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Abstract

In this paper, we describe developments in adaptive design methodology and discuss 

implementation strategies and operational challenges in early phase adaptive clinical trials. The 

BATTLE trial – the first completed, biomarker-based, Bayesian adaptive randomized study in lung 

cancer – is presented as a case study to illustrate main ideas and share learnings.
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Introduction

The number of publications describing adaptive and flexible designs has increased 

significantly in recent years, and the adoption of many of these designs is accelerating 

rapidly. The Bayesian approach is becoming more popular in clinical trial design to monitor 

efficacy and toxicity simultaneously, and in data analysis, due to its flexibility and ease of 

interpretation (1-4). High-performance computers have facilitated widespread advances in 

the development of computational algorithms, statistical modeling, and simulations. These 

advancements have enhanced the use of Bayesian and hybrid designs in clinical trials, 

specifically in early phase trial development. Two Bayesian Phase II adaptive trials that 

gained public and media attention focused clinical development on pairing oncology 
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therapies and biomarkers. These trials are the Biomarker-integrated Approaches of targeted 

Therapy for Lung Cancer Elimination (BATTLE) (5, 6) and I-SPY 2 trial which takes its 

name from the phrase “Investigation of Serial studies to Predict Your Therapeutic Response 

with Imaging And moLecular analysis” (7).

Execution of adaptive designs at the operational level adds complexities and can be 

challenging, especially in studies involving multiple drugs, doses, biomarkers and 

populations, as in the BATTLE and I-SPY 2 trial. The additional time necessary for upfront 

planning and cross-functional coordination means that various stakeholders should be 

involved in the early planning of adaptive studies. Information on the risks and benefits of 

applying adaptive designs should be provided to all operational staff supporting the trial. 

Detailed statistical design simulations and operational simulation models are required for 

study planning to evaluate operating characteristics of the design under a range of 

assumptions and to ensure effective execution. At the planning stage, various factors should 

be considered, including the randomization scheme, recruitment rate, treatment duration, 

timing of treatment read-outs, endpoints, planned patient and site enrollment, likely drop-

outs, study drug formulation, route of drug administration, and drug supply. Timely data 

capture is an important enabler for adaptive designs. Electronic Data Capture (EDC) should 

be used for studies with adaptive designs, especially for those with decision-critical data. 

The quality of data, effective data flow, and transfer processes should be discussed and pre-

planned prior to interim analyses, which can introduce statistical and operational biases due 

to the feedback of their results. To minimize operational bias, interim analyses are 

performed and reviewed by an Independent Statistical Centre (ISC) – often a Contract 

Research Organization (CRO) – and a Data Monitoring Committee (DMC) convened by the 

sponsor, but independent of the sponsor in terms of financial and professional interests. It is 

critical that the ISC have extensive experience in performing interim analyses, appropriate 

firewalls and Standard Operating Procedures (SOP) that guard the unblinded processes. The 

team should include a designated data analysis center biostatistician with expertise in 

adaptive designs, to perform necessary adaptations and analysis and serve as a link between 

the study sponsor and the DMC. Several recent publications discuss the elements that are 

important for successful execution of adaptive designs in general (9-10).

In this paper, we describe developments in adaptive design methodology and further discuss 

the implementation strategy and operational challenges in early phase adaptive clinical trials. 

The BATTLE trial is presented as a case study to illustrate main ideas and share learnings.

Developments in Adaptive Design Methodology

An adaptive design is defined as “a multistage study design that uses accumulating data to 

decide how to modify aspects of the study without undermining the validity and integrity of 

the trial” (11). Maintaining study validity requires correct statistical inference and minimal 

operational bias, and maintaining study integrity means providing convincing results, 

preplanning, and maintaining blinded interim analysis results. Trial procedures that may be 

modified potentially include eligibility criteria, study dose or regimen, treatment duration, 

study endpoints, laboratory testing procedures, diagnostic procedures, criteria for evaluation 

and assessment of clinical responses. Statistical procedures might include randomization, 
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number of treatment arms, study design, study hypotheses, sample size, data monitoring and 

interim analysis rules, statistical analysis plan and/or methods for data analysis

However, flexibility does not mean that the trial can be modified any time. Modifications 

and adaptations must be pre-planned and based on data collected during the course of the 

study. Accordingly, the U.S. Food and Drug Administration's draft guidance for industry on 

adaptive design clinical trials (8) defines such a trial as “a study that includes a prospectively 

planned opportunity for modification of one or more specified aspects of the study design 

and hypotheses based on analysis of data (usually interim data) from subjects in the study.” 

Analyses of the accumulating study data are performed at pre-planned time points, with or 

without formal statistical hypothesis testing. Ad hoc, unplanned adaptations may increase 

the chance of misuse or abuse of an adaptive design trial and should therefore be avoided. 

