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Abstract In contrast to apoptosis and autophagy, necrotic

cell death was considered to be a random, passive cell death

without definable mediators. However, this dogma has been

challenged by recent developments suggesting that necrotic

cell death can also be a regulated process. Regulated

necrosis includes multiple cell death modalities such as

necroptosis, parthanatos, ferroptosis, pyroptosis, and mito-

chondrial permeability transition pore (MPTP)-mediated

necrosis. Several distinctive executive molecules, particu-

larly residing on the mitochondrial inner and outer

membrane, amalgamating to form the MPTP have been

defined. The c-subunit of the F1F0ATP synthase on the

inner membrane and Bax/Bak on the outer membrane are

considered to be the long sought components that form the

MPTP. Opening of the MPTP results in loss of mitochon-

drial inner membrane potential, disruption of ATP

production, increased ROS production, organelle swelling,

mitochondrial dysfunction and consequent necrosis. Cyclo-

philin D, along with adenine nucleotide translocator and the

phosphate carrier are considered to be important regulators

involved in the opening of MPTP. Increased production of

ROS can further trigger other necrotic pathways mediated

through molecules such as PARP1, leading to irreversible

cell damage. This review examines the roles of PARP1 and

cyclophilin D in necrotic cell death. The hierarchical role of

p53 in regulation and integration of key components of

signaling pathway to elicit MPTP-mediated necrosis and

ferroptosis is explored. In the context of recent insights, the

indistinct role of necroptosis signaling in tubular necrosis

after ischemic kidney injury is scrutinized. We conclude by

discussing the participation of p53, PARP1 and cyclophilin

D and their overlapping pathways to elicit MPTP-mediated

necrosis and ferroptosis in acute kidney injury.
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Three modes of cell death

As important biologic processes, apoptotic cell death and

autophagy are not only essential in normal development

and homeostasis but also important in the pathogenesis of

certain diseases. Autophagy is the basic catabolic mecha-

nism that involves elimination of unnecessary or

dysfunctional cellular components to preserve cellular

homeostasis in baseline conditions and in response to

stress. Autophagy also contributes to regulated cell death,

during embryonic development in Drosophila melanoga-

ster and in the death of cancer cells exposed to

chemotherapeutic agents, hypoxia, or specific autophagy-

inducing peptides [1, 2]. The stress factors, mechanisms

and regulation and the specific subcellular compartments

contributing to autophagy are elegantly reviewed else-

where [3, 4] and are not discussed further. Apoptosis is

ATP dependent and is characterized by cell and organelle

shrinkage, membrane blebbing, chromosome condensation,

apoptotic body formation and phagocytosis. Apoptosis is

generally not associated with inflammation and is consid-

ered as a less harmful type of cell death. The apoptotic

mode of cell death has been comprehensively reviewed by
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several investigators [5–8] and is not the topic of this

review. The third mode of cell death, necrosis, is ATP

independent and has its unique morphological character-

istics such as increased cell or organelle volume (oncosis),

mitochondrial swelling, rupture of plasma membrane

(cellular leakage), and consequent inflammation. Tissue

detection of necrosis is usually defined in a negative

fashion by excluding other types of cell death, such as

apoptosis and autophagic cell death. Although semiquan-

tification of tissue necrosis is possible based on histology,

its gross quantification remains a challenge.

Mitochondria, Bcl2 family and cell death

Mitochondria, the principal energy source of the cell, are

pivotal in necrotic and apoptotic cell death. Apoptosis is a

highly orchestrated mode of cell death in which caspase-

mediated executive canonical pathways have been inves-

tigated and revealed in detail. The extrinsic and intrinsic

pathways of apoptosis are executed through triggering of a

cascade of events leading to activation of executioner

caspases [9]. The extrinsic pathway is activated primarily

through inflammatory response and can occur independent

of mitochondria [10]. The intrinsic pathway is dependent

on mitochondrial release of cytochrome c (Cyt c) from

mitochondria through the mitochondrial outer membrane

permeability pore (MOMP), which is regulated by the Bcl2

family of proteins [9].

The 22 member Bcl2 family consists of pro-and anti-

apoptotic proteins [10]. The primary function of the Bcl2

family is to regulate pore formation in the mitochondrial

outer membrane thereby promoting MOMP and MPTP.

Bax and Bak are the main proapoptotic family members

involved in MOMP formation which is opposed by anti-

apoptotic Bcl2-subfamily members [11]. In general, it is

the equilibrium of concentrations of the pro-and anti-

apoptotic members present in a cell that decides the fate of

the cell [12]. The pore formation is also regulated by

another subfamily of proapoptotic proteins termed BH3-

only proteins, comprising of Bid, Bnip3 and PUMA among

others. BH3 members either favor pore formation by

binding to Bax and/or Bak or bind to anti-apoptotic

members to block their binding to Bax and Bak [13, 14].

During apoptosis, Bax/Bak permeabilize the outer mito-

chondrial membrane (OMM) to release Cyt c to activate

the caspase cascade and elicit apoptosis. The intricacies of

the intrinsic and extrinsic apoptotic signaling pathways are

elegantly reviewed elsewhere [15, 16] and will not be

further discussed. Necrosis, however, involves the forma-

tion and opening of a pore connecting both the inner and

outer membrane of mitochondria to form MPTP. Recent

data indicate that Bax and Bak are also involved in the

MPTP formation that drives the necrotic characteristics,

mitochondrial swelling and rupture [17].

Multiple underlining signaling pathways have been

defined in different cell death modalities of regulated

necrosis, including MPTP-mediated necrosis, necroptosis,

parthanatos, ferroptosis, and oxytosis [18]. On the one

hand, these processes are characterized by their unique

aspects of cell death mechanisms, but on the other, they

also share some common signaling pathways and crosstalk

between biochemical and molecular events [19]. Defining

the role and molecular regulation of these different modes

of necrotic cell death in specific disease states may help us

to understand the disease pathogenesis and more impor-

tantly develop targeted therapeutic strategies.

