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Category learning in animals is typically trained explicitly, in most instances by varying the exemplars of a single category in a matching-
to-sample task. Here, we show that male rhesus macaques can learn categories by a transitive inference paradigm in which novel
exemplars of five categories were presented throughout training. Instead of requiring decisions about a constant set of repetitively
presented stimuli, we studied the macaque’s ability to determine the relative order of multiple exemplars of particular stimuli that were
rarely repeated. Ordinal decisions generalized both to novel stimuli and, as a consequence, to novel pairings. Thus, we showed that rhesus
monkeys could learn to categorize on the basis of implied ordinal position, without prior matching-to-sample training, and that they
could then make inferences about category order. Our results challenge the plausibility of association models of category learning and
broaden the scope of the transitive inference paradigm.
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Introduction
Since the discovery that pigeons could be trained to peck at photo-
graphs that only contain people (Herrnstein and Loveland, 1964), an
extensive literature has demonstrated an animals’ ability to catego-
rize a wide variety of stimuli: faces (Marsh and MacDonald, 2008),
plants, animals (Roberts, 1996), man-made objects (Bhatt et al.,
1988), and even paintings (Watanabe, 2013). Freedman and col-
leagues (2001) found that primates could categorize computer-
generated, systematically morphed images of cats and dogs.
Activation in the lateral prefrontal cortex correlated with stimulus
category even when subjects were required to sort morphed stimuli
into new categories (Freedman et al., 2001).

Although many studies have demonstrated that animals can
categorize stimuli, relatively little work has been done showing
how categories are used in other cognitive tasks. Can animals, for
example, treat categories as though they were informative stim-
uli, signaling appropriate behavior in a cognitive task?

Categorical serial learning
Altschul et al. (2016) demonstrated that rhesus macaques cannot
only distinguish between four simultaneously presented catego-
ries of stimuli, but that they can also learn their serial order using
a variant of the simultaneous chain task (Terrace, 1984, 2005).
This suggests that animals cannot only learn to identify categories
but they can also process categories in the same way they can
process single stimuli. That is, they applied judgments of list po-
sition to entire classes of stimuli.

The transitive inference (TI) paradigm provides another
method for studying serial learning: the ability to learn the rela-
tive order of a set of items. TI has been demonstrated in many
species, including monkeys (McGonigle and Chalmers, 1992),
mice (Van der Jeugd et al., 2009; Silverman et al., 2015), rats
(Davis, 1992), pigeons (Lazareva and Wasserman, 2006), crows
(Lazareva et al., 2004), and even fish (Grosenick et al., 2007; for
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Significance Statement

The cognitive abilities of nonhuman animals are of enduring interest to scientists and the general public because they blur the
dividing line between human and nonhuman intelligence. Categorization and sequence learning are highly abstract cognitive
abilities each in their own right. This study is the first to provide evidence that visual categories can be ordered serially by macaque
monkeys using a behavioral paradigm that provides no explicit feedback about category or serial order. These results strongly
challenge accounts of learning based on stimulus–response associations.
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review, see Vasconcelos, 2008; Jensen, 2017). The TI paradigm
requires subjects to maintain a representation of the relative or-
der of list items. Following training using only adjacent pairs,
above-chance ordering of nonadjacent pairs demonstrates that
subjects were capable of TI (McGonigle and Chalmers, 1977;
Jensen et al., 2013). While an animal’s ability to learn a TI task
and to categorize are well established, their ability to do both
simultaneously has yet to be shown. Here, we assess the ability of
rhesus macaques to learn category membership of stimuli that
change on every trial, even as they learn the order of those cate-
gories and make TIs about them.

Our Category TI task follows the format of a traditional TI
procedure of training using adjacent pairs and testing using all
pairs but does so using stimuli that change after every trial. Sub-
jects used trial and error to learn the category order of stimuli
belonging to five categories: birds, cats, flowers, people, and
hoofstock. Each trial begins with the presentation of two ran-
domly selected pictures, drawn from a pool of 1000 images for
each of the five image categories. Because the images included a
range of related species photographed under varying conditions,
subjects had to rely on category membership rather than their
memory of specific stimuli.

