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Abstract

The risk ratio is perhaps the effect measure most commonly assessed in epidemiologic studies 

with a binary outcome. In this paper, the author presents a simple and efficient two-stage approach 

to estimate risk ratios directly, which does not directly rely for consistency on an estimate of the 

baseline risk. This latter property is a key advantage of the approach over existing methods, 

because, unlike these other methods, the proposed approach obviates the need to restrict the 

predicted risk probabilities to fall below one, in order to recover efficient inferences about risk 

ratios. An additional appeal of the approach is that it is easy to implement. Finally, when the 

primary interest is in the effect of a specific binary exposure, a simple doubly robust closed-form 

estimator is derived, for the multiplicative effect of the exposure. Specifically, we show how one 

can adjust for confounding by incorporating a working regression model for the propensity score 

so that correct inferences about the multiplicative effect of the exposure are recovered if either this 

model is correct or a working model for the association between confounders and outcome risk is 

correct, but both do not necessarily hold.
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1 Introduction

An objective of many epidemiologic studies is to evaluate the multiplicative association 

between a vector of risk factors and a binary outcome. When the outcome is rare within all 

levels of the covariates, logistic regression is well known to deliver valid, albeit approximate, 

inferences about risk ratios whether in a cohort or in a case-control study. When, as often the 

case in cohort studies, the outcome is not rare within all levels of covariates, logistic 

regression overstates the relative risk association and should not be used to approximate the 

latter. Instead, a variety of techniques have been proposed in recent years to recover 

estimates of risk ratios for a common outcome (Wacholder, 1986, Lee, 1994, Skov et al, 

1998, Greenland, 2004, Zou, 2004, Spiegelman and Hertzmark, 2005, Chu and Cole, 2010). 

A basic requirement shared by previous methods, with the exception of the method proposed 

by Breslow (1974) and subsequently by Lee (2004) is that the log-baseline risk, i.e. the 

Correspondence: Eric J. Tchetgen Tchetgen, Department of Epidemiology, Harvard School of Public Health 677 Huntington Avenue, 
Boston, MA 02115. 

HHS Public Access
Author manuscript
Int J Biostat. Author manuscript; available in PMC 2017 June 29.

Published in final edited form as:
Int J Biostat. ; 9(2): 251–264. doi:10.1515/ijb-2013-0007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regression intercept, must be estimated along with regression coefficients, in order to obtain 

a consistent estimate of regression coefficients. Unfortunately, this task is often not easily 

achieved if one wishes to respect the essential model restriction that all predicted 

probabilities in the sample should not exceed one; often resulting in lack of convergence of 

estimation procedures. The suboptimal performance of such methods are well documented 

in the literature (Deddens et al, 2003, Petersen and Deddens, 2006, Tian and Liu, 2006, Chu 

and Cole, 2010). Recently, such concerns prompted Chu and Cole to develop a Bayesian 

approach that appropriately incorporates this additional modeling restriction (Chu and Cole, 

2010). Their approach which relies on Markov Chain Monte Carlo simulations provides a 

promising Bayesian solution when risk prediction is of primary interest, but a satisfactory 

frequentist solution is still lacking even in settings where risk ratios are the primary target of 

inference.

In this paper, the author presents a simple approach to estimate risk ratios directly, that does 

not directly rely for consistency on obtaining an estimate of the baseline risk. In this respect, 

the approach is similar to that of Breslow (1974) and Lee (2004); but whereas their method 

is inefficient, here a two-stage approach is described that delivers efficient estimates of risk 

ratios. The first stage of the method does not require an estimate of the baseline risk, while 

the second stage recovers information not used in the first stage by incorporating a weight 

which does depend on the individual predicted risk, and therefore on the individual baseline 

risk. However, because the weights are not essential for consistency, a simple pluggin 

estimate of the baseline risk may be used without altering the large sample behavior, more 

precisely, without altering the large sample efficiency of the estimated regression 

coefficients. This property holds even though the pluggin estimate is generally inefficient for 

the baseline risk and may result in a predicted risk outside of the unit range. An important 