MPTP-mediated necrotic cell death

Although necrotic cell death was considered as passive,

blocking the functions of several molecules including

cyclophilin D (CypD), PARP1 and RIP1 kinase are shown

to inhibit the classic morphological characteristics of

necrosis [8, 18]. These studies provide unequivocal evi-

dence that necrosis is regulated and novel strategies to

block necrosis could be developed. Necrotic cell death

associated with acute ischemic injury including myocardial

ischemia, stroke, acute liver, kidney and lung injury is

primarily due to MPTP formation [20]. Upon MPTP for-

mation, cytoplasmic water and solutes B1.5 kDa in size

move osmotically into the mitochondrial matrix, resulting

in organelle swelling and eventual rupture and catastrophic

energy failure, key events in necrotic cell death [21]. ROS

and Ca2? increase the probability of opening the MPTP,

whereas adenine nucleotides (i.e., ADP and ATP) inhibit

pore formation [22, 23].

Based on existing studies, Ca2?, the most noted medi-

ator of permeability transition, enters the matrix through

the mitochondrial calcium uniporter complex (MCU/

MCUR1), although the target of this ion is not defined [24,

25]. Calcium entry is driven by the highly negative mem-

brane potential (Dw) [22, 23]. Calcium overload can lead to

the opening of MPTP, which is inhibited by cyclosporin A

(CsA). CsA is a well-known calcineurin inhibitor, but also

is a CypD inhibitor. Thus, CypD was considered as one of

the downstream players in calcium-induced cell death [26].

Convincing evidence obtained in CypD knockout mice

suggests that its deletion can prevent necrosis associated

with ischemia/reperfusion injury in the heart [27] and brain

[28] and kidney [29]. However, it should be emphasized

that even in the absence of CypD, the MPTP can still open

in response to a strong enough stimulus such as higher

[Ca2?] and oxidative stress [21, 27, 28]. Based on these

data, CypD was accepted as a regulator but not necessarily

a component of the MPTP pore [30].
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Cyclophilin D belongs to the polypeptidyl-prolyl cis–

trans isomerase family. CypD is located in the mitochon-

drial matrix and can interact with mitochondrial inner

membrane proteins to induce the opening of the MPTP.

Although numerous molecular constituents of the MPTP

have been suggested to be required for pore formation, only

CypD has held up to genetic scrutiny [31, 32]. Until the

past decade, the model for the MPTP included the adenine

nucleotide translocator (ANT) in the inner mitochondrial

membrane (IMM) with the voltage-dependent anion

channels in the OMM, together forming a continuous

channel across the intramembranous space under the con-

trol of CypD. However, genetic deletion studies showed

that the ANT and voltage-dependent anion channels are

dispensable for pore formation [31, 32]. Nevertheless,

mitochondria from ANT null mice had twice the Ca2?

retention level from that of normal suggesting that ANT is

a potential pore regulator. Deletion of various isoforms of

voltage-dependent anion channel (VDAC) in mice also had

no effect on MPTP formation and necrosis [31]. These

studies disproved the original model of MPTP that was

proposed to be one contiguous pore composed of VDAC on

the OMM and ANT on the IMM regulated by CypD.

Another candidate that was proposed to be the IMM

component was the phosphate carrier (PiC) (SLC25A3

gene). In the initial studies, the PiC carrier satisfied the

requirements to be the IMM component including that it

has the ability to form a pore, bind to CypD and can induce

MPTP opening. However, recent studies using genetic

deletion of the PiC did not affect the permeability transi-

tion, although mice with cardiac-specific PiC knockout

were partially resistant to reperfusion injury and mito-

chondria isolated from the heart tissue were less sensitive

to MPTP opening [33]. These data suggest that like CypD

and the ANT, PiC may not be a component of MPTP but it

plays a regulatory role in MPTP opening [34].

The recent search for the IMM component of the MPTP

is converging on the F1/F0 ATP Synthase (Complex V) of

the electron transport chain [35, 36]. F1/F0 ATP Synthase

can physically interact with CypD and can form the per-

meability transition pore in a Ca2?-dependent manner [37].

This binding also decreases the catalytic activity of ATP

synthase, which can be restored by CsA, an inhibitor of

CypD. However, the mechanism by which the F1/F0 ATP

synthase transforms from a catalytic conformation into a

channel is still under intense investigation. A possibility is

that, when matrix Ca2? level increases, the Mg2? in the

catalytic site will be replaced. Together with the action of

CypD, the conformation change of F1/F0 ATP synthase

ensues, leading to persistent MPTP opening and irre-

versible damage to the cells. In support of F1/F0 ATP

synthase involvement of MPTP formation, gene silencing

of the c-subunit of the F1/F0 ATP synthase inhibited pore

formation. Further, the c-subunit by itself is capable of pore

formation in proteoliposomes [38]. The CypD binding

subunit of the F1/F0 ATP synthase is identified to be the

oligomycin sensitivity-conferring protein (OSCP), the oli-

gomycin-sensitive component that triggers MPTP

formation by dimerization of the F1/F0 ATP synthase [36].

It is proposed that the F1 b-subunit of the F1/F0 ATP

synthase inhibits the c-subunit and the inhibitory F1 sub-

unit must be removed from the F0 ATP synthase to induce

MPTP formation [38]. This hypothesis is in agreement with

the role of Ca2?-induced swelling, which induces release

of the c-subunit from the F1, whereas CsA and ADP

blocked this release.

Mitochondrial ATP synthasome

Classically, the ATP synthase, PiC and ANT are viewed as

separate entities existing in the membrane. However,

recent electron microscopy evidence shows that they co-

localize as an ATP synthase/PiC/ANT complex, termed the

ATP synthasome [39, 40]. The ATP synthasome is a very

large complex with molecular mass of at least 0.7 million

and is comprised of 17 subunit types and[30 total sub-

units. Although genetic ablation of ANT and PiC

demonstrated that they are not required for MPTP forma-

tion, there is evidence that they could still regulate pore

activity. Because of the close association between these

components in the ATP synthasome, it is likely that may

interact and/or cooperate to facilitate the MPTP formation

by the c-subunit of the F1/F0 ATP synthase [41]. In

addition, both ANT and PiC can bind CypD which may be

an alternate or complementary mechanism by which CsA

or cypD may regulate MPTP [34].