Subjects learned all of the categories while learning the list
order. They had no prior exposure to categorization tasks or to
any of the stimuli belonging to those categories. After subjects
were tested for TI with one stimulus order, the same categories
were trained again in a different order. Subjects had to learn to
sort the five categories into four different orderings during the
course of the experiment. Given the size of the stimulus sets and
the lack of prior training, a demonstration of TI under these
conditions would show that perceptual categories can be learned
and represented in the same flexible fashion as the constant stim-
uli that are normally used to train TI. It would also show that
subjects can learn to categorize images without first being trained
regarding category membership (e.g., using match-to-sample).

Materials and Methods
Subjects. Subjects were two adult male rhesus macaques (Macaca mu-
latta), Subjects N and O. Subject N was 8 years old and had minimal
experience with the TI procedures. Subject O was 22 years old and had
extensive experience performing TI tasks that may have facilitated his
learning of the Categorical TI task. Neither subject had any experience
categorizing pictorial stimuli. Subjects’ first exposure to these five cate-
gories began at the start of this experiment.

The subjects were individually housed in a colony room containing
approximately two-dozen macaques and performed the experimental
tasks in their home cage. The subjects were trained 5 d a week, one session
each day. To increase their motivation to perform the task for fluid
reward, the monkeys were put on fluid restriction (300 ml of water per
day) 2 d before the first day of testing. Depending on task performance,
subjects could earn up to 500 ml a day performing the task, with 200 –300
ml being typical. Most days, subjects earned their entire fluid ration
performing the task. This was supplemented as needed after the experi-
mental session ended to meet the minimum requirement. Each monkey
received a set amount of biscuits before testing. Fruit was distributed
following testing.

The study was performed in accordance with the guidelines provided
by the Guide for the care and use of laboratory animals of the National
Institute of Health. This work, performed at the Nonhuman Primate
Facility of the New York State Psychiatric Institute, was overseen by New
York State Psychiatric Institute’s Department of Comparative Medicine
and was approved by the Institutional Animal Care and Use Committees
at Columbia University and New York State Psychiatric Institute.

Apparatus. The apparatus used for this study was an in-cage testing
device with a touch-screen tablet and a fluid delivery system comprising

a 1 L calibrated reservoir and a solenoid valve. The solenoid valve was
controlled by the tablet computer via an Arduino Nano interface. Each
correct response delivered 0.25 ml of water through a spigot below the
touchscreen. The entire testing device fit snugly and securely into the
doors of the monkey’s home cages. The tablet had a 10.1 inch HD display,
operated at 1266 � 768 resolution, and used capacitative multitouch
inputs. All tasks were programmed in JavaScript and run in a Google
Chrome browser window under a Windows 8.1 operating system.

All stimuli used in the experimental tasks were 250 � 250 pixel images
presented randomly on the left- and right-hand sides of the tablet’s
screen. Between trials, a solid blue square was presented at the center of
the screen. Touching it initiated a new trial. This focused the subject’s
attention and directed the subject’s hand toward the center of the screen
to reduce response bias.

Stimuli. Stimuli were selected from five categories: birds, cats (includ-
ing both housecats and large predatory cats), flowers, people, and hoof-
stock (the last being a mix of sheep, cows, horses, and goats). Other than
people, each category comprised a variety of species photographed under
varying conditions. For each category, subjects were exposed to 1000
different stimuli. It was therefore highly unlikely that subjects would see
the same image more than once within an interval of several hundred
trials. Stimuli from the first four categories were previously used by
Altschul et al. (2016) with a different set of subjects.

The TI procedure. During training, subjects were provided with accu-
rate but incomplete information about list order. It was, however, possi-
ble for them to infer the relative ordinal position of each item. Consider,
for example, a list of arbitrarily selected stimuli (A–D, E) in which the
order was determined by the experimenter and unknown to subjects. On
each trial, subjects were presented with a pair of items. A response to the
item from the earlier list position was always rewarded. If, for instance,
the order was ABCDE and the pair BC was presented, a response to B was
rewarded because it came first. If, however, the pair AB was presented,
the subject had to choose A to receive a reward. Following training on
adjacent items (AB, BC, etc.), the critical question is whether subjects
were able to infer the correct choice when presented with nonadjacent
items that they had never seen previously (e.g., AC).

Each session, subjects completed up to 1000 trials of TI training (Fig.
1) by touching stimuli on the tablet to earn water rewards. Each of two
images presented during a trial had an associated “list rank” that was not
explicitly communicated to the subjects. The image with the lower rank
(i.e., earlier in the list) was always correct. Selecting the correct item
yielded a reward of 0.25 ml of water. Image ranks ranged from 1 to 5.
Thus, subjects were effectively asked to discover the order of a five-item
list (denoted as ABCDE) by pairwise trial and error (Jensen et al., 2013,
Jensen and Altschul, 2015) in a procedure in which the exemplars of each
category were selected at random and seldom repeated.