advantage of the approach is that it is easy to implement. An alternative approach is 

described, which guarantees that the estimated predicted risk used for the weight remains 

bounded between zero and one. Finally, when the primary interest is in the effect of a 

specific binary exposure, we describe a simple closed-form estimator, of the multiplicative 

effect of the exposure that is doubly robust. Specifically, we show how to incorporate a 

working regression model for the probability of being exposed given confounders, i.e. the 

propensity score, so that correct inferences about the multiplicative effect of the exposure are 

recovered if either this model is correct or the working model for the association between 

confounders and disease risk is correct, but both do not necessarily hold.

2 PROPOSED METHODS

2.1 A Simple Inefficient Initial Estimator

To motivate the approach, consider the simple case where Xi (i = 1, 2, ..., n) is a binary 

exposure with a value of 1 if exposed and 0 if unexposed. Let Yi (i = 1, ..., n) denote the 

binary response, which is randomly sampled from a log-binomial model with

(1)
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Then, a standard application of maximum likelihood theory delivers the estimator

Now, we note that this equation is equivalent to:

which states that βM̂LE solves the equation

(2)

where X̄ is the sample average of X, Wi = −(Xi − X̄), and Zi = 0 for all i. The main appeal of 

the representation given by equation (2) in the above display is two-fold:

i. It is completely free of the intercept, and therefore does not require an actual 

estimate of the predicted probabilities.

ii. It is exactly of the form of the score equation for β, under the artificial case-only 

model in which the pseudo-outcome Zi is assumed to follow a Poisson 

distribution with mean given by the intercept-free multiplicative model 

exp(βWi), i = 1, ...n, in cases only.

Thus, Equation (2) provides an equivalent representation of the maximum likelihood 

estimator in the simple setting of a saturated multiplicative model with a binary exposure; 

however, this representation is of no particular use in this latter setting because the 

maximum likelihood estimator is easy to compute. But, as we show below, the alternative 

representation is useful for estimation in settings where it may be considerably more difficult 

to compute the maximum likelihood estimator. Specifically, now suppose that Xi and thus 

Wi, are vector valued possibly with several continuous components and one aims to make 

inferences about β0 in the multiplicative model

(3)
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Then, one may generalize equation (2), and define an estimator β̂ as the solution to the 

equation:

In the appendix, we show that β̂ is consistent for β0 and we establish its large sample 

behavior.

Result 1—Under assumption (1), n1/2 (β̂ − β0) is approximately normal with mean zero 
and variance Σβ provided in the appendix. We also show that the standard sandwich 
estimator

is a conservative estimator of Σβ.

The estimator β̂ is particularly useful for routine application in epidemiologic practice, 

because properties (i) and (ii) continue to apply even though model (3) is no longer 

saturated, and therefore β̂ does not generally inherit the efficiency properties of a maximum 

likelihood estimator. The efficiency loss (relative to a maximum likelihood estimator) can be 

particularly severe when the regression model is not saturated, and when as we assume 

throughout, the outcome is not rare. The loss of efficiency should decrease the more flexible 

or richly parametrize the model is allowed to remain, and should be almost nill for nearly 

saturated models. Despite this limitation, the approach has some advantages in that by (i) it 

does not require an estimate of the intercept and therefore will generally not suffer from the 

same computational challenges as methods that rely on an estimate of the intercept. For 

inference using β̂, valid confidence intervals, for say the first component  of β0, can be 

obtained by the method of Wald: , where  is the estimate of the 

variance of β(̂1). This approach is convenient, as (ii) outlines how to obtain β̂ using standard 

statistical software such as GENMOD; which also provides the empirical/sandwich variance 

estimator Σ̂β upon request, i.e by specifying the REPEATED statement.

