations in behavioral research, we manipulated five 

levels of sample size (N) = 100, 200, 500, 1,000, 5,000. N = 200 approximates the median 

sample size in multiple regression with interaction effects (Jaccard & Wan, 1995); N = 5,000 

resembles the asymptotic situation.

Missing data rates

The indicators of ξ1 (X1, X2, X3) were incompletely observed, while those of ξ2 (X4, X5, 

X6) were completely observed. Our substantive example also had similar missing data 

patterns. Because the computational algorithms for FIML estimation handle any missing 

data patterns, this setting will not limit the generalizability of results; X1, X2, X3 were set to 

three missing data rates = 0%, 15%, 25%. The 15% and 25% conditions had been studied 

extensively (e.g., Collins, Schafer, & Kam, 2001; Savalei, 2010).

Missing data mechanisms

To generate incompletely observed Xs in these scenarios, we first created one set of 

completely observed Xs. In 15% and 25% missing data rates, X1, X2, and X3 were all 

MCAR or MAR. In MCAR condition, we generated two scenarios with different missing 

data patterns. In MAR condition, we generated six scenarios that had different missing data 

patterns and used different combinations of variables to explain the missingness of X1, X2, 

and X3. Table 3 describes these missing data scenarios.

Latent variable interaction methods

In FIML for CPI, GAPI, and UPI, we mean-centered X1 to X6 using the FIML estimated 

means and fixed their latent intercepts to zero in the models, so as to improve the chances of 

successful model convergence (Algina & Moulder, 2001). In FIML for LMS, we freely 

estimated the latent intercepts of X1 to X6, which is the default model specification in SEM 

software. We used Hermite-Gaussian quadrature integration with 16 integration points per 

integration dimension (Klein &Moosbrugger, 2000). All analyses were conducted using 

Mplus Version 7.11 (Muthén & Muthén, 1998–2015). In all methods, we overrode software 

defaults by increasing the maximum number of iterations and decreasing the convergence 

criterion. The Appendix presents the settings.

To sum up, we manipulated five factors (interaction effect size [three levels], sample size 

[five levels], missing data rate [three levels], missing data mechanism [two levels], latent 

variable interaction methods [four levels]) resulting in a total of 1,440 conditions. We 

randomly generated 1,200 replications for each condition in SAS/IML Version 9.3. In all 

conditions, the indicators X1 to X6 were multivariate normally distributed. We discussed the 

situation where X1 to X6 were nonnormal in the General Discussion section.
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Dependent measures

To investigate the estimates of γ0, γ1, γ2, and γ3, we used these dependent measures: model 

convergence rate, relative bias, mean squared error, standard error ratio, coverage rate, actual 

Type I error rate (γ3 only), and statistical power (γ3 only).

Model convergence rate—A set of model results is considered to be properly converged 

if it satisfies three conditions: (a) no errors reported by Mplus, (b) no negative variance 

estimates, and (c) no out-of-bound correlation estimates. The model convergence rate in one 

condition is the proportion of number of properly converged replications to the total number 

of replications (= 1,200).

Relative bias—Relative bias of a parameter estimate is the difference between the mean 

parameter estimate across converged replications and the population value relative to the 

population value.

(11)

where θ refers to any parameter (γ0, γ1, γ2, γ3); θ̂ is the parameter estimate. We used the 

suggestion by Hoogland and Boosma (1998) that an unbiased parameter estimate should 

have absolute value of relative bias < 0.05.

Standard error ratio—Standard error ratio is the average ratio of estimated standard error 

to the standard deviation of parameter estimates across converged replications.

(12)

where Σk(·) is the summation function across converged replications; k is the number of 

converged replications; SE(θ̂) is the estimated standard error of θ̂; SD(θ̂) is the standard 

deviation of θ̂ across converged replications. Standard error ratio evaluates the bias of 

estimated standard error. We used the suggestion by Hoogland and Boosma (1998) that an 

unbiased standard error estimate should have the ratio within 0.9 to 1.1.

Mean squared error—Mean squared error (MSE) is the average squared difference 

between the parameter estimate and its population value across converged replications.

(13)
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MSE is also the sum of squared bias and variance of parameter estimate. We prefer a 

parameter estimate with small MSE.