Operational teams must have a general understanding of adaptive design methods to proceed 

to the planning and design stage. The adaptive design methods commonly used in early 

phase trials include:

1) Adaptive Randomization Designs

Here, alterations in the randomization schedule are allowed depending upon the varied or 

unequal probabilities of treatment assignment. Adaptive randomization categories include 

restricted randomization, covariate-adaptive randomization, response-adaptive (or outcome-

adaptive) randomization, and covariate-adjusted response-adaptive randomization (54). 

Restricted randomization procedures are preferred for many clinical trials because it is often 

desirable to allocate equal number of patients to each treatment. This is usually achieved by 

changing the probability of randomization to a treatment according to the number of patients 

that have already been assigned. Examples of restricted randomization procedures include 

the random allocation rule, the truncated binomial design, Efron's biased coin design, and 

Wei's urn design (12). Covariate-adaptive randomization is used to ensure the balance 

between treatments with respect to certain known covariates. Several methods exist to 

accomplish this, including Zelen's rule, the Pocock-Simon procedure, and Wei's marginal 

urn design. Response-adaptive randomization is used when ethical considerations make it 

undesirable to have an equal number of patients assigned to each treatment. Adaptive 

assessment is made sequentially, updating the randomization for the next single patient or a 

cohort of patients using treatment estimates calculated from all available patient data 

received so far. Covariate-adjusted response-adaptive randomization combines covariate-

adaptive and response-adaptive randomization. These methods are reviewed by Hu and 

Rosenberger (54) and more recently, by Rosenberger et al. (13).

The Bayesian probit model described by Albert and Chib (57) is used to define the response 

for each treatment by marker group in the BATTLE trial. With this model, all cumulative 

data are used in computing the posterior of the response variable and in determining the 

randomization ratio. More on Bayesian adaptive randomization can be found in Berry and 

Eick (22), Thall and Wathen (23), Wathen and Cook (24), and Berry et al. (21). Wathen and 

Cook (24) summarize extensive simulations and give recommendations for the 

implementation of Bayesian adaptive randomization.
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2) Adaptive Group Sequential Designs

Here, a trial can be stopped prematurely due to efficacy or futility at the interim analysis. 

The total number of stages (the number of interim analyses plus a final analysis) and 

stopping criterion to reject or accept the null hypothesis at each interim stage is defined, in 

addition to critical data values and sample size estimates for each planned interim stage of 

the trial. At each interim stage, all the data are collected up to the interim data cutoff time 

point. Data are then analyzed to confirm whether the trial should be stopped or continued. 

Staged interim analyses are preplanned during the course of the trial and must be carefully 

managed by the operational teams. The opportunity to stop the trial early and claim efficacy 

increases the probability of an erroneous conclusion regarding the new treatment (Type I 

error). For this reason, it is important to choose the significance levels for interim and final 

analyses carefully so that the overall Type I error rate is controlled at the pre-specified level. 

The stopping rules can be based on rejection boundaries, on a conditional power, or on a 

predictive power/predictive probability in a Bayesian setting. The boundaries determine how 

conclusions will be drawn following the interim and final analyses, and it is important to 

pre-specify which type of boundary and spending function (if applicable) will be employed. 

The conditional power approach is based on an appealing idea of predicting the likelihood of 

a statistically significant outcome at the end of the trial, given the data observed at the 

interim and some assumption of the treatment effect. If the conditional power is extremely 

low, it is wise to stop the trial early for both ethical and financial reasons. While it is 

possible to stop the trial and claim efficacy if the conditional power is extremely high, the 

conditional power is mostly used to conclude futility. More details on sequential designs can 

be found in Ghosh and Sen (14), Jennison and Turnbull (15), and Proschan, Lan and Wittes 

(16). More information on Bayesian sequential stopping rules can be found in Thall et al. 

(42, 43), Lee and Liu (44), and Berry et. al (21).

3) Adaptive Dose Ranging Designs

Insufficient exploration of a dose-response relationship often leads to a poor choice of the 

optimal dose used in the confirmatory trial, and may subsequently lead to the failure of the 

trial and the clinical program. Understanding of a dose-response relationship with regard to 

efficacy and safety prior to entering the confirmatory stage is a necessary step in drug 

development. During an early development phase, limited knowledge about the compound 

opens more opportunities for adaptive design consideration. Adaptive dose-finding designs 

allow fuller and more efficient characterization of the dose response by facilitating iterative 

learning and decision-making during the trial.