Unlike traditional TI tasks, a particular rank was not associated with a
single static image. Instead, as described earlier, rank was associated with
a stimulus category. Every time a subject saw the pair AB, it consisted of
a different random pair of images from categories A and B than those
shown in the previous pairing of A and B. This meant that subjects could
not solve the task by learning the order of specific stimuli. Because the
images included a range of related species photographed under varying
conditions, subjects had to generalize their understanding of one image
of a bird and one image of a cat and understand, for example, that all
birds come before all cats. Because subjects had no experience with these
categories, they had to learn them at the same time they were learning list
order. In this respect, our procedure deviated from the typical matching-
to-sample or match-to-category procedures used to study concept-
formation (Freedman et al., 2001; Bodily et al., 2008).

To test subjects’ knowledge of TI, their initial training was limited to
adjacent pairs (AB, BC, CD, DE). During such training, A was always
rewarded, E was never rewarded, and all other stimuli were rewarded half
the time. B, for example, was correct when paired with C, but incorrect
when paired with A. Its asymptotic expected value was therefore 0.5.
Once subjects performed above chance on such pairings, they were tested
on the “critical test pair,” BD. Because B and D each has an expected value
of 0.5, associative models predict performance no better than chance.
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Contrary to this prediction, subjects across many species routinely favor
B, thereby displaying TI, despite B and D having similar reward values.
Actual reward history may differ from this asymptotic value, contingent
on subject performance.

After at least six sessions of adjacent pair training, subjects were ex-
posed to all 10 possible stimulus pairings. Knowledge of TI would be
demonstrated if subjects performed above chance on the critical pair BD.

The symbolic distance effect is a robust feature of TI performance.
Stimulus pairs that are more widely separated in the list show higher
levels of accuracy than those that are closer together (D’Amato and Co-
lombo, 1990; Treichler et al., 2007). Given our “train-adjacent-test-
nonadjacent” task design, a symbolic distance effect observed at the start
of each all-pairs block of sessions would be difficult to explain using
associative models, as would above-chance performance on critical test
pairs. Such effects are instead consistent with a strategy that relies on the
comparison of relative ordinal or spatial position, as it should be easier to
discriminate between widely-spaced items than closely-spaced items.

After an initial transfer from adjacent pairs to all pairs with respect to
a particular list order, subjects were again presented with adjacent pairs,
this time using a different ordering of categories. They repeated the
adjacent-pair-training, all-pair-testing design for three more phases,
yielding a total of four different category orders. The order of the cate-
gories used for Phase 1 was ABCDE, with BD being the key pair for
evidence of TI. The order for Phase 2 was DBCEA, with BE being the key
pair. The order for Phase 3 was AECBD, with EB being the key pair. The
order for Phase 4 was EDCBA, with DB being the key pair. Because of
scheduling conflicts and technical difficulties, subjects were not run for
the same number of sessions: Subject N completed 80 sessions, whereas
Subject O completed 60 sessions. Both subjects consistently completed
three sessions before and after each transition.

Statistical analysis. Behavior was modeled using logistic regression,
building on the method described Jensen et al. (2013). The probability of
selecting the correct stimulus on trial during a particular session is given
by p(t), which was fit according to the following function:

p�t� � �1 � exp� � ��� � �tt � �D�D � 2.5�

� �Dt�D � 2.5�t����1 (1)

Here, t refers to the trial number, beginning with zero; consequently, ��

is the intercept term, and �t is the slope as a function of time. D refers to
the symbolic distance between the list positions of the stimuli (e.g., for an
adjacent pair). Because the maximum value of D is 4 (in the case of pair
AE), subtracting 2.5 from D in the analysis centers the results with respect
to distance. As a result, �D provides an estimate of improvement in
performance overall and represents the differential performance that
results from the symbolic distance effect. �Dt represents the interaction
between overall learning and the symbolic distance effect. The logistic
function provides a more compressed version of Equation 1 as follows:

p�t� � logistic ��� � �tt � �D�D � 2.5� � �Dt�D � 2.5�t� (2)

A different logistic regression was performed for each subject during each
session because subjects were presented with the same stimuli over mul-
tiple consecutive sessions. This allows us to distinguish between behavior
during learning and behavior when performance reached ceiling (which,
in macaques, is consistently below perfect accuracy).