Actual Type I error rate and statistical power (γ3 only)—Actual Type I error rate is 

the proportion of converged replications that incorrectly reject the null hypothesis of no 

interaction effect (H0: γ3 = 0; two-tailed test) at α (set at .05) when the interaction effect is 

absent (sr2 = 0). Statistical power is the proportion of replications that correctly reject this 

null hypothesis when the interaction effect is present (sr2 = 0.05 or 0.10). We used the 

suggestion by Savalei (2010) that actual Type I error rate should be within the interval of 

. This results in the suggested interval = [0.036, 0.064].

Coverage rate—Coverage rate is defined as the proportion of converged replications that 

the 95% Wald confidence interval of a parameter includes its population value. Coverage 

rate reflects both the bias of parameter estimate and the bias of estimated standard error. We 

used the suggestion by Collins et al. (2001) that a satisfactory coverage rate should be > 0.9.

Results

We presented the simulation study results in the following order: model convergence rate, 

performance of interaction effect γ3, and performance of lower-order effects (γ0, γ1, γ2). 

When all indicators were completely observed, the results of all dependent measures were 

consistent with those in the literature (Cham et al. 2012; Coenders et al., 2008; Klein & 

Moosbrugger, 2000; Marsh et al., 2004; Wall & Amemiya, 2001). Given the space limit, we 

did not present these results in the text and summarized the results in tables and figures. We 

focused on the results when the indicators were MCAR or MAR. The results were consistent 

across the two scenarios of MCAR and the six scenarios of MAR, respectively. Therefore, 

we aggregated the results across the various scenarios and presented the results as MCAR 

and MAR conditions.4 It is noted that the results in the complete data condition were always 

better than those in the MCAR or MAR conditions because completely observed data have 

more information. To simplify the presentation, we dropped the term FIML because all four 

methods (CPI, GAPI, UPI, LMS) used FIML estimation. A full report of the results is 

available in the online supplementary materials.

Model convergence rate

Across all conditions, LMS produced the highest average convergence rate (99.7%). UPI and 

CPI performed similarly but were worse than LMS (average coverage rates = 92.2% and 

93.7%, respectively). GAPI had the lowest average convergence rate (71.8%, range = 39.6% 

to 93.3%). In particular, GAPI had low convergence rates in MCAR and MAR conditions. In 

subsequent analyses, we investigated the first 1,000 converged replications in each 

condition.

4The full report of the results in each MCAR and MAR scenarios is available upon request.
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The interaction effect

Parameter estimates and relative biases—Figure 1 presents the mean estimates and 

relative biases of γ3. The four panels in Figure 1 show the results of different combinations 

of missing data rate (15% or 25%) and interaction effect size (sr2 = 0.05 or 0.1). In each 

panel, we presented the results according to the sample sizes (horizontal axis, from N = 100 

to N = 5,000), and missingness conditions (three subpanels, left: complete data; middle: 

MCAR; right: MAR). The vertical axis is the mean estimates. The horizontal line indicates 

the population value. The gray box highlights the acceptable region of γ3 estimates with 

relative bias < 0.05.

When X1, X2, X3 were MCAR, missing data rate = 25%, and sr2 = 0.05, CPI produced 

unbiased estimates when N ≥ 200. GAPI and UPI produced unbiased estimates when N ≥ 

500 while LMS produced unbiased estimates across all sample sizes. The ranking in terms 

of relative bias was LMS < CPI < GAPI < UPI. When X1, X2, X3 were MCAR and sr2 = 

0.10, CPI and LMS produced unbiased estimates across all sample sizes while GAPI and 

UPI produced unbiased estimates when N ≥ 1,000. The ranking was LMS < CPI < GAPI ~ 

UPI. When X1, X2, X3 were MAR, missing data rate = 15%, and sr2 = 0.05, CPI produced 

unbiased estimates across all sample sizes, but GAPI failed to produce unbiased estimates 

across all samples sizes. UPI produced unbiased estimates only when N = 5,000, and LMS 

produced unbiased estimates when N ≥ 200. The ranking was CPI < LMS < UPI < GAPI. 

When missing data rate = 25% and sr2 = 0.05, CPI produced unbiased estimates when N ≥ 

500. GAPI and UPI failed to produce unbiased estimates across all samples sizes. When N = 

200, relative bias by GAPI and UPI = 33% and 31%, respectively. LMS produced unbiased 

estimates across all sample sizes, with slightly large bias at N = 100 (relative bias = 5.6%). 

The ranking was LMS<CPI <GAPI~UPI. When sr2 = 0.10, CPI produced unbiased 

estimates when N ≥ 200. GAPI failed to produce unbiased estimates across all sample sizes. 