The lack of evidence for VDAC to form the MPTP also

resulted in an intense search for potential OMM compo-

nents of the MPTP. Although Bax and Bak were

considered as proapoptotic molecules, several reports since

1998 indicated a role for Bcl2 family members, including

Bax and Bak, in the regulation of MPTP. Bax was reported

to be required for MPTP formation and mitochondrial

membrane permeabilization [42] while Bcl2 overexpres-

sion prevented MPTP-dependent mitochondrial swelling

[43]. Cell death induced by overexpression of Bax can be

inhibited by CsA, which desensitizes CypD [44]. In 2012,

Whelan et al. found that in response to Ca2? challenge,

mitochondria isolated from Bax/Bak double-knockout

mouse embryonic fibroblasts were resistant to swelling and

loss of membrane potential [Dw]. Importantly, these find-

ings suggest that both Bax and Bak genes are required

components of MPTP [45]. Following this discovery, in

2013, Karch et al. showed that loss of Bax/Bak reduced

both permeability and conductance of the OMM, without

altering inner membrane MPTP function; further, loss of
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Bax/Bak resulted in resistance to mitochondrial Ca2?

overload and necrosis [17]. Reconstitution with Bax

mutants that cannot oligomerize and form apoptotic pores

can still enhance outer membrane permeability, permit

MPTP-dependent mitochondrial swelling, and restore

necrosis [17]. These data suggest that the MPTP is an

IMM-regulated process, although in the absence of Bax/

Bak, the OMM resists swelling and prevents organelle

rupture, which prevents necrosis [17].

However, the saga on the identity of the molecular

components of the MPTP continues as a new model

comprising of Spastic paraplegia 7 (SPG7), its homologue

AFG3L, and VDAC1 was recently proposed. SPG7 is a

mitochondrial AAA-proteinase located in the IMM.

Immunoprecipitation studies demonstrated that SPG7 can

interact with CypD and VDAC1 and deletion of SPG7

protects cells from Ca2?- or oxidant-induced MPTP

opening, as observed in CypD knockout cells [46]. How-

ever, the model has its shortcomings as (1) like CypD,

SPG7 deletion failed to protect cells from high Ca2?-in-

duced MPTP opening; (2) there is no evidence that SPG7

can actually form a channel and (3) VDAC isoforms are

not essential components of the MPTP. It is likely that

SPG7, like CypD, ANT and PiC, may be a regulator of the

pore complex and not a component of the pore. Further

studies are needed to delineate the precise role of SPG7 in

MPTP formation.

Regulation of MPTP

The interaction of a multichaperone complex comprising

heat-shock protein 60 (Hsp60), Hsp90, and tumor necrosis

factor receptor-associated protein-1 with CypD [47] to

regulate MPTP has been previously established in tumor

cells [48]. A recent report by Lam et al. demonstrates that a

newly identified partner of Hsp90, the hematopoietic sub-

strate-1-associated protein x-1 (HAX-1) is involved in the

regulation of CypD in the heart. HAX-1 binds to CypD and

interferes with its binding to Hsp-90, rendering CypD

ubiquitination and degradation, resulting in protection

against MPTP opening and cell death [49].

PARP1-mediated necrosis

The highly conserved Poly-(ADP-ribose) polymerase

(PARP) family consists of 18 members [50]. Poly(ADP-

ribose) (PAR) polymerase 1 (PARP1), the most studied

member is an important nuclear enzyme that regulates

protein functions by poly(ADP-ribosyl)ation and gene

expression as a transcription cofactor [51]. PARP1 cat-

alyzes the transfer of ADP-ribose from nicotinamide

adenine dinucleotide (NAD?) and conjugates PAR onto

various proteins as well as to PARP1 itself, thus leading to

a variety of physiologic processes including up- or down-

regulation in protein function, conformational changes and

promotion of protein–protein interactions [52, 53]. Addi-

tionally, the role of PARP1 as a transcriptional regulator is

confirmed by genetic or pharmacological inhibition,

demonstrating its influence on the expression of inflam-

matory genes including nuclear factor-jB (NFjB) [54–56],
tumor necrosis factor-a (TNF-a) [57, 58], interleukin-1-b
(IL1-b) [57, 59], IL-6 [58, 59], intracellular adhesion

molecule-1 (ICAM-1) [59, 60], and toll-like receptor

(TLR4) [60]. Alternatively, activation of PARP1 is

required for DNA repair [61] and in the presence of DNA

single- or double-strand breaks, PARP1 transfers the ADP-

ribose moiety of nicotinamide adenine dinucleotide

(NAD?) to various nuclear proteins and to PARP1 itself.

Excessive activation of PARP1, such as in the setting of

ischemia reperfusion injury (IRI), can lead to glycolytic

inhibition [62], depletion of NAD?, and consequent

depletion of ATP [55]. Glycolysis is dependent on NAD?

and its depletion could lead to inhibition of ATP produc-

tion through glucose metabolism. PARP1 can also inhibit

crucial enzymes in glucose metabolism, including GAPDH

[62] and glucose phosphatase (hexokinase) [63] via

poly(ADP-ribosylation). This will further exacerbate ATP

depletion and impair cellular viability, particularly in cells

that are highly dependent on glycolysis. Previous reports

from us and others have demonstrated that PARP1 inhi-

bition or gene deletion is protective against ischemia–

reperfusion [62, 64, 65], diabetes [66], and ureteral

obstruction [67].

An alternative mechanism by which PARP1-mediated

cell death occurs is by parthanatos, where nuclear-to-mi-

tochondrial translocation of poly(ADP-ribose) (PAR)

triggers translocation of apoptosis-inducing factor (AIF)

from mitochondria to nucleus. During translocation into the

nucleus, AIF recruits an unidentified endonuclease, to

mediate a caspase-independent cell death by inducing

chromatin condensation and fragmentation into large

fragments (*50 kb) [68] that are characteristics of par-

thanatos [69, 70]. When fibroblasts were pretreated with

PARP inhibitors (DHIQ, DPQ) or if fibroblasts were iso-

lated from PARP1-knockout mice, cell death was

suppressed and AIF remained in mitochondria [71]. A later

study in a cell-free system, provided further proofs for the

role of PAR in AIF-mediated cell death signaling [72].

Recent data identified AIF as a high affinity PAR-binding

protein with three putative PAR-binding domains [73]. AIF

mutants with modified PAR-binding fragments failed to

interact with the polymer or showed reduced PAR binding

[74]. These data suggest that direct binding of pure or

protein-bound PAR to AIF is necessary to induce AIF

translocation but the exact mechanism responsible for AIF

release in response to PAR binding is not yet understood.
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Despite the strong evidence for AIF-mediated cell death,

the lack of AIF translocation in cell death models charac-

terized by DNA damage and PARP also has been reported

[75]. These data demonstrate that parthanatos is dispens-

able in certain cell types or in response to certain cell death

inducers, while it is the predominant pathway in other

PARP1-dependent models of cell death, suggesting that

parthanatos is context dependent.

