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Abstract

In CASP11 we generated protein structure models using simulated ambiguous and unambiguous 

nuclear Overhauser effect (NOE) restraints with a two stage protocol. Low resolution models were 

generated guided by the unambiguous restraints using continuous chain folding for alpha and 

alpha-beta proteins, and iterative annealing for all beta proteins to take advantage of the strand 

pairing information implicit in the restraints. The Rosetta fragment/model hybridization protocol 

was then used to recombine and regularize these models, and refine them in the Rosetta full atom 

energy function guided by both the unambiguous and the ambiguous restraints. Fifteen out of 19 

targets were modeled with GDT-TS quality scores greater than 60 for Model 1, significantly 

improving upon the non-assisted predictions. Our results suggest that atomic level accuracy is 

achievable using sparse NOE data when there is at least one correctly assigned NOE for every 

residue.
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Introduction

NMR structure determination and nuclear Overhauser effect spectroscopy (NOESY) data 

collection has primarily focused on small proteins due to ambiguity of peak assignment for 

larger proteins. The new “Ts” contactassisted category in CASP11 (11th critical assessment 

of techniques for protein structure prediction) was designed to test whether structure 

prediction tools can be used to disambiguate these sparse ambiguous NMR contacts and use 

them for high-resolution modeling. For this category, simulated sparse NOESY atom pair 

restraints similar to data available in the initial stages of NMR studies were provided for 19 

targets, most lacking PDB homologs and with sizes ranging from 110 to 534 residues.
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Rosetta has been demonstrated to speed up and improve NMR structure determination with 

a range of available data. The basic strategy in all cases is to use the NMR data to guide the 

search for the lowest energy structure. For small proteins <120 amino acids, incorporation of 

chemical shift information into the Rosetta fragment selection process drastically improves 

the Rosetta de novo structure prediction protocol: high accuracy structures (<2 Å RMSD) 

can quite consistently be determined.1 This method, called CS-Rosetta, has been quite 

widely used. For proteins with lengths in the 120– 200 residue range which have much 

larger conformational spaces to be searched, chemical shift information is not sufficient, but 

with incorporation of residual dipolar coupling information and backbone–backbone NOE's 

atomic accuracy structures (1.6–4.3 Å RMSD) can again be achieved.2 For proteins up to 

400 amino acids, backbone–backbone NOE's are not sufficient, but accurate models (1.1–4.1 

Å RMSD) can be generated with the incorporation of methyl–methyl NOEs from I, L, and V 

residues obtained on selectively labeled samples (where only I, L, and V residues are isotope 

labeled).3

The data provided for CASP11 differed from that utilized in the above calculations in that 

simulated NOE data was provided for all residues (except for proline) but no chemical shift 

information was provided. This modeling scenario is not very realistic given that some 

NOEs may be quenched for large proteins by short transverse relaxation rates due to the 

large rotational correlations times, exchange broadening due to internal motions, and other 

factors causing resonance line-broadening,3 and due to the omission of chemical shift data 

which is a huge boost to modeling. However, how best to use ambiguous sets of restraints is 

an interesting modeling challenge. As in CASP10 contact-guided prediction category, we 

used a two-stage modeling approach involving an initial fold level conformational search 

followed by refinement using Rosetta with restraints in both stages.4 For all-β proteins, the 

unambiguous contacts were primarily long-range and between strands, while for all-alpha 

proteins the unambiguous contacts were typically short-range and within helices, hence 

different protocols were used in the fold-level conformational search. The results are 

consistent with our previous structure prediction studies using sparse experimental data,3,5.6 

and the modeling accuracy was higher than in previous contact-assisted CASP experiment 

where only a small number of accurate contacts were provided.

Materials and Methods

Overall procedure: Comparison to CASP10

There were two major differences in the contact information provided for the “Ts” category 

compared to the previous CASP contact-assisted experiment. First, the number of contacts 

increased from one contact for every 12 residues to one contact for every residue on average. 

Second, the provided contacts, simulating NOESY restraints, were ambiguous.