When N = 200 and missing data rate = 25%, relative bias by GAPI = 26%. UPI only 

produced unbiased estimates when missing data rate = 15%. LMS resulted in unbiased 

estimates across all sample sizes. The ranking was LMS < CPI < UPI < GAPI.

Mean squared error—Table 4 presents the mean squared errors (MSEs) of γ3 estimates. 

MSE is the sum of squared bias and variance of γ3 estimates. Thus, the conditions that have 

large relative biases also have large MSEs. In addition, the variance of γ3 estimates 

decreases when sample size N increases. We prefer a latent variable interaction method with 

small MSEs.

When X1, X2, X3 were MCAR, LMS also had the lowest MSEs across all sample sizes and 

interaction effect sizes. CPI had larger MSEs than LMS across all conditions. When sample 

sizes increased, the differences of MSEs between CPI and LMS increased. GAPI and UPI 

had much larger MSEs than LMS when N ≤ 200 (at least two times as large). With 

increasing missing data rate, MSEs by GAPI and UPI further increased when N ≤ 200, 

suggesting large variation of γ3 estimates in these conditions. The ranking was 

LMS<CPI<GAPI~UPI. When X1, X2, X3 were MAR, LMS performed better than all PI 

methods across sample sizes, missing data rates, and interaction effect sizes. Unlike PI, 

MSEs of LMS were not much affected by missing data rates. CPI had larger MSEs than 
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LMS across all conditions. At N = 5,000, the MSEs by CPI were also two times those by 

LMS. Given that CPI and LMS had acceptable biases of γ3 estimates, the MSE results 

meant that CPI was a less efficient method than LMS that produced more variable γ3 

estimates. GAPI and UPI produced much larger MSEs compared to LMS across all 

conditions (at least two times as large). The ranking was LMS < CPI < GAPI ~ UPI.

Standard error ratio—Table 5 presents the standard error ratios of γ3 estimates. When 

the ratio = 1, standard error (SE) is unbiasedly estimated. When the ratio < 1, SE is 

underestimated. When the ratio > 1, SE is overestimated. We used the suggestion that an 

unbiased SE estimate should have SER within 0.9 to 1.1 (Hoogland & Boosma, 1998). The 

results of the complete data condition were consistent with simulation studies in literature. 

CPI and LMS produced unbiased SEs when N ≥ 200. CPI and LMS produced slightly 

underestimated SEs when N = 100. The biases of LMS were smaller than those of CPI. 

GAPI and UPI produced unbiased SEs when N ≥ 1,000. GAPI and UPI often 

underestimated SEs when N ≤ 500. The ranking of the four methods was LMS < CPI < 

GAPI ~ UPI.

When X1, X2, X3 were MCAR, LMS had less biased SEs than all PI methods and produced 

unbiased SEs when N ≥ 200. CPI and LMS produced slightly underestimated SEs when N = 

100. The biases of LMS were smaller than those of CPI. When sr2 = 0.05, GAPI and UPI 

produced unbiased SEs only when N ≥ 1,000. When sr2 = 0.10, GAPI and UPI often 

produced biased SEs. The ranking was LMS < CPI < GAPI ~ UPI.

When X1, X2, X3 were MAR, LMS also had less biased SEs than all PI methods. LMS 

produced unbiased SEs when N ≥ 200. CPI slightly underestimated SEs when N ≤ 500. The 

biases of LMS were often smaller than those of CPI. GAPI and UPI produced unbiased SEs 

only when N ≥ 1,000 and sr2 = 0.05. The ranking was LMS< CPI < GAPI ~ UPI.

Actual Type I error rate and statistical power

Figure 2 presents the actual Type I error rates of γ3. We averaged the results across samples 

sizes because the findings were consistent. We used the suggestion that actual Type I error 

rate should be between 0.036 and 0.064 (Savalei, 2010). All methods had acceptable Type I 

error rate of γ3 when X1, X2, X3 were completely observed, MCAR, or MAR. The actual 

Type I error rates by GAPI and UPI were on the lower bound (= 0.036) in the complete data 

and MCAR conditions. These results imply that GPI and UPI had lower statistical power in 

these conditions.

Figure 3 presents the statistical power of γ3 when sr2 = 0.05 (panel A) and 0.10 (panel B), 

respectively. We averaged the results across samples sizes because the findings were 

consistent. As expected, statistical power increased when the interaction effect size (sr2) 

increased. Among all methods, LMS had the highest statistical power when X1, X2, X3 were 

completely observed, MCAR, or MAR. The ranking of the four methods in terms of 

statistical power was LMS > CPI > GAPI > UPI.