Although the energy catastrophe theory and parthanatos

have been suggested to explain the mechanism of PARP1-

induced cell death, recent studies implicated several

specific molecules including RIP1, JNK, Bax, and MPTP

and their signaling pathways in PARP1-mediated necrosis.

In an earlier study, Xu et al. [76] proposed that PARP1

activation is mediated through the pro-necrotic kinase

RIP1. RIP1 activates JNK1, which induced necrosis

through MPTP. A more recent study has also implicated

RIP1 and JNK as part of PARP1-mediated necrosis [77]. A

role for JNK activation in PARP1-induced necrosis is

corroborated by other groups [78]. However, these findings

were challenged because inhibition of PARP1 failed to

block TNFa-induced necrosis and that inhibition of RIP1

or RIP3 could not prevent PARP1-induced necrosis [79].

Consistent with this finding, RIP1 deficiency or acute

inhibition of RIP1, either with siRNA or the RIP1 inhibitor

necrostatin, also failed to prevent PARP1-induced necrosis.

Further, the protective effects of RIP1 and PARP1 are

additive in oxidative stress-induced necrosis suggesting

that they represent separate necrotic pathways [79].

Moubarak and colleagues reported that PARP1-induced

necrosis was dependent on activation of the calcium-acti-

vated protease calpain, which in turn induced Bax

translocation to the mitochondrion where it elicited the

release and nuclear translocation of AIF [80]. A critical

role for calpain in mediating PARP1-induced cytotoxicity

also was supported by several other independent studies [

[77, 81], [82] ]. However, Calpain-mediated cleavage of

AIF was later shown to be dispensable for mitochondrial

AIF release [83]. Further, Ca2? chelation had no effect on

mitochondrial-to-nuclear AIF translocation evoked by

PARP1 activators of cell death [84]. Collectively, data so

far suggest that while RIP1 is dispensable, JNK is an

important mediator of PARP1-induced necrosis [84].

A notable finding is that Bax/Bak might also be

important for PARP-induced cell death. In the Bax/Bak

null cells, DNA alkylating agent-induced cell death is

reduced, indicating that even preserving the normal func-

tion of mitochondrial outer membrane can protect cells

from PARP-induced cell death. Bcl-2 overexpression also

protected cells from DNA alkylating agent-induced cell

death [80]. It is hypothesized that Bax/Bak deletion stabi-

lizes the MOMP, whereby ATP depletion by PARP1

overactivation may be prevented or slowed and thus

prevents mitochondrial damage. This premise is supported

by the finding that when Bax/Bak depleted cells were

forced to depend on glycolytic energy, they became more

susceptible to DNA alkylating agent-induced cell death

[85].

p53-dependent necrosis

The tumor suppressor protein p53 is a stress-responsive

transcription factor because of its ability to transactivate

multiple target genes in response to diverse stress condi-

tions, including oxidative stress, genotoxic damage,

oncogene activation, and hypoxia. Increased expression/

activity of these p53 targets could stimulate prominent

biological functions including cell cycle arrest, apoptosis,

senescence, metabolism, and autophagy modulation [80,

81]. In addition, recent studies revealed a role for p53 in

regulating necrotic cell death by activating independent

signaling pathways that include induction of mitochondrial

outer and inner membrane permeability, altered mito-

chondrial dynamics and PARP1 activation.

p53 and MOMP

The MOMP is required for the execution of necrotic cell

death as it forms part of MPTP. Although Bax and Bak

were considered as proapoptotic molecules, emerging

evidence clearly demonstrates that Bax and Bak are inte-

gral components of the MOMP of the MPTP. p53 can

control the MOMP by (1) regulating the expression and

function of Bax and Bid at the transcriptional level; (2)

direct interaction with proapoptotic Bax/Bak and anti-

apoptotic Bcl2 to modulate the pore activity and (3) sup-

pressing Bcl2 expression via activation of microRNAs

(miR). However, the role of p53 in regulating Bcl2 family

members to elicit necrosis remains undefined.

As discussed earlier, Bax/Bak in their non-oligomer-

ized form induced a low level of permeability of the outer

mitochondrial membrane that is distinct from its mode of

releasing Cyt c in apoptosis, and permits necrosis through

the MPTP [17]. However, the role of p53 in regulating

Bax/Bak is context dependent. For example, muscle-

specific deletion of Bax, but not p53, significantly reduced

skeletal muscle necrosis and dystrophic pathology in a

mouse model of muscular dystrophy [86]. On the other

hand, our recent data demonstrated significant decrease in

necrosis p53 KO ischemic kidneys possibly through

diminished expression of PARP1, Bax and Bid [87]. A

recent study also showed that p53 can translocate to

mitochondria to interact with CypD and induce the

opening of MPTP regardless of Bax/Bak-activated

MOMP [88].
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p53, MPTP and mitochondrial dynamics

It was shown that in mitochondria isolated from Bax/Bak

double-knockout mice, oxidative stress triggers the p53

translocation to the mitochondria and induces the formation

of a CypD–p53 complex that promotes MPTP opening and

necrosis [89]. These results were supported by independent

studies demonstrating p53–CypD interaction in MPTP-de-

pendent necrosis in different cell models, including neuronal

[90], pancreatic [91], and osteoblast cells [92]. The translo-

cation of p53 to the mitochondria is shown to be dependent

on dynamin-related protein (Drp1), a mitochondrial fission

protein. Drp1 mediates the mono-ubiquitination of p53 by

MDM2 to facilitate its translocation to induce necrosis in the

setting of oxidative stress [93]. Inhibition of Drp1 by the

Drp1 peptide inhibitor P110 prevented p53 association with

the mitochondria and reduced brain infarction in rats sub-

jected to brain ischemia/reperfusion injury [93]. Although

these results provide a novel mechanism by which CypD is

activated to trigger MPTP, a few questions about the uni-

versal nature of this interaction in MPTP remain to be

answered. For example, the formation of MPTP in mito-

chondria lacking p53 and the absence of p53 involvement in

calcium-induced MPTP opening are intriguing [94].

p53 and PARP1 activation

In response to cellular stress such asDNAdamage, oncogene

activation or hypoxia, the p53 tumor suppressor is activated

and stabilized [95, 96]. The final outcome of p53 activation

depends largely on the initial stress, the level of p53

expression and activation and the cellular milieu, in which

different factors that modulate various signaling pathways,

to elicit apoptosis, autophagy, cell cycle arrest or necrosis

[97, 98]. PARP1 is also activated by various agents capable

of inducing DNA breaks, including reactive oxygen and

nitrogen species, ionizing radiation and alkylating agents

such as N-methyl-N-nitro-N-nitrosoguanidine (MNNG)

[61]. As discussed earlier, PARP1 activation could lead to

necrotic cell death by different mechanisms. However, the

initial response toDNAdamage by both P53 and PARP1 is to

repair the damaged DNA and thus maintain genomic integ-

rity [99, 100]. Can these molecules act synergistically to

carry out their functions and possibly regulate necrosis?