Reaction time was also evaluated on a per-session basis, given a log-
linear model as follows:

log (reaction time) � �� � �D�D � 2.5� (3)

Because D was centered with respect to symbolic distance, the intercept
�� can be interpreted as the mean of the log reaction times, whereas �D is
responsible for the deviation as a function of distance. This model was fit
for each subject during each session.

Models were fit using the Stan language (Carpenter et al., 2017). To
facilitate continuity from one session to the next, model estimates for a
subject’s performance at the end of each session acted as a regularizing
prior on that subject’s performance at the beginning of the following

Figure 1. Procedure for the categorical TI task. Left, Structure for any single trial of the task. Subjects must touch a blue square to begin the trial, which is immediately replaced by two images.
If a correct response is made, subjects see a green checkmark and are immediately given a fluid reward. If an incorrect response is made, subjects see a red X, followed by a black screen for 2 s.
Following feedback, the next trial begins with the start stimulus. Middle, Each phase of the experiment made use of a consistent category sequence (in this case, birds-cats-flowers-people-hooved).
The stimuli themselves, however, were drawn at random from the image bank during every trial. During adjacent-pair trial (using only AB, BC, CD, and DE), the identity of the stimulus changed for
every trial, even when the same category appeared in two consecutive trials. The left-right position of stimuli was also counterbalanced. This was also the case during all-pairs sessions, which
intermixed all possible stimulus pairings. Right, Two exemplars each from the five stimulus categories used in the experiment. In all categories, an effort was made to include category members from
multiple distances and angles, with a mixture of both solitary and group photos, as well as both color and black-and-white. This stimulus diversity was intended to reduce subjects’ reliance on specific
discrete features as category cues. The individual stimulus images are reproduced under Create Commons licenses.
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session. In transitions between phases, earlier performance was not used
as a prior.

In keeping with the spirit of the Stan language, we did not perform
null-hypothesis significance tests. As articulated by Gelman (2013), we
do not feel that p values reported with a “discovery” mindset are appro-
priate to the data at hand. We are instead interested in reporting the
relevant uncertainty about the parameters, in keeping with a “measure-
ment” mindset. Throughout, we report 80% and 99% credible intervals
for estimates of parameter values and task performance. When a so-
called “null result” (e.g., a parameter of zero) is omitted from these
credible intervals, the Bayesian interpretation of the interval is that, given
the model, the data, and our prior assumptions, our conclusion is that it
is a very unlikely value for the parameter to take. In this respect, we are
more interested in measuring the size of the symbolic distance effect, and
less interested in discovering whether it differs from the null.

Results
We achieved both of our goals by showing that rhesus macaques
could, during TI training, learn (1) to simultaneously categorize
photographs from five categories without prior matching-to-
sample training and (2) the ordinal position of those categories in
an implicitly defined list.

Figure 2 presents the estimated mean probability of a correct
response (combining the uncertainty from both subjects) during
the first and last three sessions of each phase. Adjacent pairs are
plotted in black, while the 80% credible interval for those esti-
mates is shown by the shaded regions. Consistent with the past
literature (Terrace et al., 2003; Lazareva and Wasserman, 2006;
D’Amato and Colombo, 1990), performance on adjacent pairs
was above chance but comparatively low.

After at least 6 sessions of adjacent-only training, monkeys
were tested with all category pairings. Nonadjacent pairs yield
higher accuracy, even in the earliest trials of each all-pairs phase.
A symbolic distance effect is clearly visible. Response accuracy
was highest for the largest symbolic distance of 4 (depicted in
green), whereas distance 3 (in blue) and 2 (in red) yielded inter-
mediate response accuracies. Although exemplars changed on
every trial, a distance effect appeared immediately after the tran-
sition from an adjacent-pair to an all-pair design. This suggests

that subjects immediately made TIs at the category level. Figure 2
incorporates data from 47 sessions for each subject.