Coverage rate—Table 6 shows the coverage rates of γ3. Coverage rate reflects a 

combination of the bias of γ3 estimate and the bias of the estimated standard error. We used 
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the suggestion that the satisfactory coverage rate should be > 0.9 (Collins et al., 2001). 

When X1, X2, X3 were completely observed or MCAR, all methods produced satisfactory 

coverage rates across sample sizes and interaction effect sizes. When X1, X2, X3 were MAR, 

CPI and LMS produced satisfactory coverage rates across interaction effect sizes and 

missing data rates. When the sample size, interaction effect size, and missing data rate 

increased, CPI, GAPI, and UPI produced lower coverage rates than LMS. When N = 5,000, 

missing data rate = 25%, and sr2 = 0.1, the minimum coverage rate = 91.3% for LMS, 73.8% 

for CPI, 42.2% for GAPI, and 64.3% for UPI.

Performance of lower-order effects

In this section, we presented the results of the lower-order effects γ0, γ1, and γ2. A full 

report of the results is available in the online supplementary materials.

Parameter estimates and relative biases—When X1, X2, X3 were completely 

observed, CPI and LMS produced unbiased γ0 estimates across sample sizes and interaction 

effect sizes. GAPI and UPI sometimes underestimated γ0 when N = 100. All four methods 

produced unbiased γ1 estimates when N ≥ 200. CPI, GAPI, and LMS produced unbiased γ2 

estimates across sample sizes and interaction effect sizes. UPI overestimated γ2 when N = 

100.

When X1, X2, X3 were MCAR, the four methods also produced unbiased γ0 estimates 

across sample sizes and interaction effect sizes. For all methods, the relative biases of γ0 

estimates decreased when sample size increased. When N = 100 or 200, the relative biases 

of γ0 estimates by GAPI and UPI were slightly larger than those by CPI and LMS. All 

methods produced unbiased γ1 estimates when N ≥ 500. When N = 200, CPI and LMS 

resulted in unbiased γ1 estimates, except the condition of missing data rate = 25%, sr2 = 

0.05. The relative bias of γ1 estimates by GAPI and UPI were larger than those by CPI and 

LMS. UPI overestimated γ1 more often than the other methods. All methods produced 

unbiased γ2 estimates when N ≥ 200. When N = 100, CPI produced unbiased γ2 estimates, 

and the other methods overestimated γ2.

All four methods generally performed worse in the MAR condition than in the complete 

data or MCAR conditions. CPI and LMS produced unbiased γ0 estimates across sample 

sizes and interaction effect sizes. GAPI and UPI produced unbiased γ0 estimates when N ≥ 

500. All methods could overestimate γ1 when N ≤ 200, while LMS had the least bias across 

conditions. When N ≥ 500, CPI and LMS produced unbiased γ1 while GAPI and UPI 

overestimated γ1. All methods could overestimate γ2 when N ≤ 200, while CPI had the least 

bias across conditions. When N ≥ 500, CPI and LMS produced unbiased γ2 while GAPI and 

UPI overestimated γ2.

Mean square error—Consistent with the results for interaction effect γ3, MSEs of the 

lower-order effects γ0, γ1, γ2 increased when sample size increased. In addition, MSEs 

increased slightly when the interaction effect size increased or the missing data rates 

increased (MCAR or MAR). In the majority of the conditions, LMS outperformed all PI 

methods with the lowest MSEs. The difference between the MSEs produced by LMS and 
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those by the PI methods decreased when N ≥ 500. GAPI and UPI produced the highest 

MSEs of the lower-order effects, especially under conditions with N = 100.

Standard error ratio—In general, LMS produced acceptable standard error estimates of 

the lower-order effects with the least bias. CPI sometimes underestimated the standard errors 

when N = 100 and when X1, X2, X3 were MCAR or MAR. GAPI and UPI often 

overestimated standard errors of γ0 when N = 100 or 200.

Coverage rate—Across all conditions, all four methods produced satisfactory and similar 

coverage rates of the lower-order effects γ0, γ1, and γ2. LMS produced slightly better 

coverage rates to the reference level 95% than the PI methods. Across conditions, the 

variability of the coverage rates of γ1 by GAPI and UPI were noticeable. When N = 5,000, 

missing data rate = 25%, sr2 = 0.1, their minimum coverage rates were 15.9% and 16.3%, 

respectively.