The interaction between p53 and PARP1 were reported

almost 18 years ago. In aging cells undergoing telomere

shortening [101], PARP1 binding was shown to be critical

for p53 activation and function. p53 and PARP1 interaction

was also demonstrated in cells undergoing apoptosis in

response to DNA damage, independent of poly(ADP-ri-

bosyl)ation of p53 [102]. Interestingly, in DNA-damaged

neurons, PARP1 regulated p53 transcription activity by

poly(ADP-ribosyl)ation [103], which was further supported

by studies in irradiation-induced DNA-damaged cell lines,

where pharmacological or genetic deletion of PARP1

modulated p53 activation [104, 105].

While these reports established a role for PARP1 in

regulation of p53 activity, a reciprocal regulation of

PARP1 by p53 was described by Montero et al. [106] in

ROS-induced cell death. Genetic deletion of p53 in mouse

embryonic fibroblasts (MEFs), human breast or colorectal

cancer cells, conferred increased resistance to ROS and

PARP-mediated necrotic cell death [106]. PARP activity at

baseline and after ROS stimulation was reduced in the

absence of p53. The mechanism by which p53 regulates

PARP1 activation and necrosis, in the setting of ROS-in-

duced DNA damage, remains to be defined. Interestingly,

inhibition of PARP1-mediated necrosis led to p53-medi-

ated caspase activation and apoptosis. p53 can also induce

necrotic cell death in response to ROS-induced DNA

damage, through the activation of the lysosomal cysteine

protease cathepsin Q [107]. Further, as discussed above,

p53 can translocate to the mitochondrial matrix and bind to

cyclophilin D to induce the opening of the MPTP to elicit

necrosis.

p53 and ferroptosis

Ferroptosis is a type of iron-dependent cell death charac-

terized by accumulation of lipid peroxides [108].

Morphologically, ferroptosis is characterized by the pres-

ence of small mitochondria with condensed membrane

densities, and is not associated with chromatin condensa-

tion, plasma membrane rupture, swelling of cytoplasmic

organelles, or the formation of cytoplasmic vesicles/vac-

uoles [108]. Lipid peroxidation and ferroptosis are

inhibited physiologically by antioxidant mechanisms

including glutathione peroxidase 4 (GPX4), an enzyme,

whose function depends on the glu/cys antiporter in the

plasma membrane known as system Xc-. SLC7A11 (xCT),

together with SLC3A2 (4F2hc), encodes the heterodimeric

amino acid transport system Xc-, which mediates cystine–

glutamate exchange. Decreased cystine transport results in

reduced intracellular glutathione (reduced form) levels and

increased production of ROS [108]. A recent report shows

that p53 activation suppresses transcription of SLC7A11,

leading to reduced cystine uptake, intracellular glutathione

(GSH) and consequent increased ROS levels. Thus, in p53-

activated cells, sensitivity to ROS-induced ferroptosis is

increased. The effect of p53 on ferroptosis was independent

of the ability of p53 to induce cell cycle arrest or apoptosis

as a p53 mutant (p53 KR) lacking these functions retained

the capacity to induce ferroptosis [109]. Further, erastin-

induced ferroptosis was not prevented by inhibitors of

autophagy, apoptosis or necroptosis suggesting that regu-

lation of cystine uptake by p53 to promote ferroptosis is a
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distinct mechanism [109]. However, it should be noted that

this study did not exclude the possibility that cyclophilin D

could be a downstream responder after p53 activation, even

though MPTP-driven necrosis and ferroptosis are reported

to be distinct mechanisms [108, 110].

Regulation of necrosis in acute kidney injury

Acute kidney injury (AKI) is a clinical syndrome with a

rapid decline in glomerular filtration rate (GFR) over a

period of hours to days, leading to retention of metabolic

waste and disruption of fluid, electrolytes and acid–base

balance. A leading cause of AKI is ischemia/reperfusion

injury (IRI), which results from compromised perfusion to

renal tissue. AKI has multiple contributing factors includ-

ing low blood pressure, cisplatin nephrotoxicity,

radiocontrast agent-induced injury, sepsis and various

antibiotics used in the clinics. Given the numerous causes

of AKI, it occurs in approximately 30 % of all patients

admitted into intensive care units and is associated with

very high mortality rates (50–80 %) [111–113]. It also

develops in approximately one-third of patients who

undergo cardiac surgery [114–116]. Further, for patients

who undergo kidney transplants, post-transplant acute

tubular necrosis, another cause of AKI, often results in

delayed graft functioning and is one of the strongest pre-

dictors for the recurrence of end-stage kidney disease

[117]. Even when patients regain normal, or near normal,

kidney function after acute episodes, they still carry sig-

nificant risks for long-term loss of renal function and

development of chronic kidney disease [118]. Thus, given

the increasing frequency of AKI, its related morbidity and

mortality and the increasing financial burden, effective

treatment options are critically needed. Despite decades of

effort to alter the course of AKI, there is no approved

effective therapy for this syndrome, implying that this

syndrome involves several pathogenic factors which are

not fully understood.