Figure 3 (left) presents a more direct depiction of the distance
effect from the logistic regressions using the mean estimated pa-
rameter, measured in log units. This estimates the differential
impact of symbolic distance, independent of overall perfor-
mance. A positive value for the parameter indicates the tradi-
tional distance effect, with larger values corresponding to more
dramatic effects. For example, if (hypothetically) accuracy on

adjacent pairs was at chance (i.e.,
1

1 � exp(0.0)
� 0.5 accuracy)

and if �D � 0.3, then accuracy on a pair with a distance of two

would be
1

1 � exp(�0.3)
� 0.574, and distance 3 would be

1

1 � exp(�0.6)
� 0.646, and so forth. In all but three of the ses-

sions, the 99% credible interval of the mean (depicted by the
whiskers) excludes zero. The 80% credible interval (depicted by
the boxes) exclude zero for all sessions.

In the evaluation of TI, the test pair BD is particularly impor-
tant because it is the only nonadjacent pair for which (after
adjacent-pair training) both stimuli have an expected value of
0.5. Performance above chance on this pair is generally taken to
be evidence that an inference has taken place. Figure 3 (right)
provides three estimates for each subject of the probability of a
correct response on the pair BD at transfer for each subject. The
first estimate (labeled “trials only”) is based only on the first two
presentations of BD in each phase. Both subjects chose B more
often than they did D (6 of 8 times for Subject N and 5 of 8 times
for Subject O). Because there were so few transfers, however, the
uncertainty associated with these estimates is large. The second
estimate (labeled “BD model fit”) estimates the probability of a
correct response based on a logistic regression using only BD
trials across all phases. Finally, the third estimate (labeled “full
model fit”) uses Equation 1 to make an estimate using all trials to
infer an estimate for BD. Because the second and third estimates
incorporate other data as a time series, they can estimate mean

Figure 2. Time series analysis of task performance, divided by symbolic distance, averaged across subjects. All sessions presented adjacent pairs (black), but only all-pairs sessions included
symbolic distance of 2 (red), 3 (blue), and 4 (green). Discontinuities correspond to gaps between sessions. Shaded regions represent the 99% credible interval of the estimate.
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performance at transfer with greater confidence, leading to cred-
ible intervals that reliably exclude chance performance.

Figure 4 plots mean parameter values across subjects for both
the intercept and the distance effect. Overall, reaction time in-
creased during successive phases of the experiment, from a min-
imum group mean of �1.55 log seconds (0.21 s) to subsequent
values reliably exceeding �0.8 log seconds (0.45 s). This suggests

that subjects became less impulsive with training. Thus, despite a
reliable distance effect for response accuracy, none was obtained
for reaction time.

It is noteworthy that subjects continued to make errors at a
high rate after extensive training on all pairs, even on “easy” pairs
like AE. Monkeys given extensive training on 5 item lists are
ordinarily able to respond correctly to the pair AE with close to no

Figure 3. Evidence of distance effects at transfer. Whiskers represent 99% credible intervals for the estimates. Shaded intervals represent 80% credible intervals. Left, Session-by-session of the
“distance effect on trial zero” parameter in the logistic regression analysis of performance (�D in Eqs. 1, 2) during all-pairs sessions, averaged across subjects. Because parameters are measured in
log-odds units, no distance effect at transfer would correspond to a parameter value of 0.0. Right, Proportion of correct responses for the critical test pair BD on its first presentation. “Trials only”
estimates are based only on the first two BD presentations in each phase. “BD model fit” estimates are based on the intercept of a logistic regression of response accuracy that uses only BD trials. “Full
model fit” estimates use Equation 1 to predict BD accuracy using all trials and their symbolic distances. Performance above chance indicates that TI has occurred.

Figure 4. Session-by-session of the intercept parameter (�� in Eq. 3, in black) and “distance effect on trial zero” parameter (�D in Eq. 3, in white) in the regression analysis of log reaction time,
averaged across subjects. Values of near zero indicate no differential effect on reaction time as a function of symbolic distance. Whiskers represent 99% credible intervals for the estimates. Shaded
intervals represent 80% credible intervals.
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errors (D’Amato and Colombo, 1988; Treichler and Van Tilburg,
1996). The failure to do so after thousands of trials of training
likely reflects the greater difficulty introduced by stimulus cate-
gorization. Characterizing how difficult the task is, however, re-
quires an objective benchmark against which to compare
performance. To assess this, we used AlexNet, a deep learning
network (DLN) trained for image classification (Krizhevsky et al.,
2012). Like other DLN classifiers, AlexNet relies on a convolu-
tional hierarchy, wherein a single node at one layer received
weighted inputs from large numbers of nodes at the preceding
layer. These weights were previously trained to act as feature
detectors, such that, although the inputs are sensitive only to
brightness and color, the first convolutional layer can be sensitive
to contours and simple shapes. With each additional convolu-
tional layer, more and more sophisticated features can be built up
from those at lower layers. For example, in a DLN optimized to
detect faces, nodes in the second convolutional layer can readily
pick out patterns that resemble eyes and mouths, whereas nodes
in the third convolutional layer can pick out patterns that resem-
ble complete faces (Lee et al., 2009). Of the 23 layers in AlexNet, 7
are convolutional and have previously been optimized to classify
images into 1 of 1000 different categories. Thanks to this feedfor-
ward approach, DLN models, such as AlexNet, bypass the debate
over what constitutes a “discrete feature” by defining features in
terms of statistical regularities within each category.