We performed a simulation study to illustrate the performance of the method. For this we 

generated 1000 samples each of size n =1000, under the following model X(2) is Bernoulli 

(0.7), X(3), X(4) are both uniform(0,1); X(1) is Bernoulli((1+exp(−[0.5, −0.5, 0.5, −0.9, 0.9] × 

Q)) where Q = [1,X(2)×X(3),X(3)×X(4),X(2)×X(4)2]; Y is then generated under a Bernoulli 

model with event probability exp ([−1.4, 0.3, −0.2, 0.2, 0.3] × [1,XT ]T), thus 

 which roughly corresponds to a marginal risk Pr(Y = 
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1) ≈ 0.278. We then obtained estimates using the method described in this section which we 

summarize in Table 1 in rows labelled “Correct Model”. The simulation study indicates that 

the point estimate β̂ performs well and has small bias. The simulation further shows that the 

simple sandwich estimator Σ̂β can be quite conservative as it produces estimates that can be 

much larger than the Monte Carlo variance. Instead of using Σ̂β, alternative inferences can 

also be obtained by using an empirical version of Σβ, which we denote Σ̃β and is given by

as derived in the appendix. However, this more precise estimator may be less convenient as 

it requires additional, though fairly straightforward programming. The simulation study 

indicates that Σ̃β outperforms Σ̂β and performs well.

2.2 An Efficient Estimator

To address concerns about lack of efficiency, suppose that we have obtained β̂ in a first 

stage. One can then update β̂ in a single step, to obtain an efficient estimator of β0. Let

where wi is a vector, of the same dimension as Xi, of user-specified functions of Xi. For any 

choice of wi, let

define a new so-called one-step-update estimator. The class of one-step-update estimators is 

very rich and includes several well-known estimators. In fact, for any estimator β̄ of β0 that 

is regular and asymptotically linear, we show in the appendix using results due to Bickel et 

al (1993), that there exist a corresponding weight function wi such that

In other words, the two estimators share a common large sample distribution and are 

therefore asymptotically equivalent. For instance, one can easily verify that the particular 

choice wi = exp(−βT̂Xi)(Xi − X̄) recovers β̂ exactly. Whereas, wi = Xi produces an estimator 

that is asymptotically equivalent to the Breslow-Lee estimator. Neither of these estimators is 

generally efficient. In the appendix, we show that β̂ (wopt) is efficient, where
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with

an estimator of the predicted risk for person i; where

is a pluggin estimator of the baseline risk Pr (Y = 1|X = 0) = exp(α0). Specifically, we 

establish that

since Σi wopt,i exp(β̂TXi) = 0. In fact, we prove the following result:

Result 2—Under assumption (1), n−1/2 (β̂eff − β0) is approximately normal with mean zero 

and variance . Furthermore, the estimator  converges (in probability) to 

where

Finally, βêff achieves the semiparametric efficiency bound for the model given by (1).

As before,  can be used to construct Wald-type confidence intervals. The simulation 

results in table 1 confirm that, as theory predicts βêff significantly outperforms β̂ in terms of 

efficiency. We emphasize that the estimated individual risk p̂i, i = 1, ., n, is solely used for 

the purpose of enhancing efficiency through the weights wopt,i. Result 2 confirms that the 

baseline log-risk α0 may be inefficiently estimated by the simple pluggin estimator α̂, 
without affecting the efficiency of β̂eff. However, although α̂ is consistent and 

asymptotically linear, p̂i may be greater than one for some observations in the sample. 

Naturally, one may wish to impose that the estimated risk used to compute the optimal 
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weight be a genuine probability; in the next section, we describe a slight modification of the 

proposed approach that achieves this goal.

3 Additional results and an application

3.1 An alternative efficient estimator

While not strictly required by the two stage approach, the following modification guarantees 

that individuals’ estimated risk used to compute the weights wopt,i fall within the unit 

interval. To develop the approach, we observe that pi is equivalently written:

where

Given the first stage estimate Mi = βT̂Xi of , we propose to ignore knowledge about the 

precise functional form of ξ (·) , and to estimate ξ (·) by fitting a nonparametric logistic 

regression of Yi on the scalar variable Mi, i = 1, ..., n. Let ξ̂i = ξ̂ (Mi) denotes such an 

estimator of ; then clearly

that is p̃i is guaranteed to fall within the unit interval. There currently exist a vast literature 

on nonparametric techniques that may be used to obtain ξ̂ (·) , including polynomials series, 

local polynomial smoothing, trigonometric series, wavelet regression, spline regression or 

kernel smoothing; a textbook treatment of these various methods may be found in 

Wasserman (2003) and Hastie et al (2008). Here, we briefly illustrate polynomial series 

regression. Let , k = 0, ...K. Then, for fixed K, let p̃i denote the predicted 

probabilities obtained by standard logistic regression of Yi on {ϕk (Mi) ; k ≤ K} using data 