Pathogenesis of ischemic acute kidney injury

It has been determined that pathophysiologic abnormalities

of IRI are characterized by changes in renal hemodynam-

ics, tubular injury and cell death, and tissue inflammation

[119, 120]. Ischemia/reperfusion to the kidney parenchyma

leads to many secondary effects including disruption of

cellular energy metabolism, production of ROS, and DNA

damage. These secondary effects lead to activation of the

nuclear repair enzyme PARP1 and the transcription factor

p53. Further, activation of these molecules can initiate

inflammatory signaling, intrinsic pathways that induce

necrosis through opening of the MPTP, and apoptotic

tubular cell death through MOMP [22, 56]. Although dis-

cussion of the role of apoptosis in full detail is beyond the

purpose of this review, there are certainly some connec-

tions between these two types of cell death, possibly

through participation of Bax/Bak and/or p53 signaling

pathways.

As discussed earlier, although the MPTP is an inner

membrane regulated process, in the absence of Bax/Bak,

the outer membrane resists swelling and prevents organelle

rupture to prevent necrotic cell death [17, 45]. The role of

Bax/Bak in regulating or contributing to the MPTP and

necrosis in AKI has not been studied, although some evi-

dences suggest that Bax/Bak can induce non-apoptotic cell

death. Dong and colleagues dissected the roles of Bax and

Bak during ischemic AKI using several gene knockout

mouse models. The major outcomes of the study were that

global knockout of Bax increased inflammatory response

and was not protective against ischemic AKI; however,

conditional knockout of Bax from proximal tubules was

renoprotective [121]. On the other hand, global knockout

of Bak protected against ischemic AKI possibly through

the maintenance of mitochondrial dynamics and integrity.

Single knockouts for Bax or Bak blocked kidney tubular

apoptosis during ischemic AKI without affecting tubular

necrosis. These data suggest that distinct mechanisms exist

for these two forms of cell death and deletion of both Bax

and Bak may be required to prevent necrosis [121]. The

effect of simultaneous deletion of Bax and Bak on necrosis

in AKI remains to be defined, although their dual deletion

is required to prevent apoptosis in obstructive nephropathy

[122].

Mitochondria-mediated necrosis in AKI

The MPTP-dependent necrosis is a common type of cell

death in ischemia–reperfusion injury because of the asso-

ciated mitochondrial Ca2? overload and ROS production

[20]. As discussed earlier, ROS or Ca2? are two of the

major inducers of MPTP-mediated necrosis via activation

of CypD. Accordingly, genetic deletion of CypD in mice

led to significant protection against renal ischemia/reper-

fusion injury (IRI) as demonstrated by increased renal

function and morphological protection [29]. CypD-defi-

cient mice have less tubular necrosis as compared with

wild-type mice after the IRI [29] and these data have been

subsequently bolstered by others [123]. Interestingly, in an

in vitro hypoxia/reoxygenation injury model of the renal

tubules, the protective effect of cyclosporine A, an inhi-

bitor of MPTP, was overcome by accumulation of non-

esterified fatty acids [124]. It is suggested that the MPTP

does not contribute to the initial bioenergetic deficit pro-

duced by hypoxia/reperfusion, but the deficit predisposes to

subsequent development of the MPT [124]. In this regard,
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our data indicate that the initial ATP depletion may be due

to targeted glycolytic inhibition in the ischemic proximal

tubules [62, 125] (discussed below). Recently, an interac-

tion between cyclophilin D and glycogen synthase kinase

3b is shown to exert protection from diclofenac-induced

ROS production and tubular cell necrosis [126].

PARP1-mediated necrosis in AKI

We reported that pharmacological inhibition of PARP1

protects rats and mice kidneys from ischemic injury [127,

128]. We have shown that in ischemic kidneys, PARP1

expression and activity significantly increased specifically in

the S3 segments of the proximal tubule. PARP1 inhibition

protects from IRI by improving renal function and tissue

morphology, attenuated ATP depletion, leukocyte infiltra-

tion and activation of inflammatory molecules. An

interesting observation from these studies is that PARP1

inhibition blocked necrosis but had no effect on apoptosis.

These results suggest that necrosis and inflammation are

primary mediators of ischemic renal injury [127, 128].

Similarly, we showed that PARP1 deficiency reduced cis-

platin-induced kidney dysfunction, oxidative stress, and

tubular necrosis, but not apoptosis [56]. Moreover, neu-

trophil infiltration, activation of nuclear factor-jB, c-Jun
N-terminal kinases, p38 mitogen-activated protein kinase,

and upregulation of pro-inflammatory genes were all abro-

gated by PARP1 deficiency.We demonstrated evidence for a

PARP1/Toll-like receptor 4/p38/tumor necrosis factor-a
axis following cisplatin injury suggesting that PARP1 acti-

vation is a primary signal and its inhibition/loss protects

against cisplatin-induced nephrotoxicity [56]. Collectively,

these data suggest that targeting PARP1may offer a potential

therapeutic strategy for both cisplatin and IRI-mediated AKI

by preventing necrosis and inflammation.

Although the energy catastrophe theory and parthanatos

have been suggested to explain the mechanism of PARP1-

induced cell death, our studies demonstrated that PARP1

plays a critical role in energy depletion after AKI. In the

ischemic kidneys, lack of oxygen leaves the glycolytic

metabolism as the main pathway for ATP production in

proximal straight tubules (PST), thick ascending limbs and

collecting ducts located in the severely hypoxic outer

medullary region. However, glycolytic capacity in proxi-

mal straight tubules (PST) is selectively inhibited under

ischemic conditions accounting for the incurred selective

damage [129–132]. It was suggested that the differences in

glucose utilization are not due to a difference in the dis-

tribution of glycolytic enzyme activities but due to a

differential regulation of hemodynamic factors [133, 134].