By performing image classification using only the first x con-
volutional layers of the network, we can effectively handicap per-

formance by allowing only a particular level of feature-like
regularity to be discovered. We can then compare this range of
response accuracies to that of the monkeys. Because AlexNet was
not originally trained on our stimuli, we retrained it using ran-
dom 300-image subsets as training sets and the remaining 700
images as validation sets. This gave a range of performance accu-
racies, which can be interpreted as revealing how higher and
higher levels of feature abstraction can be inferred by the network
and used to improved performance.

Figure 5 (top) shows the mean probabilities of how AlexNet is
likely to classify a stimulus given some number of convolutional
layers. For example, when presented with a picture of a bird,
AlexNet’s first convolutional layer only identified it as a bird
39.4% of the time (instead confusing it for a cat 22.2% of the
time). However, as convolutional layers were added, image clas-
sification steadily rose, reaching 92.3% when all seven layers were
included. Using AlexNet as a benchmark, photographs of flowers
were generally easiest to distinguish from the other image cate-
gories (96.7% accuracy using the full network), whereas photo-
graphs of people were the most difficult to classify (91.1%
accuracy using the full network).

Figure 5 (bottom right) shows the probability that AlexNet
could correctly identify each stimulus in a forced choice between
pairs. These results take into account the possibility that the clas-
sifier would have to guess. If, for example, only the first layer of
the network was presented with a bird and a horse, and it knew
that “bird” was the correct answer, it would choose the bird

Figure 5. Comparison of monkey performance and AlexNet, a deep learning network trained for image classification. Whiskers represent 99% credible intervals for the estimates. Shaded
intervals represent 80% credible intervals. Top, Image classifications for each of the five categories by AlexNet, given the outputs at each of its seven convolutional layers. Each block assumes that
a stimulus of the type given by the title has been presented, and cumulative proportions of the five classified categories are (plotted from bottom to top) birds (light red), cats (dark blue), flowers
(yellow), people (dark purple), and hoofstock (light green). The proportion of correct classifications is also inscribed in the relevant block. Bottom left, Subjects’ response accuracy for the pair AE at
the end of each phase. “Full model fit” estimates use Equation 1 to estimate performance based on all trials across all phases. “Trial only” estimates are based on the proportion of correct responses
to AE during the last session of each phase. Bottom right, AlexNet classification accuracy in forced two-item classification as a function of the number of convolutional layers used. The uncertainty
in the estimates arises across multiple simulations using different training and validation sets of stimuli.
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68.7% of the time on average because a single-layer network has
some difficulty telling birds from horses. However, the full seven
layers would choose the bird 98.4% of the time on average.

We can compare these benchmarks to the performance of the
subjects on pair AE, shown in Figure 5 (bottom left). These rep-
resent performance at the end of each phase, averaged over the
final session of all-pairs TI. The “full model fit” shows estimated
response accuracy for AE using Equation 1 across all phases. The
“trials only” fits for each phase are mean accuracy based only on
the last session of each phase. Subject N had slightly higher as-
ymptotic accuracy on AE trials than Subject O overall. However,
Subject O showed steady improvement from one phase to the
next. Compared with AlexNet, Subject N reliably performed at a
level comparable with the first two layers of AlexNet, whereas
Subject O began at a level comparable with only a single layer, and
ended at a level comparable with three or four layers.

Discussion
Unlike earlier studies of category formation, we showed that rhesus
macaques could be trained by a TI paradigm to differentiate five
perceptual categories (birds, cats, flowers, people, hoofstock) and to
learn their ordinal positions on four different implicit lists. Remark-
ably, the vast majority of stimulus pairs were trial-unique.