Summary and discussion

The simulation results have supported our hypotheses that when the indicators are MCAR or 

MAR, FIML for LMS produce unbiased γ0, γ1, γ2, γ3 estimates and valid statistical 

inferences across sample sizes, missing data rates, and interaction effect sizes. It is because 

FIML for LMS makes correct distributional assumption in the sample log-likelihood 

function. In the simulation, the indicators of ξ1 and ξ2 were multivariate normally 

distributed, which met the assumptions of LMS. Our hypotheses concerning PI have been 

supported as well. In the simulation, CPI generally produced unbiased γ0, γ1, γ2, γ3 

estimates and valid statistical inferences when the indicators were MCAR. Compared to 

LMS, CPI produced γ3 estimates with larger biases and MSEs. GAPI and UPI could 

produce unbiased γ3 estimates, especially when N ≥ 500. The results of GAPI and UPI were 

acceptable since they also require N ≥ 500 to produce unbiased estimates in the complete 

data condition (Cham et al., 2012). Therefore, the results have confirmed our hypothesis that 

PI produces unbiased estimates when the indicators are MCAR. When the indicators were 

MAR, GAPI and UPI overestimated γ3. CPI produced less overestimated γ3 and sometimes 

even unbiased estimates. These results have supported our hypothesis that PI produces 

biased estimates when the indicators are MAR. FIML for PI incorrectly assumes that ξ1ξ2 

and the product indicators are normally distributed. The differences between the results by 

the CPI, GAPI, and UPI are due to the imposed model constraints in Table 1 that are related 

to the distribution of ξ1ξ2. CPI has the most model constraints, followed by GAPI and UPI. 

The results suggest that when more of these model constraints are imposed, the biases of 

parameter estimates reduce. However, compared to LMS, CPI produced γ3 estimates with 

larger biases and MSEs. When sample size increased, MSEs of CPI became much larger 

than those of LMS. The results imply that CPI is much less efficient than LMS. Thus, LMS 

should be preferred. The convergence rates by GAPI are surprisingly low, which may imply 

the dependencies between the model constraints and missing values. Given the simulation 

study results and the complexity to specify the model constraints in PI methods in SEM 

software, we recommend FIML for LMS when the indicators are MCAR or MAR and when 

they are multivariate normally distributed.
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Substantive example

We applied FIML estimation for CPI, GAPI, UPI, and LMS to a substantive example with 

incompletely observed indicators. Data were drawn from a study of 266 advanced cancer 

patients (mean age = 59.1 years, SD = 11.6) who participated in a randomized 

psychotherapy study (Breitbart et al., 2015). Patients were assessed at three time points: 

pretreatment (T1), posttreatment (T2), and two-month follow-up (T3). We adapted the 

results by McClain, Rosenfeld, and Breitbart (2003) to investigate the interaction effect 

between patients’ depression at T1 (ξ1) and the change of their inner peace well-being 

between T1 and T2 (ξ2) on their hopelessness at T3 (η). Patients’ depression at T1 was self-

reported by the 21-item Beck Depression Inventory (0 to 3 points; α = .88; Beck, Ward, 

Mendelson, Mock, & Erbaugh, 1961). Inner peace well-being (hereafter referred to as 

“Peace”) was self-reported by the four-item Peace subscale of the Functional Assessment of 

Chronic Illness Therapy Spiritual Well-being Scale (0 = not at all to 4 = very much; Brady, 

Peterman, Fitchett, Mo, & Cella, 1999). Change scores of the four items (T2 minus T1) had 

lower Cronbach’s α (.65; Edwards, 2001). Hopelessness at T3 was self-reported by the 20-

item Beck Hopelessness Scale (0 = False, 1 = True; α = .92; Beck, Weissman, Lesster, & 

Trexler, 1974). We used the average scores of the depression items and the sum of the 

hopelessness items in the latent variable interaction model. To account for unreliability of 

the change scores of Peace, we used a factor model for the four change scores.

Table 7 shows the missing data patterns of the variables; 129 patients (48.5%)were 

completely observed on all variables, 84 patients (31.6%) were missing on all four change 

scores of Peace and hopelessness at T3, and 44 patients (16.5%) were missing on 

hopelessness at T3. Little’s (1988) MCAR test showed that the variables’ means did not vary 

significantly between missing data patterns, χ2(29) = 15.00, p = .99. Jamshidian and Jalal’s 

(2010) MCAR test showed that variables’ variances and covariances were not significantly 

different between missing data patterns, p = .21. However, there was a small to medium 

relationship between treatment assignment and the three major missing data patterns, χ2(2) 

= 5.36, p = .07, Cohen’s ω = 0.14. Given this relationship and the treatment effect on 

patients’ distress (including hopelessness), we set treatment assignment as an auxiliary 

variable to account for missingness by letting it freely correlate with all variables in the 

model (Enders, 2010).