Adaptive dose-ranging designs can have several objectives. For example, they can be used to 

establish the overall dose-response relationship for an efficacy parameter or efficacy and 

safety parameters, estimate the therapeutic window, or help with the selection of a single 

target dose. The allocation of subjects to the dose currently believed to give best results, or 

to doses close to the best one, has become very popular in clinical dose-finding studies – for 

example, when the intention is to identify the maximum tolerated dose (MTD), the 

minimum efficacious dose (MED), or the most efficacious dose. Examples are cited by 

Wetherill (26), Lai and Robbins (27), Q'Quigley, Pepe and Fisher (17), Li, Durham and 

Flournoy (28), and Thall and Cook (19). This type of design – dubbed ‘best intention’ 
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designs – are promoted as being ethically sound, and as taking into account the interests of 

the subjects. However, doubts about the convergence and informativeness of best intention 

designs were raised long ago, and cases were found in which such designs led to allocations 

converging to the wrong point. Examples are provided by Azriel (29), Mandel and Rinott 

(25), Bozin and Zarr (30), Chang and Ying (31), Ghosh, Mukhopadhyay and Sen (32), Lai 

and Robbins (33), Oron, Azriel and Hoff (34), and Pronzato (18). The major remedy to 

ensure convergence and increase informativeness of best intention designs is to introduce the 

intentional variability of allocations around the dose that is currently viewed as being the 

best. More rigorous approaches are based on the introduction of utility functions, which 

quantify the “effectiveness” of a particular dose, and penalty functions, which quantify 

potential harm due to exposure to toxic or non-efficacious doses. In the case of multiple 

responses (for instance, in which efficacy and different types of adverse events are of interest 

and can be measured, see Figure 1), examples are provided by Gooley, et al. (35), Li, 

Durham, and Flournoy (28), Fan and Chaloner (36), Rabie and Flournoy (37), Thall and 

Cook (19), and Dragalin and Fedorov (38). Various utility functions can be found in Gooley 

et al. (35), Thall (39), Dragalin, Fedorov and Wu (40), and Fedorov, Wu and Zhang (41). 

Examples of designs and references for the Bayesian setting can be found in Berry (55, 56), 

Thall and Cook (19), and Berry, Carlin, Lee and Muller (21).

Applications of adaptive dose-ranging designs can be particularly relevant for specific 

indications. For example, an oncology study might use an adaptive approach to find a MTD 

during Phase I trials. Conventional Phase I designs are algorithm-based, and the widely used 

standard Phase I design uses the “3+3 design.” Lin and Shih (45) discussed the properties of 

the traditional (3+3) and modified algorithm-based designs in a general setting (A+B). 

Although the 3+3 method has been criticized for its tendency to include too many patients at 

suboptimal dose levels and to give an inaccurate estimate of the MTD, it is still widely used 

in practice because of its ease of implementation for clinical investigators. Other algorithm-

based designs include accelerated titration designs and group up-and-down designs. The 

most widely used model-based approaches include the Continual Reassessment Method 

(CRM) proposed by O'Quigley, Pepe and Fisher (17) and the Escalation With Overdose 

Control (EWOC) method proposed by Babb, Rogatko and Zacks (46). More details on these 

and other dose-finding methods used in cancer research are described by Chevret (20). 

Recent extensions of the CRM are discussed by Cheung (47).

4) Biomarker Adaptive Designs

This type of design allows for adaptation using biomarker information. Modifications can be 

made to an ongoing trial based on the response of a biomarker that can predict a primary 

endpoint outcome, or one that helps select or change a treatment (e.g., BATTLE, I-SPY 2). 

Biomarkers can be used to select a subpopulation with an enhanced benefit from the study 

treatment. Wang et al. (48) describe approaches to evaluation of treatment effect in 

randomized trials with a genomic subset of the population. Designs that can be used to 

perform the subgroup search and identifications based on biomarkers are discussed in 

Lipkovich et al (49) and Lipkovich and Dmitrienko (50). Stallard (51) describes a seamless 

Phase II/III design based on a selection using a short-term endpoint; Jenkins et al. (52) 

present an adaptive seamless Phase II/III design with subpopulation selection using 
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correlated endpoints, and Friede et al. (53) introduce a conditional error function approach 

for subgroup selection. Statistical designs that are used to screen biomarkers, validate 

biomarkers, and enrich the study population based on a biomarker or several biomarkers are 

of great interest to our industry and society. It should be kept in mind that there is still a gap 

in clinical development between identifying biomarkers associated with clinical outcomes 

and establishing a predictive model between relevant biomarkers and clinical outcomes.

Implementation Strategy and Operational Challenges

The use of adaptive clinical trial designs for a drug development program has clear 

advantages over traditional methods, given the ability to identify optimal clinical benefits 

and make informed decisions regarding safety and efficacy earlier in the clinical trial 

process. However, operational execution can be challenging given the additional 

complexities of implementing adaptive designs. These complexities deserve additional 

attention. Key operational challenges occur in several areas: the availability of statistical 

simulation tools for clinical trial modeling at the planning stages; the use of trial simulation 

modeling approaches to ensure the trial is meeting expected outcomes; and challenges 

regarding rapid data collection, clinical monitoring, resourcing, minimization of data 

leakage, IVRS, drug supply management, and systems integration. This section highlights 

several operational challenges that must be taken into consideration in conducting an 

adaptive clinical trial.