Although the estimated distance effect was consistently posi-
tive (i.e., larger symbolic distances yielded higher performance),
parameter estimates for the first two sessions of Phase 1 did not
rule out a value of 0.0. During those sessions, subjects may still
have been learning to categorize the exemplars or may have had a
less robust understanding of the category ordering. However, in
every subsequent transfer, subjects showed a clear distance effect.
Together, our results show that monkeys could retain knowl-
edge of five distinct perceptual categories, despite changes to
the ordering of the categories. They could readily update the
ordering of those categories and improve their performance
with experience.

Past studies have shown that monkeys’ performance improves
as they accrue expertise over consecutive sessions learning serial
tasks (Terrace et al., 2003). Response accuracy in later stages re-
sembled TI in other studies (e.g., Jensen et al., 2015), suggesting
that given sufficient expertise, subjects were able to manipulate
categories as though each was a “stimulus.” However, despite
extensive training during each phase, asymptotic performance
still included many errors. Compared with AlexNet, subjects per-
formed in a fashion similar to a two- or three-layer DLN. This is
consistent with other reports (e.g., Cadieu et al., 2014) that DLN
image classification performance now exceeds that of nonhuman
primates.

The analysis of reaction times yielded two surprising results.
Extensive training increased reaction time and, unlike response
accuracy, no reliable distance effect of reaction time emerged.
These effects are likely due to the change of exemplars on every
trial. Whereas a monkey that lacks category knowledge can re-
spond rapidly by guessing, a monkey that seeks to classify an
exemplar may need more time to identify it. The lack of a distance
effect is consistent with previous work on categorical decision-
making in which it has been found that animals have a fixed,
short response time that does not vary with decision difficulty
(Uchida et al., 2006).

Traditionally, studies of categorization in animals initially
train category membership using the match-to-sample paradigm
(Herrnstein and Perrett, 1985; Crouzet et al., 2012), a match-to-
stimulus paradigm (Fabre-Thorpe et al., 1998; Basile and Hamp-
ton, 2013), or a match-to-category design (Freedman et al.,

2001). In these paradigms, subjects evaluate stimuli one at a time,
a process that is vulnerable to a “guessing” strategy (Jensen and
Altschul, 2015). The categorical TI experiment is distinct from
these procedures because it requires subjects to evaluate two cat-
egories at a time in 10 possible pairings. Subjects not only learned
to discriminate the categories, but did so while simultaneously
learning the ordinal positions of those categories.

Neural substrates of categorization and serial order
Studies in humans and nonhuman primates have identified sev-
eral cortical regions with activity related to visual categorization
and serial order in a variety of behavioral paradigms. In monkeys,
activity that is informative about visual category boundaries has
been reported in multiple regions of parietal and prefrontal cor-
tex, including the lateral intraparietal area (Freedman and Assad,
2006), dorsolateral prefrontal cortex (Freedman et al., 2001), in-
ferotemporal cortex (Freedman et al., 2003), and frontal eye field
(Ferrera et al., 2009) (for review, see Freedman and Assad, 2016).
Similar regions in prefrontal and inferotemporal cortex contain
neurons that respond selectively when monkeys engage in tasks
that require explicit or implicit ordering of visual images (Mi-
yashita, 1988; Berdyyeva and Olson, 2010; Brunamonti et al.,
2016).

Human studies using fMRI have likewise implicated prefron-
tal and parietal cortex in TI tasks, as well as the hippocampus
(Heckers et al., 2004; Van Opstal et al., 2008; Goel et al., 2009;
Zalesak and Heckers, 2009; Wendelken et al., 2010;Koscik et al.,
2012). Activity related to visual categories has been identified in
human inferotemporal cortex (Mur et al., 2012). Together, the
human and monkey studies point to a network of prefrontal,
parietal, and inferotemporal cortical regions involved in both
categorization and serial learning, raising the possibility that
these capabilities might be colocalized. So far, no studies have
reported a neural representation for the serial order of visual
categories.

Cognitive representation of serial categories
Proposals of how animals categorize stimuli can be grouped into
two classes: associative learning and cognitive representation.
Roberts (1996) and Lea and Ryan (1984) argued that animals’
ability to categorize can be explained by their reinforcement his-
tory. Because category exemplars contain particular features,
they can be paired with rewards. But this interpretation raises an
obvious question: What are those features? Herrnstein and Per-
rett (1985) questioned that interpretation in an experiment in
which photographic stimuli were randomly assigned to catego-
ries without regard to their content. Pigeons were nevertheless
able to learn which images belonged to which category.