Our simulation has suggested that FIML for CPI and LMS produce unbiased parameter 

estimates when N ≥ 200. Therefore, only these methods were used in this analysis. In CPI, 

we centered depression and all four Peace change scores at their EM estimated means. We 

chose the change score with the highest reliability to form the product indicator with 

depression. LMS permits that ξ1 is a single variable and ξ2 is a factor. We also centered 

depression (ξ1) at its FIML estimated mean and set the mean of the change in Peace factor 

to zero. Table 8 shows the results by CPI and LMS. The intercept and the effect of the 

completely observed depression at T1 had similar estimates and standard errors between CPI 

and LMS (differences < 5%). The effect of the change in Peace (T2 – T1) and the interaction 

effect had different estimates (differences ~ 22%) and standard errors (differences ~ 8%). 

Several reasons can explain the differences between the two methods. First, missing data 

rates for the four Peace change scores were higher than the conditions in simulation study. In 
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the simulation, when the missing data rate increased, the biases of the parameter estimates 

by CPI were larger than those by LMS. Second, depression at T1 (ξ1) had skewness = 1.22 

and kurtosis = 2.89. The four Peace change scores (ξ2) had average skewness = 0.13 and 

kurtosis = 0.85, which exceeded the suggested values for CPI and LMS (skewness = 0, 

kurtosis < 1; Cham et al., 2012). When the indicators are nonnormal, CPI and LMS can 

produce biased parameter estimates, though CPI produces less biased estimates than LMS 

(Cham et al., 2012). Third, the outcome variable (hopelessness) at T3 had missing values. In 

this situation, LMS shall produce unbiased parameter estimates and valid inferences while 

CPI may produce biased parameter estimates and standard errors. We discuss the second and 

third reasons in more details in the General Discussion section.

In summary, Figure 4 displays the interaction effect based on the results of LMS. Patients’ 

depression at T1 was positively related to their hopelessness at T3. For the patients with 

larger increase in their inner peace well-being from T1 to T2, this positive relationship was 

reduced.

General discussion

In this manuscript, we investigated FIML estimation for four methods for estimation of 

latent variable interactions (CPI, GAPI, UPI, LMS) to handle incompletely observed 

indicators of ξ1 and/or ξ2. We conducted a simulation to investigate whether FIML for these 

methods produces unbiased parameter estimates and valid statistical inferences, and 

illustrated these methods using a substantive example. As discussed previously, we 

recommend FIML for LMS when the indicators are MCAR or MAR and are multivariate 

normally distributed. Our simulation did not consider the situation that the indicators of ξ1 

and ξ2 are nonnormal (Cham et al., 2012; Coenders et al., 2008; Klein & Moosbrugger, 

2000; Marsh et al., 2004; Wall & Amemiya, 2001). When the indicators of ξ1 and ξ2 are 

completely observed, the simulation study by Cham et al. (2012) has shown that FIML for 

LMS produces unbiased parameter estimates when the indicators have skewness = 0 and 

kurtosis < 1. FIML for GAPI and UPI produces unbiased estimates when the indicators have 

skewness < 2 and kurtosis < 6. When indicators are MCAR or MAR, FIML for CPI, GAPI, 

UPI, and LMS will not perform better than with complete data; FIML for LMS will produce 

biased estimates when MCAR or MAR indicators have skewness ≥ 2 and kurtosis ≥ 6.

Methods are needed to properly handle incompletely observed indicators of ξ1 and/or ξ2 

when they are nonnormally distributed. There are several potential candidates. Kelava, 

Nagengast, and Brandt (2014) proposed incorporating mixture modeling with LMS to 

handle nonnormally distributed indicators in the complete data condition. This method also 

uses FIML for model estimation. Second, promising imputation procedures for interaction 

effects are being developed, and these procedures need to be investigated for possible use 

with latent variable interaction models. Doove et al. (2014) developed multiple imputation 

procedures using recursive partitioning, which estimates arbitrary nonlinear relationships 

among variables. Bartlett and Morris (2015), Bartlett et al. (2015), and Carpenter and 

Kenward (2013, Chapter 7) developed the multiple imputation procedures that account for 

the interaction effects that are being tested in the analyzed model when imputing missing 

values.
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On the basis of our results that FIML for LMS leads to unbiased parameter estimates and 

valid statistics inferences for latent variable interactions, one may consider whether FIML 

for LMS works for multiple regression with interaction effects. As shown in the substantive 

example, the model is identified when ξ1 is a single variable and ξ2 is a factor. The 

specification is not identified when both ξ1 and ξ2 are single variables.