As in the previous CASP contact-assisted experiment, we used a two-stage approach 

consisting of fold-level modeling and hybridization/refinement4 [Fig. 1(A)]. In the last 

CASP experiment, significant efforts were made in the fold-level modeling stage to sample 

the correct fold using both Rosetta de novo continuous chain and broken chain protocols, 

and for most targets, a large amount of conformational sampling was required. In this 

experiment, the amount of information provided was sufficient for fold-level modeling with 
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significantly less effort, but denoising and optimal use of the ambiguous data along the 

modeling path was important. In the first stage, we used only unambiguous data for all-β 
proteins and included data from peak groups with low ambiguities for the remaining targets. 

In the following hybridization and refinement stage, starting from these fold-level models, 

ambiguous data were introduced as restraints through multiple iterations, and eventually all 

the included data were utilized.

Fold-level modeling

We used two different fold-level modeling strategies depending on the predicted secondary 

structure. Unambiguous contacts—NOESY peak groups containing only one contact—

generally involved backbone–backbone atom pairs and provided unambiguous information 

about β-strand pairing [Fig. 1(B)]. For all-β proteins, fold-level accuracy was obtained by 

iterative annealing in both internal and Cartesian space where at each iteration the strength 

of the repulsive interactions were rescaled. For this process, we used the Rosetta “dual-

relax” proto-col7 which was developed for later stage structure refinement but is also 

effective in generating reasonable topology level models when there is sufficient contact 

information. For smaller proteins (<200 length) all the contacts were encoded as ambiguous 

restraints and used with a strong weight (see below for restraints setup), while for larger 

proteins only the unambiguous data were used. The dual-relax protocol was run 10 times for 

each of the server models from the regular “TS” structure prediction category. The top five 

models with the lowest Rosetta energy plus full-restraint score and without structural knots 

were selected for the refinement stage. Post-CASP experiments for targets Ts763 and Ts785 

revealed that the server-models were not necessary; running the same protocol starting from 

an extended chain produced similar quality models [Fig. 1(C)].

For proteins with other topologies (all-α, α 1 β, and α/β), the unambiguous contacts 

provided little information about the relative position of secondary structure elements, and 

thus more aggressive sampling was necessary. The Rosetta ab initio protocol (RosettaAB) 8,9 

was used with 1.5× (number of residues) contacts, weighted by level of ambiguity (see 

restraint section below) to generate up to 10,000 models. Five models with the lowest 

Rosetta energy plus full-restraint score were selected for the refinement stage. The restraint 

weight was assigned such that the restraint score contribution was roughly equal to that of 

the Rosetta energy.

For some targets, models with fold-level accuracy were already sampled in other prediction 

categories (the “Tc” contact-assisted category and the “TS” category for which co-evolution 

information was available), therefore we skipped the fold-level modeling stage and simply 

selected models for the refinement stage using the same criteria described above. This was 

done for the following targets: Ts824 (from T0824), Ts835 (from T0835), Ts806 (from 

T0806), Ts767 (from Tc767), and Ts812 (from Tc812).

Refinement of fold-level models

Once fold-level models were selected, they were recombined and refined using an iterative 

version of the Rosetta hybridize protocol (RosettaCM) originally developed for comparative 

modeling.10 Structural optimization was accomplished by recombining the secondary 
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structure segments from each of the input models, together with fragment insertion for 

added diversity. In each iteration, 20 models were produced independently and the top 4 

were selected based on the sum of the Rosetta energy and restraint score for the next 

iteration. The procedure was repeated until structural convergence was reached. After 

convergence, the maximum restraint ambiguity (see below for ambiguous restraints) was 

increased and the procedure was continued until all contacts were used [Fig. 1(C)]. Initially, 

only unambiguous contacts were used, and as the modeling progressed the number of 

ambiguous contacts was increased. In the final iterations, all contacts were used. If there 

were still violated contacts (restraint score greater than 0.000), the restraint weight was 

increased by 10-fold and additional iterations were carried out.