A more modern cognitive approach treats a perceptual cate-
gory as a “conceptual representation” (Newen and Bartels, 2007).
Under such a view, categorization arises from an animal’s ability
to embed stimuli into a representational hierarchy, such that
stimuli can both be decomposed into features and also be
grouped into categories. These groupings can be defined statisti-
cally, rather than by strict rules. For example, although “humans”
usually have two eyes, an animal would recognize someone with
only one eye as human if enough other features were consistent
with that label. Thus, no single feature is necessary or sufficient to
determine category membership. Instead, a hierarchical infer-
ence permits categorization. Such representations fall short of the
abstraction of language but are more flexible than reward associ-
ations to features. Furthermore, “features” themselves can also be
defined hierarchically, as is the case for DLNs, such as AlexNet.
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This approach is already being used to better understand the
sensory cortex (Yamins and DiCarlo, 2016), and so may therefore
provide a framework for understanding categorization more
broadly.

Before the 1970s, TI was thought to rely on logic, limiting it to
humans old enough to possess both language and a capacity for
concrete operations (Vasconcelos, 2008). However, Bryant and
Trabasso (1971) demonstrated that 4-year-old children displayed
TI before the manifestation of concrete operations, suggesting a
more fundamental mechanism. Their trial-and-error method of
training was translated to nonhuman animals by McGonigle and
Chalmers (1977), who found evidence of TI in squirrel monkeys
(Saimiri sciureus).

Although evidence for TI in animals is compelling, its underlying
mechanism remains unclear. Some have argued that associative
learning (often using some variant of the Rescorla–Wagner model)
is the most parsimonious explanation for TI’s ubiquity in animals
(Vasconcelos, 2008). However, there are serious problems with this
argument. According to associative models, the massed presentation
of a single stimulus pair (e.g., DE) should bias responding toward the
correct item in that pair, even in pairings where it is incorrect (e.g.,
BD). However, several species have demonstrated robust response
accuracy despite these manipulations (Lazareva and Wasserman,
2012; Jensen et al., 2017).

Both the consistent manifestation of symbolic distance effects
and TI’s resistance to the effect of massed trials suggest that be-
havior is mediated by cognitive representations, updated based
upon feedback. For example, Jensen et al. (2015) proposed a
Bayesian model in which subjects estimate the spatial positions of
stimuli along an abstract continuum and perform inferences by
sampling from those uncertain estimates. Our symbolic distance
effects and transfer effects for critical test pairs are consistent with
the predictions of a Bayesian spatial model.

That said, it would be a mistake to make too broad a claim,
based on our data, about categorization and TI. All of our stimuli
were photographs. Despite a variety of angles, colors, and degrees
of zoom, there inevitably were statistical regularities among im-
ages. Pictures of flowers never included eyes, so their absence
could be used as a cue for that category. We do not rule out the
possibility that subjects relied on a classifier that was tailor-made
for the stimulus set, shaped by the task’s feedback (Jensen and
Altschul, 2015). However, this does not alter our conclusions
regarding serial learning. A tailor-made classifier might perform
more poorly on novel stimuli, but even then, the subjects would
be performing TI at a level of abstraction above that of specific
stimuli.

Another potential concern regarding photographic stimuli is
that they may be “ecologically relevant,” such that subjects might
be biologically predisposed to categorize them correctly (New et
al., 2007). A replication of our design using artificial stimuli (e.g.,
man-made stimuli) would be illuminating. However, we make
no claims about how categorization is performed, or whether it is
innate or acquired. Past studies of animal categorization suggest
that animals exhibit serial learning with abstract artificial stimuli
(Altschul et al., 2016), and that they can categorize visually de-
graded photographic stimuli (Basile and Hampton, 2013) and
artificial stimuli (Matsukawa et al., 2004). Although our own use
of photographic stimuli may introduce an ecological confound,
an ample literature suggests that subjects should be able to learn
to categorize and serially order stimuli beyond those that are
“ecologically relevant.”

Notes
Supplemental material for this article is available at https://github. com/
vpflab/transitive-inference-experiment/tree/master/CategoricalTIStudy. Re-
pository for data analysis script and raw data. This material has not been peer
reviewed.
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