Planning and Design

The planning stages for an adaptive clinical trial must be completed prior to finalizing the 

decision to proceed. Adaptive designs should be considered only if they add benefit to the 

overall drug development process, allow for effective operational implementation, and 

provide efficiency gains, thus ensuring increased probability of success for a given 

compound. Adaptive designs are not a one-size-fits-all approach and should be carefully 

considered prior to implementation. Adequate planning can take 3-12 months, depending on 

clinical trial complexities. We recommend that the planning stage consist of three 

components – statistical design simulations, and operational simulation, followed by systems 

integration approaches – to ensure that all specified design requirements can be executed at 

the operational level.

The planning and design phase requires cross-functional collaboration and should include 

areas such as clinical research, biostatistics, pharmacology, regulatory, and clinical 

operations. Planning and executing an adaptive design study challenges the traditional 

approach to clinical trial conduct and requires a fully integrated team, nontraditional 

resourcing, and integrated informatics approaches.

Clinical Trial Modeling and Simulation

An important aspect of the planning process prior to finalizing the design is to complete the 

appropriate clinical trial simulations to optimize an individual trial and assess relative impact 

on overall development. Clinical trial simulation is a key step in evaluating potential clinical 

outcomes using various design scenarios and clinical trial assumptions to validate the design, 
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ensuring effective execution at the operational level. Simulation models are used to predict 

the relationships between certain inputs, such as patient recruitment, dosing arms, clinical 

event rates (such as endpoints, Adverse Events (AEs), and Serious Adverse Events (SAEs)), 

sample size, interim analysis time points, and other inputs that must occur within the study 

domain. Simulation tools can also be used to monitor clinical trial outcomes during the 

course of the study, within trial simulation, to ensure that the study is meeting expectations. 

Clinical trial simulations utilize computer programs to mimic actual conduct of the trial in a 

virtual capacity, and can be used to reforecast predicted outcomes; simulations might also 

include an analysis of project cost, and cost management.

Patient Recruitment

Patient recruitment rates are a critical design element, as the rate of randomization dictates 

the rate at which treatment data can be collected and analyzed, allowing for appropriate 

decision making. Recruitment rates are specific to the therapeutic area, indication, protocol 

requirements, and standards of care for the country in which the study is conducted. Initial 

patient recruitment assumptions should utilize reliable data sources from historical trials, 

estimations using data mining techniques, data derived from full feasibility assessments, or a 

combination of the above. The rate at which patients are recruited determines the treatment 

data capture rates required for statistical analysis and decision making. As a result, the rate 

at which the trial recruits must compliment the desired adaptive design: faster is not 

necessarily better. Instead, recruitment rates must be optimized to meet the desired 

preplanned analysis within the specified time period. As one example, for dose response 

designs, slower recruitment is preferable so that a dose adjustment can effectively be 

implemented for the next patient or the group of patients. Recruiting too quickly may not 

allow effective dose adjustment to occur during the specified randomization period. 

Optimizing recruitment rates based on the unique design requirements has a positive impact 

on the quality, length, and cost of the clinical trial. The speed of randomization also has a 

direct impact on key operational components – all of which need to be simulated during the 

planning stages – such as total number sites required for study conduct, the rate of study 

start-up, site initiations, drug packaging and supply chain management.

Treatment Data and Data Collection

Careful consideration should be given to the types of data used for an adaptive design and 

the method for data collection. Preplanned statistical analysis must include a detailed 

assessment of all data that are required to perform an adaptation, in addition to when the 

data will be available and how they will be collected. Adaptive designs are better suited to 

the use of early outcome measurements as opposed to delayed ones. Early measures of 

clinical endpoints, biomarkers, or other efficacy endpoints allow for revised dosing 

allocations (response-adaptive designs), adaptive randomization (based on specific 

biomarkers), or other forms of design adaptations. Case report forms should focus on 

collection of key safety and efficacy data, and not on the collection of non-essential data 

elements, which can significantly increase trial costs and drive operational inefficiencies in 

an already complex study design.
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Consideration must be given to those data elements that require cleaning rather than full 

source document verification, as source verification impacts the speed at which data can be 

utilized for decision making and increases operational complexity and cost. EDC systems 

are widely used today, which speed the data collection and cleaning process. However, fully 

integrated clinical trial platforms – allowing for accelerated data capture, remote data 

monitoring and cleaning, seamless data transfer, and statistical analysis for DMC decision-

making – are not yet mainstream. As a result, clinical systems need to be tightly integrated 

to manage the complexities of an adaptive trial, ensuring minimization of data leakage and 

protection of the data and preserving blinded trial status. As technology improves, it is 

conceivable that informatics platforms will be available that allow for real time data capture, 

interoperability with EMRs, e-Source archives, reduced dependencies on clinical 

monitoring, and the provision of fully integrated statistical analysis tools used for decision 

making for adaptive trials. However, use of existing systems, along with integrated 

approaches, allow for conduct of an adaptive clinical trial, but require additional upfront 

planning time.

