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U
ntil relatively recently, RNA
has taken a predominantly
backstage role compared to
protein in genome studies.

However, this is changing dramatically
with the discovery of a plethora of
RNAs that do not act as messenger
(mRNA), transfer (tRNA), or ribo-
somal (rRNA) RNAs (1–3). These
noncoding RNAs (ncRNAs) play a role
in a variety of processes such as tran-
scriptional regulation, chromosome
replication, RNA processing and modi-
fication, and protein degradation and
translocation. Even so, ncRNAs usually
lack the statistical signals in their pri-
mary sequence (like ORFs and codon
bias) that have been used to such great
effect in the identification of novel
protein encoding genes, making the
task of systematically identifying new
ncRNAs in genomes currently one of
the most exciting challenges in compu-
tational biology. The work of Washietl
et al. in this issue of PNAS (4) faces
this challenge head on. Through an
elegant use of structural properties of
RNA, the authors present an efficient
comparative genomics approach to
identifying novel ncRNAs and related
genomic elements that promises to sig-
nificantly contribute to the burgeoning
field of computational RNomics.

Predicting RNA Structure
As with other computational approaches
to identifying ncRNAs, the method of
Washietl et al. (4) relies on structural
properties of RNA. Unlike double-
stranded DNA, an RNA molecule is
comprised of a single-stranded chain or
sequence of nucleotides. As a conse-
quence, parts of the molecule can base-
pair with other complementary parts of
the molecule, so that the nucleotide se-
quence plays a vital role in how the
molecule folds. For this reason, it is pos-
sible to develop computational methods
for predicting structural properties of an
RNA molecule based on knowledge of
its primary sequence.

As with proteins, the problem of
predicting the three-dimensional struc-
ture of an RNA molecule directly from
its primary sequence is still beyond
current computational methods. How-
ever, the three-dimensional structure
of an RNA molecule often builds on a
simpler scaffold known as its second-
ary structure. This structure consists
essentially of nested base-pairings,
which makes it well suited to computa-

tional prediction. Moreover, secondary
structure is commonly preserved under
evolution (even when primary se-
quence is not), suggesting relevance to
RNA function.

One of the first efficient algorithms
for predicting secondary structure for an
RNA sequence used dynamic program-
ming to compute a maximum set of
nested base-pairings (5). A more sophis-
ticated extension of this algorithm soon
followed (6), which incorporated more
detailed secondary structure informa-
tion. Basically, it used thermodynamic
considerations to compute a secondary
structure with minimum free energy for
an RNA sequence. Although the

method has been substantially devel-
oped since its introduction, and even
greatly extended for the prediction of
probably more realistic ensembles of
secondary structures (7, 8), the underly-
ing algorithm still lies in essence at the
heart of many present day RNA second-
ary structure prediction tools. However,
such tools use primary sequence alone,
so they tend not to perform as well as
one might hope, commonly predicting
only 50–70% of base pairs correctly on
average (9).

Comparative Sequence Analysis
Because secondary structure is often
preserved between homologous RNAs,
comparative sequence analysis can
provide a powerful alternative for its
prediction. One of the earliest methods
based on comparative analysis used mu-
tual information to detect covarying
columns in an alignment of RNA se-
quences (10). Related, but much more
sophisticated, covariance models (11),
the RNA analogue of hidden Markov
models, were subsequently developed
and successfully used in genomic
searches for ncRNAs and are now avail-
able as part of the recently established
Rfam database for RNA families (12).

Covariance models are family-specific
and, as such, do not provide a generic

tool for finding novel ncRNAs. How-
ever, the preservation of RNA second-
ary structure in an alignment naturally
suggests a comparative genomics ap-
proach to finding ncRNAs: form
alignments between conserved subse-
quences of genomes and then, by using
secondary structure detection ap-
proaches, try to decide which of these
are alignments of ncRNAs. One of the
first programs to employ this strategy
was QRNA (13), which used probabilistic
models to search for covariation in pair-
wise alignments and has been used to
identify novel ncRNAs in bacteria and
yeast. More recent methods include
DDBRNA (14) and MSARI (15), which
look for statistically significant covaria-
tion in multiple sequence alignments.

Picking Up the Signal
The method of Washietl et al. (4) em-
ploys a similar strategy. Le et al. (16)
proposed that ncRNAs are more ther-
modynamically stable than is expected
by chance. There has been much debate
over this hypothesis, and the current
general consensus is that it is not gener-
ally true. Even so, recent findings indi-
cate that certain families of ncRNAs
are, in fact, more stable than is expected
by chance (most notably microRNA pre-
cursors; ref. 17), and Washietl et al.
demonstrate that stability can, at the
very least, be used as a diagnostic fea-
ture for detecting ncRNAs.

In particular, they associate two
scores to an alignment: the z score, a
measure thermodynamic stability, and
the structure conservation index (SCI),
a measure of evolutionary conservation.
The z score is quite well known in the
RNA computational biology community.
However, the SCI is new. It is computed
by comparing the minimum free ener-
gies of the sequences in an alignment
with a ‘‘consensus energy,’’ which is
computed by incorporating covariation
terms into a free energy minimization
computation (18). Subsequently, a sup-
port vector machine is used to classify
alignments as ‘‘functional’’ or ‘‘other’’ in
the SCI�z score plane. This approach
has the advantage of not requiring
costly sampling of shuffled sequences or
alignments, and the results obtained on

See companion article on page 2454.
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benchmark data sets indicate that it has
high sensitivity and specificity.

A Bright Future
Given the wealth of genomic data that
is becoming available and new methods
for generating high quality alignments
(19), we can soon expect more answers

to the question presented in ref. 2:
‘‘How many ncRNAs are encoded by
the genome?’’ Even so, we are still
faced with tasks such as identifying
ncRNAs with little or no conserved
secondary structure and elucidating
function of newly discovered ncRNAs.
Computational approaches will almost

certainly play a key role in shedding
light on these problems. Thus, in view
of the remarkable new discoveries be-
ing made concerning the cellular func-
tion of ncRNAs, we can expect RNA
computational biology to become an
increasingly important field in the next
few years.
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