Our data, however, indicate that PARP1 inhibits glycoly-

sis specifically in the proximal tubule S3 segments by

poly(ADP-ribosyl)ation of glyceraldehyde 3-phosphate

dehydrogenase (GAPDH). Decreased activity of GAPDH

makes proximal tubular cells vulnerable to necrotic cell

death when subjected to ischemic injury. These data indi-

cate that poly(ADP-ribosyl)ation of GAPDH and the

subsequent inhibition of anaerobic respiration exacerbate

ATP depletion and induce necrosis selectively in the

proximal tubule cells after IRI.

p53-mediated necrosis after IRI

Several studies have investigated the pathological role of p53

in IRI but the results yielded different outcomes. For

example, in 2003, Kelly et al. first showed that after IRI, the

expression of p53 is increased in the medulla, and inhibition

of p53 reduced renal injury [135]. Likewise, in 2009, Moli-

toris et al. showed that p53-targeted siRNA attenuated

ischemicAKI [136].However,Dagher et al. showed the p53-

inhibitor pifithrin-a actually increased long-term renal

fibrosis after IRI [137]. Sutton et al. further evidenced that

p53 deficiency exacerbated the IRI [138]. These conflicting

results may reflect different experiment protocols, severity

of injury andmost likely, the global inhibition of p53 in cells,

including inflammatory cells. We reported that after IRI,

proximal tubule-specific p53-KO mice showed significantly

reduced levels of plasma creatinine and blood urea nitrogen

(BUN), and improved renal morphology compared to WT

mice [87]. Quantitative studies indicated that necrosis is

significantly reduced in the PTs after IRI. Although the

mechanism by which p53 deletion results in decreased

necrosis is not defined, our results demonstrated that the

expression level of PARP is attenuated in p53 KO compared

to wild-type mice ischemic kidneys. These data suggest that

PARP1 expression is regulated by p53 in ischemic kidneys

and that this may be a potential mechanism by which p53

regulates necrosis. Further, in the p53-KO proximal tubule

(PT) Bax and Bid levels were decreased in ischemic kidneys.

These data suggest that specific deletion of p53 in the PT

decreases the expression of potential components of MOMP

and thus could inhibit both apoptosis and necrosis after IRI.

Like PARP1, p53 plays a major role in ATP depletion

selectively in the S3 segments of the proximal tubule. p53

induces the expression and activation of Tp53-induced

glycolysis and apoptosis regulator (TIGAR) selectively in

proximal tubules after ischemia–reperfusion injury. The

activation of TIGAR inhibits the rate-limiting, phospho-

fructokinase-1 activity and glucose 6-phosphate

dehydrogenase (G6PD) activity [125, 139, 140]. Therefore,

it makes the proximal tubules more susceptible to ischemia

and cell death in the settings of severe ischemia–reperfu-

sion injury. Thus, TIGAR activation, along with PARP

activation [62], could be key mechanisms involved in the

cellular regulation of selective inhibition of glycolysis in

the ischemic kidney proximal tubules.
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Cross talk between defined necrotic pathways

Is MPTP required for PARP1-induced necrosis?

Xu et al. [76] proposed that PARP1 activation is mediated

through the pro-necrotic kinase RIP1-JNK1 axis, which

induced necrosis through MPTP. Data from Alano et al. also

suggested that PARP1-mediated NAD? depletion could

lead to MPTP opening and necrosis. However, Dodoni et al.

demonstrated that the alkylating agent, MNNG, could

directly induce MPT independent of PARP1 suggesting that

the MPT pore may in fact be upstream of PARP1 activation

and NAD? depletion [141]. Further, inhibition of PARP1

failed to block TNFa-induced necrosis and inhibition of

RIP1 or RIP3 could not prevent PARP1-induced necrosis

[79]. In addition, the protective effects of RIP1 and PARP1

are additive in oxidative stress-induced necrosis suggesting

that they represent separate necrotic pathways [79]. It is also

noteworthy that although a role for MPT in PARP1-induced

AIF translocation is suggested by two reports [77, 142], a

recent study suggests that PARP1 and MPTP can induce

necrosis independent of each other [84]. Collectively, these

data suggest that PARP1 and CypD-mediated necrotic

pathways may be independent of each other. It will be

interesting to determine if mice doubly deficient for PARP1

and CypD additively protects against ischemia/reperfusion

injury, which would clarify their independent roles in

mediating necrosis.

Necroptosis, MPTP-mediated necrosis

and ferroptosis in AKI

The signaling pathway of necroptosis has been reviewed in

detail recently [143–145]. Briefly, necroptosis can be

triggered by death receptors including tumor necrosis fac-

tor 1 (TNFR1) [146, 147], stimulation of Toll-like

receptors (TLR3 or 4) [148, 149], signaling through

interferon receptors [150], or recognition of intracellular

viruses by the protein DAI [151]. These pathways can

induce the association of RIPK1 with RIPK3 via receptor-

interacting protein–homotypic interacting motif (RHIM)

RHIM–RHIM domain interactions and phosphorylation of

RIPK3, which leads to aggregation of phosphorylated

RIPK3 and phosphorylation of MLKL by RIPK3 [152].

Necroptosis generally occurs only if pro-survival tran-

scriptional and/or apoptotic pathways are compromised.

Direct phosphorylation of RIPK3 by RIPK1 has not been

demonstrated and it is proposed that oligomerization of

RIPK3 driven by the RHIM domain of RIPK1 and RIPK3

leads to RIPK3 autoactivation [152]. Phosphorylation

exposes the N-terminal portion of MLKL [153] to induce

plasma membrane rupture and induce necroptosis, with

release of DAMPs [154–156]. Thus, MLKL appears to be a

key necroptotic effector, but exactly how it disrupts

membranes is still not completely understood [157].

Contribution of necroptosis to ischemic injury in the

kidney was demonstrated by the protective effect of

necrostatin-1 (Nec-1), which was considered as an inhibitor

of RIPK1 [158]. A protective role for Nec-1 in cisplatin

and hypoxia injured tubular cells [159, 160] was also

reported. Similarly, RIPK3-deficient mice were also shown

to be protected against ischemic and cisplatin-induced AKI

[161]. However, a recent study questions the specificity of

Nec-1 since it might have off-target effects on ferroptosis

[162]. A recent study demonstrated that deletion of FADD

or caspase-8 or Nec-1 inhibition failed to protect isolated

renal tubules from hypoxic injury [110]. Similarly, Nec-1

mediated protective effect in cyclosporin-mediated tubular

damage [163] or contrast-mediated AKI [164] was not due

to prevention of tubular cell death. These data suggested

that the effect of genetic loss of RIPK3, FADD or caspase-

8 or Nec-1 inhibition on reducing kidney ischemia–reper-

fusion injury may not be due to loss of necroptosis, but may

be due to extratubular effects including vascular diameter

changes and hemodynamic alterations [110]. Further, these

data argue against necroptosis as the primary mode of

regulated cell death in renal tubules.

Evidence that ferroptosis plays an important role in acute

renal failure was demonstrated by Angeli et al. in Gpx4-

deficient human renal proximal tubular epithelial cells [162].