Centralized Remote Clinical Monitoring

A nontraditional clinical monitoring approach should be utilized for adaptive design trials, 

including a hybrid clinical monitoring approach consisting of Centralized Remote 

Monitoring in addition to on-site Source Data Verification (SDV). Centralized Remote 

Monitoring provides for continuous cleaning across key data elements in near real time, 

allowing for more immediate data transfers, statistical analysis, and decision making. The 

onsite clinical monitoring effort should take a risk-based monitoring approach, requiring 

minimal on site time and source verification only for key data elements. SDV activities will 

typically lag behind remote data cleaning, so it is important that decision-makers carefully 

consider those data elements that do not require SDV versus those that do. In general, most 

planned analyses that result in adaptations rely on data elements that do not require SDV. 

However, for some design elements, SDV may be required; in these cases, the timing of the 

data transfer and interim analysis must be carefully planned.

Risk based monitoring techniques using advanced analytics and signal detection 

methodologies can also improve data quality by highlighting potential quality issues that 

need to be addressed during the trial. Some risk based monitoring analytics utilize statistical 

analysis and variance around key risk areas that must be mitigated, such as AEs, SAEs, 

enrollment rates, protocol violations, and missing data.

In conclusion, nontraditional monitoring methods should be employed for adaptive clinical 

trials, taking account of data flow, timing of data entry, types of data collected, risk, data 

cleaning requirements and clinical resource allocations. This will enable study requirements 

to be met and decision making to be based on the specified design parameters.

IVRS and Drug Supply

Interactive Voice Randomization Systems (IVRS), used to manage patient randomization 

and assignment to treatment arms, must be fully integrated into the clinical trial's operational 

processes. Statistical analysis outputs used for an adaptive randomization or dose response 
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designs are directly integrated into the IVRS, ensuring appropriate subject randomization. 

IVRS' must be tightly integrated with the EDC platform. A typical IVRS data set may 

contain the following for newly randomized subjects: Country, Site, Subject ID, Birth Date, 

Gender, Randomization Code, Randomization Date, Core Study or Sub Study, Enrollment 

Status, Drug Interruption(s), and Drug Re-start. Study coordinators will call the IVRS to 

notify the system of patient status, allowing data to be tracked in real time. This data is 

extremely valuable when managing patient enrollment and trial operations.

The IVRS must also integrate directly with the drug supply chain mechanism. Drug supply 

requirements need to be simulated during the planning stage as part of the Clinical Supply 

Optimization Process to ensure appropriate production, labeling, and inventory management. 

Clinical drug supply optimization parameters typically include: simulation and demand 

forecasting, regulatory strategy for submission and approvals, packaging and labeling 

strategy, distribution strategy, drug supply plan with trigger methodology, GMP/GDP 

regulatory review, IVRS specification requirements, and systems integration strategy.

Appropriate drug formulations, dosing regimens and routes of administration also need to be 

identified. For example, various dose levels can be produced by combining two or more 

tablets of specific doses. For intravenous drugs, varying dose levels can be achieved by 

requiring drug preparation to be conducted on site, using vials of equal volume dispensed in 

several dose strengths, and providing instructions as to how much should be removed from 

each vial to prepare a new dose.

Data Monitoring Committee

DMCs are an important component in adaptive design trials, proactively assessing the risk 

benefit of the treatment, often at several time points during the trial, and making 

recommendations for protocol changes based on adaptive rules specified in the protocol. In 

order to maintain trial integrity and minimize bias, an ISC should be utilized to prepare the 

data for DMC review and decision making. The DMC's charter outlines roles and 

responsibilities and summarizes statistical methods and necessary adaptations; the charter 

should be drafted at the planning stage and finalized prior to the first look/ interim analysis.

Clinical Trial Management and Communication

Given the increased operational complexities of an adaptive design, effective project 

management and communication is a critical component to success. Adaptive design project 

teams must work in a non-traditional environment, be tightly integrated, and have the proper 

resources, methods and tools to manage the clinical trial.

Cross functional collaboration is paramount when designing an adaptive design clinical trial, 

and the planning and design phase is a critical element that must be implemented to ensure 

success. How can the success of an adaptive clinical trial be measured? This is an important 

step, since a successful adaptive trial provides benefit to the overall drug development 

process, allows for effective implementation at the operational level, and provides efficiency 

gains from the standard model. In addition, we can use existing technologies to develop and 

operationalize an adaptive design trial, and can leverage common best practices across all 

unique designs.
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In the next section, the BATTLE trial design is presented using some of the approaches 

introduced in this and previous sections. The trial employs the Bayesian adaptive design 

with a response adaptive randomization and a futility stopping rule.