At this stage, the PDB was scanned for proteins with similar structure (TM-align11 > 0.5). If 

hits were found (in CASP11 this only occurred in one case, Ts785), alignments were created 

based on the structural superpositions and used as additional starting templates (Fig. 2). For 

Ts785, this procedure improved the GDT-TS from 70.1 to 78.4 and Rosetta all atom energy 

from 2172.5 to 2201.3. This is consistent with our previous observation that when homology 

derived information is incorporated into Rosetta structure prediction calculations and lower 

energies are achieved, the models generated are more accurate than those obtained in 

unrestrained calculations.12

Following convergence, models were rescored using the complete set of restraints, and the 

models with the lowest Rosetta all atom energy and restraint scores were analyzed. If these 

top models varied significantly, they were clustered, and the five submitted models were 

selected from the cluster representatives; the model with the best Rosetta energy plus 

restraint fit was assigned as Model 1. If the top scoring models converged, the five submitted 

models were selected based on the sum of Rosetta energy and fit to restraint sets with 

different levels of ambiguity. The best scoring model using all contacts was assigned as 

Model 1.

Modeling of multi-domain proteins

Proteins larger than 200 amino acids in length were manually parsed into multiple domains 

guided by the provided contact maps (Ts814, Ts777, Ts826, Ts794). For these targets, 

domains were modeled and refined separately, and then assembled into full length models. 

Guided by the provided inter-domain contacts, the global orientation was roughly sampled 

manually and then refined with local rigid-body docking using Rosetta-Dock.13 Little effort 

was applied to refining the fit between domains due to time constraints and since it was 

assumed that targets would be evaluated at the domain level as in CASP10.

Conversion of experimental information to restraints

Multiple restraint sets were generated for different parts of the modeling protocol. The 

unambiguous contacts were used as strong “bounded” restraints.4 All unambiguous contacts 

(backbone–backbone, backbone–sidechain, and sidechain–sidechain) were used as restraints 

for the iterative annealing protocol and the final stages of RosettaAB and RosettaCM. Only 

the unambiguous contacts between backbone atoms were used for the initial “centroid” 

(coarse-grained representation in Rosetta) sampling stages of RosettaAB and RosettaCM.
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For the “centroid” stages, ambiguous contacts were incorporated as sigmoidal restraints 

between Cβ–Cβ atoms (Cα in the case of glycine). A contact score for each residue pair was 

set proportional to the contact confidence value (conf) provided by the CASP organizers and 

inversely proportional to the ambiguity level. Given that at least one contact is correct in 

each group of contacts, the probability that any given contact is correct is simply conf/

sum(conf_of_group). The final weight for each pair of residues was the sum of this ratio 

over all groups. Only the highest scoring 3L/2 (L is the sequence length) contacts were used, 

with sequence separation of three or higher. Contact distances were set to the largest Cβ–Cβ 
distance found in the PDB for the residue pair when any of the heavy atoms was within 10 

Å. For the all-atom stages, ambiguous contacts were converted into ambiguous-bounded 

restraints as previously described.3 For the latter ambiguous restraints, groups of ambiguous 

contacts were discarded if the residue sequence separation was <6 to prevent local geometric 

distortions.

Computational cost

Fold-level modeling of all-β targets using iterative annealing required minutes per run. Fold-

level modeling for other topologies required sampling around 1000 to 10,000 models using 

RosettaAB, which translates to roughly 500 to 5000 core hours for a 200 residue protein. 

One iteration of the hybridize protocol in the refinement stage took around 20 core hours for 

a 200 residue protein, and 30–100 iterations, were carried out to reach convergence (or 

before the submission deadline).

Results

Approach

We found that with the rich contact data provided in this experiment, Rosetta protocols 

developed for other applications turned out to be surprisingly effective. First, to assemble all 

beta topologies from the unambiguous backbone–backbone NOEs, the iterative annealing 

with rescaling of the repulsive interaction followed by quasi-Newton minimization carried 

out by the Rosetta dual-relax protocol developed for late stage structure refinement proved 

very effective in generating models with the correct overall topology. Second, the 

RosettaCM hybridization protocol was found very effective in recombining and regularizing 

(by fragment insertion) the models generated by iterative annealing, which generally had 

very poor local geometry and often little regular secondary structure [Fig. 1(C)]. For all 

targets, all submitted models made all the unambiguous restraints and at least one restraint in 

each group of ambiguous restraints. The fraction of contacts made in the native structure is 

nearly identical to the fraction of contacts made in the submitted model (See Supporting 

Information Table I).