{(Mi, Yi) : i = 1, ..., n}. A result due to Hirano et al (2003) implies that, since ξ (·) has at 

least four bounded derivatives, setting K = Cn1/6 for some constant C is sufficient for the 

resulting estimator p̃i to converge to pi at rates no slower than n1/4; and the resulting 

estimator β̃eff of β0 is semiparametric efficient.

3.2 A data illustration

We consider a data set involving 172 diabetic patients presented by Lachin (14, p. 261) and 

also analyzed by Zou (2003). This is a subset of a large clinical trial known as the Diabetes 

Control and Complications Trial (The Diabetes Control and ComplicationsTrial Research 

Group, 1993), where it is of interest to determine the relative risk of standard therapy versus 

intensive treatments in terms of the prevalence of microalbuminuria at 6 years of follow-up. 
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For estimation, we adjust for the following covariates: the percentage of total hemoglobin 

that has become glycosylated at baseline, the prior duration of diabetes in months, the level 

of systolic blood pressure (mmHg), and gender (female) (1 if female, 0 if male). Applying 

the single stage approach results in an estimated risk of microalbuminuria that is 2.5 times 

higher in the control group than in the treatment group (β̂ = −0.92, s.e = 0.37). The efficient 

two-stage approach delivers a more precise estimated risk ratio, with the risk in the control 

group that is 5.4 times higher than in the treatment group (β̂eff = −1.69, s.e. = 0.28) using the 

simple pluggin approach for estimating individuals’ predicted risk, and an estimated risk that 

is 3.2 times higher in the control group (βẽff = −1.18, s.e. = 0.25) using the approach 

described in Section 5.4. It is Interest to compare these point estimates to those reported by 

Zou (2003) who estimated that the risk in the control group is 2.9 that in the treatment group 

(β̂Zou = −1.08, s.e. = 0.30) using a modified Poisson approach, which closely matched the 

estimated risk ratio of 2.85 for the control vs the treatment group (βb̂in = −1.04, s.e. = 0.30) 

he obtained using the log-binomial approach. He further noted that the binomial regression 

procedure failed to converge until a variety of starting values were provided, when it finally 

converged with a starting value of −1.1 for the intercept. The two-stage estimator appears to 

provide more precise inference about the treatment effect than the other methods.

3.3 Double robustness

Suppose that, as often the case in epidemiologic studies, we are particularly interested in the 

effect β(1) of the first component X(1) of X, which represents a binary exposure under study, 

and the remaining sub-vector X(−1) of X includes confounding factors with corresponding 

effect β(−1), so that X = (X(1),X(−1)T)T and β = (β(1), β(−1)T)T. Then, strictly speaking β(−1) is 

a nuisance parameter not of direct interest, and the model

(4)

is a working model used strictly for the purpose of confounding adjustment. Unless the 

working model in the display above is saturated, in general one cannot rule out possible 

model mis-specification which in turn can result in biased inferences about the exposure 

effect, due to inadequate confounding adjustment. Because saturated models will generally 

be impractical due to data sparseness, we propose to partially alleviate these concerns by 

modeling the probability of exposure given covariates, i.e. the propensity score, with a 

working regression model,

(5)

Suppose ψ̂ is the maximum likelihood estimator of ψ0, and let π̂i = Pr(X(1) = 1|X(−1);ψ̂). 

Then  is doubly robust, where
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that is

Result 3—  converges (in probability) to  if either model (4) holds, or model (5) 

holds, but not necessarily both hold.