A Case Study: Battle Trial

The Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination 

(BATTLE) trial was the first prospective, biopsy-mandated, biomarker-based, adaptively 

randomized study in patients with heavily pre-treated lung cancer (5,6). This Phase II trial, 

involving patients with advanced non-small cell lung cancer (NSCLC), evaluated four 

treatments in individuals stratified into five biomarker subgroups.

From 2006 to 2009, 341 patients were enrolled in the BATTLE trial and 255 were 

randomized. Upon biopsy, tissue samples were analyzed for their biomarker profiles. 

Patients were assigned to one of the five biomarker groups according to the rank order of the 

estimated predictive value as follows: [1] EGFR mutation, amplification, or high polysomy; 

[2] KRAS or BRAF mutation; [3] VEGF or VEGFR-2 overexpression; [4] RXR α, β, or γ 
overexpression and/or Cyclin D1 overexpression/amplification; or [5] no study biomarkers. 

Following an initial equal randomization period (N=97), patients were adaptively 

randomized (N=158) to one of the four study arms: erlotinib, vandetanib, erlotinib plus 

bexarotene, or sorafenib, based on each patient's relevant molecular biomarkers.

The primary endpoint of the study is the 8-week disease control rate (DCR), which has been 

shown to be a good surrogate for the overall survival in this patient population (58). Based 

on the preliminary data, the 8-week DCR was considered to be 30% as the null hypothesis 

and 50% as the alternative hypothesis.

Statistical Methodology

The statistical design of the BATTLE trial was based on adaptive randomization using a 

Bayesian hierarchical model that would assign more patients into more effective treatments, 

with the randomization probability proportional to the observed efficacy based on patients' 

individual biomarker profiles (6). The primary endpoint was reported as a binary response: 

patients' disease is controlled (no disease progression) or not controlled at 8 weeks (i.e, 

disease progression or death within 8 weeks). The design adaptively randomized patients 

into one of the four treatments based on their biomarker profile and the cumulative response 

data.

Let γjk denote the current posterior mean probability of disease control for a patient in 

biomarker group k (k = 1… 5) under treatment j (j = 1… 4). The next patient in biomarker 

group k is assigned to treatment t with probability proportional to . The 

probabilities of the DCR are calculated with respect to a hierarchical probit model (57). The 

probit model is written in terms of a latent probit score zijk for patient i under treatment j in 

biomarker group k as zijk ∼ N(μijk, 1) for i = 1,…, njk where μjk ∼ N(ϕj, σ2) for k = 1, …, 5 

and ϕj ∼ N(0, τ2) for j = 1, …, 4. The model assumes a hierarchical normal/normal model 

which allows borrowing strength across related subpopulations. The disease control status 
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yijk = 1 if zijk > 0 and yijk = 0 if zijk ≤ 0. With normal distributions and conjugate priors, the 

posterior probability can be computed via Gibbs sampling from the following full 

conditional distributions:

An early futility stopping rule was added to the trial design. If the current data indicate that a 

treatment is unlikely to be beneficial to patients in a certain marker group, randomization to 

that treatment is suspended for these patients. Specifically, the target DCR is denoted by θ1 

and the critical probability for early stopping (i.e., suspension of randomization due to 

futility) by θL. The trial will be suspended for treatment j and marker k if Pr(γjk ≥ θ1 | Data) 

≤ θL; θ1 = 0.5 and θL = 0.1, respectively were chosen. Hence, randomization in a marker 

subgroup for a treatment is suspended when the probability of achieving a target DCR is 

unlikely based on the observed data. At the end of trial, the treatment will be considered a 

success if Pr(γjk ≥ θ0 | Data) > θU. In this study, we chose θ0 = 0.3 and θU = 0.8 to 

correspond to the probability of a treatment in a biomarker subgroup is very likely to be 

better than the null DCR. The trial design had no early stopping rule for effective treatments. 

If a treatment shows early signs of efficacy, more patients will continue to be enrolled to that 

treatment under the adaptive randomization scheme and the declaration of efficacy will 

occur at the end of the trial.

Patient Randomization

Prior to the adaptive randomization, patients were equally randomized to the four treatments 

to calibrate the model for calculating the randomization probability. The trial design also 

allowed the suspension of underperforming treatments in marker groups. At the end of the 

trial, a treatment is considered efficacious in a marker group if the posterior probability of 

the 8-week DCR is sufficiently high as described in the adaptive design methodology. The 

study schema is shown in Figure 2.