More accurate models were built for the majority of targets

The first submitted models for 15 out of 19 targets have GDT-TS quality scores >60 which is 

quite encouraging. Models with GDT-TS >45 typically have the native fold (TM-score > 

0.5).14 Examples of models with high accuracy are shown in Figure 3(A) (Ts812) and Figure 

3(B) (Ts832). The average GDT-TS for Model 1 is 65.3, which is similar to the average of 

68.6 for the best among the five submitted models. The fact that even the worst models have 
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similar accuracy (58.4 average GDT-TS) highlights the convergence of all five submitted 

models; the average similarity among the five models is 0.82 (60.10) in TM-score.11

Dependence on secondary structure

The targets consist of 7 all-α, 7 all-β, and 5 α/β or a+β proteins. Targets with more β 
content were better predicted; the average GDT-TS values are 63.5 (±13.0), 68.7 (±10.6), 

and 73.6 (±8.0), for all-α, α/β or α+β, and all-β proteins, respectively. Four all-β targets had 

highly accurate predictions (GDT-TS >75) compared to only one among the all-α targets. In 

several cases, top predictions were made even for all-α targets [Fig. 4(C, D)] and examples 

are illustrated in Figure 5(A) (Ts777) and Figure 5(B) (Ts827).

What went wrong: Model bias from fragment library and domain orientation

The best predictions for four targets had GDT-TS values <60, Ts794 (48.6), Ts804 (57.6), 

Ts826 (35.3), and Ts827 (57.2). The target with lowest model quality, Ts826 [Fig. 6(A)], 

had fragment quality issues. The success of both fold-level modeling and refinement highly 

depends on fragment accuracy, which is strongly dependent on the predicted secondary 

structure. For the transmembrane domain of Ts826, PSIPRED15 over-predicted the helical 

content, which prevented the modeling methods from sampling critical breaks in helices. For 

the successfully modeled Ts785, large stretches of beta-sheet were predicted as alpha-helix 

[Fig. 2(D)] and required the addition of structural homologs to correct for the incorrect 

fragments [Fig. 2(B)].

The remaining targets with relatively low model quality (Ts804, Ts827, Ts794) had domain 

orientation issues. Although the domain interfaces were roughly correct, the global 

structures had low GDT-TS values due to lever-arm effects and inaccurate assembly; Ts794 

is a good example of this [Fig. 6(B)]. The GDT-TS values for each domain exceed 60 except 

for Ts794-D1 (57.7). Both Ts804 and Ts827 have small domains that minimally interact 

with the rest of the protein, and did not converge among our submitted models. The domain 

orientation was predicted correctly for multi-domain targets Ts777 and Ts814; for these 

targets, sufficient interdomain contacts were provided for the large interfaces.

Comparison to non-assisted predictions

The extent to which the simulated NMR data improved modeling can be determined by 

comparing the contact-assisted results with the non-assisted predictions. The comparison 

between the best non-assisted (TS) predictions among all groups and our assisted (Ts) 

submissions is displayed in Figure 4. The average GDT-TS for the best predictions improves 

from 37.5 to 68.6 with the use of contact information [Fig. 4(A)]. Similar results are 

observed for the Model 1 submissions [Fig. 4(B)]. All targets improve with the exception of 

T0826, which had fragment quality issues as explained above. Nine out of 19 targets 

improved significantly (ΔGDT-TS > 30). The improvement of 31.1 GDT-TS units is 

significantly higher than in the previous CASP contact-assisted experiment, where the 

improvement was 13.5 GDT-TS over the best non-assisted predictions on average.4 

Although there are obvious differences in the targets, contact information, and modeling 

methods, these results suggest that even with ambiguous data, the increased amount of 
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contact information provided in CASP11 compared to CASP10 led to significant 

improvements in GDT-TS.