Gpx4 catalyzes the reduction of hydrogen peroxide, organic

hydroperoxides, and lipid peroxides utilizing reduced glu-

tathione and protects against oxidative stress. Gpx4

knockdown rendered cells succumb to ferroptosis-inducing

agents, indicating aGpx4-regulated ferroptoticmachinery in

the cells [162]. In a recent study, Linkermann et al. reported a

significant role for iron-dependent ferroptosis in necrosis of

renal tubules, in models of severe IRI and oxalate crystal-

induced acute kidney injury [110]. Linkermann’s group also

reported that double knockout of cyclophilin D and RIPK3

provides stronger protection against prolonged ischemic

injury than the respective single knockout mice [161]. These

data suggested that cyclophilin D-induced necrosis and

necroptosis might be two independent pathways, although

both are important in ischemic renal injury. Pharmacological

inhibition studies also demonstrated that the ability of the

ferroptosis inhibitor ferrostatin (termed 16–86) to protect

from renal IRI is superior to Nec-1 and to that of sanglifehrin

A (SfA) [110]. A combination therapy with 16-86 and [Nec-

1 ? SfA] in a model of ultrasevere IRI (bilateral renal

pedicle clamping for 50 min) reduced plasma levels of

serum urea and serum creatinine, suggesting that a triple

combination therapy with [Nec-1 ? SfA] plus 16–86 is

superior in the prevention of renal IRI compared with the

double-combination therapy with [Nec-1 ? SfA]. These

data suggest that at least three independent pathways of
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regulated necrosis may be involved in IR-mediated organ

damage or that inhibition of overlapping elements with SfA

and Nec-1 is incomplete [110].

Conclusion

Attempts to integrate different types of necrotic cell death

into a universal process have been made, yet it seems only

some terminal changes are overlapped. Adding to this

puzzle, injured cells also manifest with necrotic cell death

after inhibition of apoptotic and/or autophagic steps. How

cell chooses one type of cell death over the other is not well

understood. The current hypothesis is that inadequate

energy production might be a reason why cell falls into

necrotic death rather than apoptosis, based on the obser-

vation that apoptosis is ATP dependent, while necrosis is

ATP independent. If this premise is true, then the health

status of mitochondria as well as glycolytic capacity of the

cells would be crucial points in deciding what mode of cell

p53 PARP-1
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Fig. 1 A hypothetical scheme of the molecular hierarchy and cross

talk characterizing regulated necrotic cell death in ischemic AKI. In

the ischemic renal injury model, necrosis in proximal tubular cells is a

common type of cell death. Initial injury results in DNA damage and

rapid activation of p53 and PARP1. p53 induces the expression of

Bax, which will facilitate the MOMP for necrosis [87]. Activated

PARP1 will rapidly deplete intracellular NAD? and ATP, and

simultaneously inhibit GAPDH, which reduces glycolytic capacity in

proximal tubules [55, 62]. p53-induced TIGAR expression inhibits

the rate limiting PFK and the glycolytic pathway [125, 139]. The

severe ATP depletion from glycolytic inhibition and PARP1 activa-

tion shuts down ion homeostasis resulting in Ca2? influx and uptake

into mitochondria. PARP1 as a transcriptional cofactor induces

several cytokines and promote infiltration of inflammatory cells to the

injured renal parenchyma, all leading to increased ROS production

[55]. ROS and Ca2?, the most prominent mediators of permeability

transition, increase the probability of MPTP opening via activation of

CypD and the ATP synthasome complex [35]. Osmotic influx of

water and solutes into the mitochondrial matrix leads to mitochondrial

swelling and rupture of outer membrane, to elicit mitochondrial

dysfunction and necrosis. Inhibition of ferroptosis can attenuate

ischemic AKI. Although recent evidence suggests that p53 can

mediate ferroptosis by regulating the expression of SLC7A11 [109],

this pathway has not been tested in ischemic renal injury models. The

contribution of necroptosis in proximal tubule cell death has recently

been challenged and the mechanism by which RIP1 K blockade

prevents renal injury remains to be elucidated [158]. Although, recent

evidences suggest p53 translocation to mitochondrial matrix and

activation of CypD [89], such a role for p53 is not established in

kidney injury
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death to develop. In clinical disorders such as IRI, it is

unlikely that the different modes of cell death will exist in

isolation. To develop efficacious treatment strategy, it is

important to determine the relative contribution of each

type of cell death and the key molecules and pathways that

mediate specific forms of cell death.

Apoptosis plays an important role in different types of

AKI and its inhibition has shown protective effects in

experimental models. The recent findings that necrosis is

significant in AKI and molecules including p53, PARP1,

Bax/Bid, and CypD participate in necrotic cell death

insinuate that integration of their signaling pathways may

be required to elicit necrotic cell death in IRI. However, the

hierarchy of their activation, physical interactions and cross

talk between these molecules and how these molecules

interact and integrate their functions to elicit necrosis in

distinct AKI settings remain largely undefined. Based on

the evidence presented in this review, a hypothetical

scheme of the molecular hierarchy and cross talk charac-

terizing necrotic cell death in ischemic AKI is presented in

Fig. 1. Given the marked interest to pharmacologically

target necrotic pathways in IRI, delineation of these path-

ways will provide key insights to our understanding of the

pathophysiology of IRI and allow us to develop context-

dependent therapeutic strategies to interfere with necrosis

at precise signaling levels, without compensation from

alternate pathways or potential systemic side effects. A key

cellular organelle through which the above molecules may

integrate their functions is mitochondria and hence main-

taining mitochondrial health could prevent cell death.

However, mitochondria are not involved in necroptosis,

ferroptosis or PARP1-mediated ATP depletion, and hence

combination therapies that may target multiple modalities

of cell death may be required to completely prevent

necrosis and maintain renal function.
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73. Gagné J-P, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Daw-

son VL, Dawson TM, Poirier GG (2008) Proteome-wide

identification of poly(ADP-ribose) binding proteins and poly(-

ADP-ribose)-associated protein complexes. Nucleic Acids Res

36(22):6959–6976. doi:10.1093/nar/gkn771

74. Wang Y, Kim NS, Haince J-F, Kang H, David KK, Andrabi SA,

Poirier GG, Dawson VL, Dawson TM (2011) Poly (ADP-ribose)

(PAR) binding to apoptosis-inducing factor is critical for PAR

polymerase-1-dependent cell death (parthanatos). Sci Signal

4(167):ra20. doi:10.1126/scisignal.2000902
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