At the conclusion of the study, the overall 8-week DCR was 46%. The study confirmed 

several pre-specified hypotheses, such as that erlotinib worked well for patients with EGFR 

mutation, vandetanib worked well for patients with high VEGFR-2 expression, and erlotinib 

plus bexarotene worked well for patients with high Cyclin D1 expression. The study also 

generated some intriguing hypotheses, for example, with sorafenib showing efficacy among 

mutant-KRAS patients, a finding that will be investigated further in future trials. The 

distribution of the final randomization probability into the four treatments for the biomarker 

groups 1, 2, 3, and 5 is given in Figure 3. (Note that only 6 patients were in marker group 4, 

hence, marker group 4 is not shown.)
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A New Paradigm for Personalized Medicine

The BATTLE trial establishes a new paradigm for a personalized approach to treat lung 

cancer (59, 60). There are many valuable lessons to be learned from this pioneering trial. It 

has demonstrated that acquiring a fresh biopsy in recurrent lung cancer patients is feasible 

and important in determining the tumor biomarker profiles at the time of recurrence, to 

inform the search for the most effective treatment for each individual patient (61). 

Prospective tissue collection and biomarker analysis provide a wealth of information for 

future discovery work. The trial had a robust accrual, enrolling an average of 9.5 patients per 

month, and confirming that the outcome-adaptive randomization design is well received by 

both the clinical team and patients. Under the Bayesian hierarchical model, the treatment 

effect and predictive markers are efficiently assessed. This “learn-as-we-go” approach is 

appealing as it leverages accumulating patient data to improve the treatment outcome as the 

trial progresses.

Challenges and Learnings

The BATTLE trial faced challenges. To capture the biomarker data, patient eligibility, and 

efficacy and toxicity outcomes in real time, a web-based data management system had to be 

developed. This allowed remote data entry and performed data quality control by the built-in 

data type, value, and range checking. It also had automatic e-mail report generation and data 

download capability for monitoring the study conduct. For example, when the research nurse 

entered the patients' baseline information, this data was used for checking the patient's 

eligibility. The patient's biomarker profile was analyzed and directly entered into the web-

based system in the molecular pathology laboratory within two weeks of the biopsy. Upon 

verifying the patient eligibility and completion of the biomarker profiling, the research nurse 

could perform the randomization using the randomization button in the web-based 

application. This called up an adaptive randomization code written in the open-source 

software, R, via web services. The R code could read the available data, perform Bayesian 

computation, and randomize patients accordingly. The randomization result was sent to 

pharmacy for dispensing of drugs. In addition to meeting the general database security 

requirements, the system also had a role-based security control feature in which each study 

collaborator had read/write privilege for the relevant data. Such a database system was 

essential for conducting the BATTLE trial and similar adaptive trials.

In the BATTLE study, 38% of the patients were equally randomized and the remaining 62% 

were adaptively randomized. In retrospect, the adaptive randomization could possibly have 

come into effect earlier. The trial design called for enrolling at least one patient in each 

treatment/marker group pair before adaptive randomization. Due to the fact that there were 

very few patients in biomarker group 4, the adaptive randomization was delayed. The initial 

equal randomization could have been replaced by using a fair prior with the proper effective 

sample size to control the percentage of patients equally randomized. More discussion of the 

use of outcome adaptive randomization can be found in Lee et al. (62).

Another drawback of the design is that the protocol pre-specified biomarkers and combined 

markers into groups in designing the BATTLE trial. It turned out that some markers (such as 

the retinoid X receptors (RXRs)) were not informative in predicting treatment outcome.
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Furthermore, grouping markers for dimension reduction is not a good idea because markers 

in the same group have different predictive strength. For example, for predicting the DCR 

using erlotinib, EGFR mutation was the strongest predictor followed by the EGFR gene 

amplification. The EGFR protein expression had little predictive value. Grouping markers 

dilutes the predictive strength of some of the more important markers. Based on learnings 

from the BATTLE trial, the BATTLE-2 trial is currently underway using a two-stage design. 

Predictive markers are being identified in the first stage and applied in the second stage. An 

important lesson learned is that the outcome-adaptive randomization would benefit patients 

most if there were effective treatments and associated predictive markers. The study team is 

working to identify the most appropriate treatments and markers. Adaptive randomization is 

a sensible way to facilitate this process.

Another adaptive feature in the BATTLE trial was the suspension of randomization in the 

underperformed treatment/marker pairs. For example, toward the end of the trial, the data 

suggested that vandetanib did not work for the KRAS/BRAF mutation group and that 

neither vandetanib nor erlotinib plus bexarotene worked for the VEGF/VEGFR-2 

overexpression group. Hence, the randomization probability was set to 0 (Figure 3). The 

suspension or early stopping rule can avoid assigning patients to ineffective treatments and 

redirect them to more effective ones. The Bayesian framework allows the information to be 

updated continuously throughout the trial. The updated posterior distribution can be used for 

guiding elements of the study conduct, such as the outcome-adaptive randomization, or early 

stopping due to futility or efficacy.