We did not consider all possible situations in our simulations. One interesting situation is 

that η or indicator of η is MCAR or MAR, which occurs in our substantive example. This 

situation is also not considered in the literature for multiple regression with interaction 

effects. In this situation, FIML for LMS still produces unbiased parameter estimates, 

standard error estimates, and valid statistical inferences, because it correctly handles the 

distribution of η. FIML for PI incorrectly assumes that η is normally distributed. It should 

be noted, however, that η is linearly related to ξ1, ξ2, and ξ1ξ2 in coefficients. In such case, 

violating the normality assumption of η in FIML has minimal effect on parameter estimates 

but can lead to biased standard error estimates and invalid statistical inferences (Yuan, 

Bentler, & Zhang, 2005). Future research is needed to examine how FIML for PI performs 

when η is MCAR or MAR. Another situation is when the indicators of ξ1 and/or ξ2 are 

missing not at random (MNAR). In general, FIML produces biased parameter estimates and 

invalid statistical inferences when variables are MNAR. Therefore, FIML for PI and LMS 

also produce biased parameter estimates when the indicators are MNAR. Future research is 

needed to investigate the applicability and performance of current MNAR methods (e.g., 

selection model and pattern mixture model) to latent variable interaction methods.
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Appendix

Detailed settings of full information maximum likelihood (FIML) estimation for product 

indicator (PI) and latent moderated structural equations (LMS) methods.

Types of settings Setting Default

(A) PI (including CPI, GAPI, and UPI)

 1. Maximum number of iterations for quasi-Newton algorithm 10,000 1,000

 2. Maximum number of steepest descent iterations for quasi-Newton 
algorithm

100 20

 3. Convergence criterion for quasi-Newton algorithm 0.000001 0.00005

(B) LMS

 1. Numeric integration algorithm Hermite-Gaussian Quadrature Rectangular

 2. Number of integration points per dimension 16 15

 3. Maximum number of iterations for quasi-Newton algorithm 10,000 1,000

 4. Maximum number of iterations for EM algorithm 2,000 500

 5. Convergence criterion for quasi-Newton algorithm 0.000001 0.000001

 6. Absolute observed-data log-likelihood change convergence 
criterion for EM algorithm

0.0000001 0.001

 7. Relative observed-data log-likelihood change convergence 
criterion for EM algorithm

0.0000001 0.000001

 8. Observed-data log-likelihood derivative convergence criterion for 
EM algorithm

0.000001 0.001

Note. CPI = constrained product indicator; GAPI = generalized appended product indicator; UPI = unconstrained product 
indicator.
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Figure 1. 
Mean estimates and relative biases of interaction effect γ3.
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Figure 2. 
Actual Type I error rate of interaction effect γ3. The numbers are the actual Type I error 

rates.
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Figure 3. 
Statistical power of interaction effect γ3. The numbers are the statistical power.
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Figure 4. 
Interaction between depression (T1) and change of inner peace well-being (T2 – T1) on 

hopelessness (T3).
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Table 1

Model constraints of product indicator methods.

Model constraint
Constrained product 

indicator (CPI)
Generalized appended 

product indicator (GAPI)
Unconstrained product 

indicator (UPI)

Mean of ξ1ξ2 √ √ √

Variance and covariances of ξ1ξ2 √ × ×

Factor loadings of product indicators √ √ ×

Unique factor variances of product indicators √ √ ×

Unique factor covariances of product indicators √ √ √
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Table 2

Parameters of population model.

Structural model

sr2 = 0 (no interaction effect) sr2 = 0.05 (small to medium effect)

Parameter Value Parameter Value

γ3 0.00 γ3 4.43

Variance of disturbance ζ 343.00 Variance of disturbance ζ 318.50

sr2 = 0.10 (medium effect) For all conditions

Parameter Value Parameter Value

γ3 6.26 γ0 10.00

Variance of Disturbance ζ 294.00 γ1 7.00

γ2 7.00

Measurement model of ξ1 and ξ2 Measurement model of η

Parameter Value Parameter Value

Latent intercept 5.00 Latent intercept 0.00

Factor loading 1.00 Factor loading 1.00

Unique factor Variance 1.29 Unique factor variance 630.00

Factor mean 0.00

Factor variance 1.00

Factor covariance 0.50
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Table 3

Missing data scenarios for simulation study.