Discussion

Our results show that the amount of information provided in the NMR category was 

sufficient to generate models with the correct folds. Unambiguous information brought 

critical clues to the folds of target proteins, in particular for all-β proteins. Ambiguous 

information helped further refine the structures, yielding significant improvements over the 

models generated using only the unambiguous information [an example is illustrated in Fig. 

1(C)]. The contribution from ambiguous information is evident in the consistent successful 

selection of one of the best structures as Model 1 (which contrasts with our failure to 

properly rank models in other prediction categories).

We have several suggestions for future CASP experiments using simulated NMR data. First, 

the amount of contact information provided was in many cases so large that the prediction 

problem was not very challenging. Realistically, for proteins >200 residues spin diffusion or 

other factors3 would likely limit the amount of NOE information for uniformly labeled 

samples. An optimal amount of information would be somewhere between the very low 

level (one contact for every 12 residues) provided in CASP10 and the high level (one contact 

every residue) provided in CASP11. Second, since in any real world NMR structure 

determination problem chemical shift data and possibly residual dipolar coupling (RDC) 

data would be available, it would be useful to provide simulated data of these types as well. 

Chemical shifts and RDC data would largely resolve the fragment quality and domain 

orientation issues mentioned above. Finally, the simulated NMR data was provided in this 

experiment with the additional knowledge that there was only a single conformational state 

and that the targets were monomers, and our modeling methods took advantage of this: we 

were able to use strong restraints (bounded function) for unambiguous contacts because we 

could assume the contacts were accurate. Without this assumption, some of the contacts may 

have been incompatible with each other, and weak restraints (sigmoidal function) would 

have to have been used which would increase modeling difficulty. It may be useful in 

subsequent CASP experiments to introduce further ambiguity to better replicate the real 

world situation. Finally, given the growing importance of protein structure determination 

using cryo-electron microscopy (cryo-EM),16 prediction challenges with simulated density 

maps would be useful in future CASP experiments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the methods used in the CASP11 contact-assisted “Ts” category. A: Overall 

flowchart. B: Contacts provided by organizers for top: all-β protein (Ts763) and bottom: all-

α protein (Ts777). Non-ambiguous contacts are represented as yellow bands within the 

native structure, and non-ambiguous and all contacts are represented as contact maps. C: 

Change in models as iterative hybridize protocol proceeds for Ts763. (i) starting models 

(from iterative annealing, GDT-TS5 46.9), (ii) optimization with non-ambiguous restraints 

(GDT-TS5 56.7), (iii) after maximum ambiguity increased to 5 (GDT-TS5 67.5), and (iv) the 

final structure optimized with full-ambiguity (GDT-TS579.6).
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Figure 2. 
Structural homologs used to refine Ts785. A: Converged model (GDT-TS 70.1) before the 

addition of structural homologs. B: The top 20 structural homologs detected by TMalign.11 

C: Converged model (GDT-TS 78.4) after the addition of structural homologs. D: The native 

structure colored by PSIPRED secondary structure prediction. The colors are blue for helix, 

red for sheet, and gray for coil.
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Figure 3. 
Examples of predictions with accurate side-chain placements. The core side-chains of the 

native (blue) and submitted model (red) are highlighted. A: Ts812 Model 4 and (B) Ts832 

Model 1.
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Figure 4. 
Overview of Baker group models in the Ts category in CASP11. Contact assisted 

predictions are compared to (A,B) the best non-assisted predictions and (C,D) the best Ts 

submissions by others. The comparisons in (A) and (C) are between the best of the five 

submitted models, and in (B) and (D), between the first submitted models.
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Figure 5. 
High-accuracy predictions for all alpha proteins. A: Ts777 and (B) Ts827. In each panel, 

best prediction without information (left), best BAKER Ts prediction (middle), and native 

(right) are shown, respectively. B: Although our model was the best among all Ts 

predictions, contact information at the N-terminal region was minimal and our model was 

more compact than the native structure.
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Figure 6. 
Targets with modeling problems. A: Ts826, biggest failure due to fragment limitation. Best 

BAKER Ts Prediction (left), proxy for native (right, Tc prediction with GDT_TS 80.47, 

native structure not deposited yet), (B) Ts794, domain orientation issues. Best BAKER Ts 

Prediction (left) and native (right).
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