Although many Bayesian methods have been developed in clinical trials over the years, few 

have been used in practice. However, the use of Bayesian methods in clinical trials has 

recently increased substantially (4). Due to the inherent nature of continuously updated 

information, a Bayesian framework is ideal for adaptive clinical trial designs. The design 

parameters can be calibrated to control the most frequent type I and type II errors.

In conclusion, the BATTLE study was the first completed, biomarker-based, Bayesian 

adaptive randomized study in lung cancer. It is inspiring the development of similar adaptive 

trials (63-70). The real-time biopsy and biomarker profiling, coupled with adaptive 

randomization, have taken a substantial step toward realizing personalized lung cancer 

therapy. More such trials should be conducted to refine the design and conduct of adaptive 

trials in efficiently searching for effective treatments.

Discussion

The use of adaptive designs in the context of early development programs is particularly 

appealing to biopharmaceutical companies against the current backdrop of increasing 

competition to get quickly to market and dwindling resources. As discussed in this paper, 

adaptive designs allow more efficient use of information for decision making, which 

ultimately translates into improved probability of success and shorter overall time to market 

for successful products. Adaptive designs, in early and late development, also face additional 

challenges, from methodological, operational, and regulatory points of view. One of the 

appeals of early development adaptive designs is their greater acceptance by regulatory 
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agencies. In fact, the FDA draft guidance (8) encourages sponsors to utilize adaptive designs 

in early development, to improve the efficiency of exploratory studies, as well as to gain 

experience with the use of adaptive approaches.

The value of adaptive designs as a transformational approach to improve the efficiency of 

drug development has long been recognized by industry, as well as by regulatory agencies. 

The 2004 FDA Critical Path Initiative (71) identified adaptive designs as one of the 

opportunities for solving the pipeline problem then (and still) facing the biopharmaceutical 

industry. As part of its Pharmaceutical Innovation initiative, the Pharmaceutical Research 

and Manufacturers of America (PhRMA) created working groups (WGs) in 2005 to evaluate 

and propose solutions to key drivers of poor performance in drug development. Two of the 

10 WGs focused on adaptive designs: the Novel Adaptive Designs WG and the Adaptive 

Dose Ranging Studies (ADRS) WG. Both have had a significant impact in increasing 

awareness and acceptance of adaptive designs, across industry and in regulatory agencies 

around the world.

The ADRS WG focused on evaluating and making recommendations on the use of adaptive 

designs in the context of dose selection and dose response estimation. The WG conducted 

several simulation studies to compare different adaptive dose ranging approaches to one 

another and to conventional fixed designs for dose selection. The conclusions and 

recommendations from the ADRS WG were published in two impactful white papers 

(72,73), both of which include discussions from regulators from the FDA, European 

Medicines Agency (EMA), and Japan's Pharmaceuticals and Medical Devices Agency 

(PMDA). The key messages in these white papers – and endorsed by regulators – were that 

(i) poor dose selection and dose response estimation are important drivers of the high 

attrition rate currently observed in confirmatory studies; (ii) adaptive dose ranging and 

model-based methods can significantly improve the efficiency and accuracy of dose 

selection and estimation of dose response; and (iii) without greater investment by sponsors 

in additional studies (such as dose finding trials), no statistical design or method alone will 

be able to address the issues leading to today's pipeline shortages.

While some challenges remain with execution of adaptive designs at the operational level, 

clinical trial teams are learning and improving. Even the conduct of trials with traditional 

designs is challenging. By improving the systems and structures that allow for execution of 

adaptive designs, the overall processes of drug development can be improved. The extra 

effort to design and implement clinical trials using adaptive designs results in significant 

benefits to patients and improvements in quality, speed, and efficiency of clinical trials and 

overall drug development.
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Figure 1. 
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Figure 2. BATTLE trial design schema
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Figure 3. Probability of adaptive randomization by treatment and marker group in the 
BATTTLE trial

Marchenko et al. Page 20

Ther Innov Regul Sci. Author manuscript; available in PMC 2017 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Developments in Adaptive Design Methodology
	1) Adaptive Randomization Designs
	2) Adaptive Group Sequential Designs
	3) Adaptive Dose Ranging Designs
	4) Biomarker Adaptive Designs

	Implementation Strategy and Operational Challenges
	Planning and Design
	Clinical Trial Modeling and Simulation
	Patient Recruitment
	Treatment Data and Data Collection
	Centralized Remote Clinical Monitoring
	IVRS and Drug Supply
	Data Monitoring Committee
	Clinical Trial Management and Communication

	A Case Study: Battle Trial
	Statistical Methodology
	Patient Randomization
	A New Paradigm for Personalized Medicine
	Challenges and Learnings

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3