(A) Missing completely at random (MCAR) – two scenarios

Scenario 1 We generated one random uniform variable. We created missing values of X1, X2, and X3 for cases in the lower quartile of the 
random uniform variable based on the missing data rates (15% or 25%). This missing data mechanism resulted in two missing 
data patterns: all X1, X2, and X3 were either observed or missing.

Scenario 2 We generated three random uniform variables (U1, U2, U3). We created missing values of X1, X2, and X3 for cases in the lower 
quartile of U1, U2, and U3, respectively, for each variable, based on the missing data rates (15% or 25%) (i.e., X1 with U1, X2 with 
U2, X3 with U3). This missing data mechanism resulted in maximum number of combinations of missing data patterns for X1, X2, 
and X3.
(B) Missing at random (MAR) – six scenarios

Scenario 1 We computed the average scores of X4, X5, and X6, S = (X4 + X5 + X6)/3. Given the missing data rate conditions (15% or 25%), 
we divided the participants into quartiles according to S (i.e., 0%–24.99%, 25%–49.99%, 50%–74.99%, 75%–100%). We then 
used one uniform random variable to randomly delete X1, X2, and X3 in each quartile based on designated percentages. In the 
15% missing data rate condition, the designated percentages from the first to the fourth quartiles were 7.5%, 12.5%, 17.5%, 
22.5%. In the 25% condition, the designated percentages were 10.0%, 20.0%, 30.0%, 40.0%. These percentages result in a 
monotonic increasing relationship between missing data rate and S (Collins et al., 2001).

Scenario 2 The procedures were identical to those of Scenario 1 except for the designated percentages of missing data in the quartiles. In the 
15% missing data rate condition, the designated percentages from the first to the fourth quartiles were 25.0%, 5.0%, 5.0%, 25.0%. 
In the 25% condition, the designated percentages were 10.0%, 20.0%, 30.0%, 40.0%. These percentages result in a convex 
relationship between missing data rate and S (Collins et al., 2001).

Scenario 3 We divided X1, X2, and X3 into quartiles according to the variables they paired with to form product indicators, respectively (i.e., 
X1 with X4, X2 with X5, X3 with X6). We then used three separate uniform random variable to randomly delete X1, X2, and X3 in 
each quartile based on designated percentages. The designated percentages were the same as those in Scenario 1.

Scenario 4 The procedures were identical to those of Scenario 3, except that we divided X1, X2, and X3 into quartiles according to the 
variables they did not pair with to form product indicators, respectively (i.e., X1 with X5, X2 with X6, X3 with X4).

Scenario 5 The procedures were identical to those of Scenario 3, except that we used the designated percentages that were the same as those 
in Scenario 2 (i.e., 15% missing data rate: designated percentages = 25.0%, 5.0%, 5.0%, 25.0%; 25% missing data rate: 
designated percentages = 10.0%, 20.0%, 30.0%, 40.0%).

Scenario 6 The procedures were identical to those of Scenario 4, except that we used the designated percentages that were the same as those 
in Scenario 2 (i.e., 15% missing data rate: designated percentages= 25.0%, 5.0%, 5.0%, 25.0%; 25% missing data rate: designated 
percentages = 10.0%, 20.0%, 30.0%, 40.0%).

Among these six scenarios, Scenarios 1 and 2 resulted in two missing data patterns, where all X1, X2, and X3 were either observed or missing. 

Scenarios 3, 4, 5, and 6 resulted in maximum number of combinations of missing data patterns for X1, X2, and X3.
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Table 7

Missing data patterns of substantive example.

Missing data pattern Depression (T1) Change of inner peace well-being (T2 – T1) Hopelessness (T3) n (%)

1 √ √ √ 129 (48.5%)

2 √ × × 84 (31.6%)

3 √ √ × 44 (16.5%)

Other patterns 9 (3.4%)
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Table 8

Illustrative example results.

Regression coefficient

CPI LMS

Est. SE Est. SE

Intercept 5.74 0.41** 5.79 0.41**

Depression (T1) 5.47 1.03** 5.74 1.04**

Change of peace well-being (T2 – T1) −0.62 0.46 −0.82 0.50

Interaction effect −1.14 0.65 −1.41 0.71*

Note. CPI = constrained product indicator; LMS = latent moderated structural equations; Est. = parameter estimate; SE = estimated standard error.

*
p < .05;

**
p < .01.
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