Furthermore, it can be shown that  is in large samples normally distributed with mean 

 and variance that is easily estimated via the nonparametric bootstrap. The bootstrap is 

required here to appropriately account for additional variability from the first stage 

regression of  onto . Although doubly robust estimators of a multiplicative 

exposure effect have previously been proposed (Robins and Rotnitzky, 2001), the doubly 

robust method described here is new and has the appealing property that, unlike previous 

methods, it does not require an estimate of the baseline risk Pr(Y = 1|X = 0).

The simulation study reported in table 1 nicely illustrates the robustness property described 

in Result 2, as it shows in the row labelled ‘Incorrect Model”, that the doubly robust 

estimator remains unbiased when model (5) holds, even though model (4) is incorrect 

because in this scenario, Y is generated under a log-binomial model with event probability 

exp([−1.5, 0.3, −0.2, −0.7, 0.9] × Q), with corresponding marginal risk Pr(Y = 1) ≈ 0.30. 

This is in stark contrast with the non-doubly robust estimator β(̂1) which incurs bias when 

the confounders are mis-specified. The simulation study also indicates that when modeling 

error is absent, the doubly robust estimator exhibits similar efficiency as the non-doubly 

robust estimator, suggesting that, at least in this specific simulation study, little efficiency 

loss was incurred in exchange for a potential gain in robustness. In the appendix, the doubly 

robust methods described above are extended to incorporate possible interactions between 

the exposure and covariates, and the approach is further developed for a continuous 

exposure.

4 Conclusion

In this paper, we have described a simple and efficient two-stage approach to estimate risk 

ratios directly, which does not directly rely for consistency on an estimate of the baseline 

risk. This latter property is advantageous, because unlike previous methods, the proposed 

approach obviates the need to restrict the predicted risk probabilities to fall below one, in 

order to recover efficient inferences about risk ratios. For efficiency, the approach 

incorporates an individual weight which does depend on the individual’s predicted risk; 

nonetheless, because the primary target of inference is the risk ratio parameter, we have 

argue that a consistent estimate of the risk is sufficient for inference, and we have described 

a simple pluggin estimator of risk which we have used to construct an efficient estimator of 

risk ratios. Both a simulation study and a data application confirmed the good performance 

of the approach. We have further extended the proposed methodology by modifying it to 
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ensure that individuals’ estimated risks are genuine probabilities. Furthermore, when the 

primary interest is in the effect of a specific exposure, we have developed a simple doubly 

robust closed-form estimator for the multiplicative effect of the exposure, while adjusting for 

a possibly large number of confounders. In future work, we plan to further extend the 

methods of this paper for correlated binary outcomes as encountered in studies with repeated 

outcome measurements, or in studies with clustered data.
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APPENDIX 1 Proofs

Proof of Result 1

Let E {U* (β)} = E[Y {exp(−βT (X − E (X)))} (X − E (X))] denote the (probability) limiting 

value of n−1 Σi:Yi=1 Ui (β). To show that the result holds, it suffices to show that U (β) is an 

unbiased estimating function; that is we need to show that E {U (β0)} = 0. Now

To establish the large sample behaviour of β̂, we perform a standard Taylor expansion

By the law of large numbers and an application of Slutzky’s theorem, we conclude that 

 has large sample distribution equal to the distribution of

since . We may further conclude that the 

large sample variance of  is given by
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because

where A⊗2 = AAT. Furthermore, because covariance matrices are positive-definite, we may 

conclude that  is conservative for the 

variance-covariance matrice in the positive-definite sense, that for any non-zero constant 

vector t

and therefore Σ̂β is a conservative estimator of Σβ. Whereas Σ̃β is consistent for Σβ where

Proof of Result 2

Consider the semiparametric model given solely by restriction (3) ; then Bickel et al (1993) 

established that all regular and asymptotically linear estimators of β0 are fully characterized 

by the set of influence functions:
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It is straightforward to verify that this set is equivalently written:

Now, the score for β0 in this model is given by

therefore, the efficient score of β0, i.e. the orthogonal projection of Sβ onto Λ, is U† (μopt), 

with μopt = μopt(X) = X, in other words,

since , and for all U♮ (w) ∈ Λ

The proof is completed by noting that

where

Then, a theorem due to Bickel et al (1993) states that for any initial n1/2–consistent estimator 

of β0, an efficient estimator can be constructed by a one-step update of β̂ in the direction of 

the estimated efficient score by using the following formula
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where Û♮ (μopt) is an empirical version of U♮ (μopt) obtained by replacing all expectations by 

empirical expectations, with β0 estimated by β̂ and exp (α0) estimated by the simple pluggin 

estimator Σi′ Yi′ exp(−βT̂ Xi′)/n;  is a similarly constructed estimator of the 

expected derivative of the efficient score, 

 with respect to β evaluated at β0. It 

is straightforward to verify that β̂eff reduces to the formula provided in the main text. 

Furthermore, the theorem of Bickel et al (1993) further states that under standard regularity 

conditions, n1/2 (βêff − β0) is asymptotically normal with mean zero and variance

which is also the semiparametric efficiency bound of β0. Finally,  is an empirical 

version of  which converges to the latter in probability.

In order to prove Result 3, we first establish a more general result, for which we allow X(1) 

to be continuous, and for the model to incorporate a possible interaction between exposure 

and covariates, say X(2). Specifically, we suppose that

(6)

and let π (ψ) = E(X(1)|X(−1);ψ) = g(ψT[1, X(−1)T]T) denote a working model for the mean 

of the exposure given covariates; where g−1 is the identity link for continuous X(1) and g is 

the logit link for binary X(−1). Define the estimating function

Then we have the following lemma.

Lemma 1

Under model (6),
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(7)

if either but not necessarily both of the following conditions hold,

1. ψ = ψ0 and E(X(1)|X(−1);ψ0) = E(X(1)|X(−1)) or

2.  and model (4) holds.

Proof of Lemma 1

which is certainly zero if (1) holds since then E(X(1)|X(−1)) − π (ψ) = 0. If (2) holds, we 

have

since the last quantity is part of the first order condition used to estimate ψ either by 

ordinary least-squares when X(−1) is continuous or by logistic regression in the binary case.

Proof of Result 3

The result immediately follows from Lemma 1 since when X(1) is binary, it is 

straightforward to verify that equation (7) is equivalent to
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Therefore, if either (1) holds, and thus ψ̂ converges to ψ0 or (2) holds and thus β(̂−1) 

converges to , we have that  converges to .
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βê

ff
)

bi
as

 (
β d̂

r)
M

C
 V

ar
 (
β d̂

r)

β(
1)

C
or

re
ct

 M
od

el
−

0.
00

83
0.

01
40

0.
01

80
0.

01
38

0.
00

29
0.

01
23

−
0.

00
79

0.
01

41

β(
1)

In
co

rr
ec

t M
od

el
0.

01
83

0.
01

28
0.

01
70

0.
01

30
−

0.
02

26
0.

01
10

0.
00

01
0.

01
30

β(
2)

C
or

re
ct

 M
od

el
−

0.
00

26
0.

01
38

0.
01

85
0.

01
35

0.
00

46
0.

01
15

**
**

β(
3)

C
or

re
ct

 M
od

el
0.

01
50

0.
04

02
0.

05
14

0.
03

88
0.

00
07

0.
03

16
**

**

β(
4)

C
or

re
ct

 M
od

el
−

0.
00

84
0.

04
11

0.
05

15
0.

03
90

−
0.

00
22

0.
03

45
**

**

Int J Biostat. Author manuscript; available in PMC 2017 June 29.


	Abstract
	1 Introduction
	2 PROPOSED METHODS
	2.1 A Simple Inefficient Initial Estimator
	Result 1

	2.2 An Efficient Estimator
	Result 2


	3 Additional results and an application
	3.1 An alternative efficient estimator
	3.2 A data illustration
	3.3 Double robustness
	Result 3


	4 Conclusion
	References
	APPENDIX 1 Proofs
	Table 1

