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MicroRNAs (miRNAs) recently have been established as key regulators of transcriptome reprogramming that define cell
function and identity. Nevertheless, the molecular functions of the greatest number of miRNA genes remain to be determined.
Here, we report cooperative regulatory functions of miR858 and its MYB83 transcription factor target gene in transcriptome
reprogramming during Heterodera cyst nematode parasitism of Arabidopsis (Arabidopsis thaliana). Gene expression analyses
and promoter-GUS fusion assays documented a role of miR858 in posttranscriptional regulation of MYB83 in the Heterodera
schachtii-induced feeding sites, the syncytia. Constitutive overexpression of miR858 interfered with H. schachtii parasitism of
Arabidopsis, leading to reduced susceptibility, while reduced miR858 abundance enhanced plant susceptibility. Similarly,
MYB83 expression increases were conducive to nematode infection because overexpression of a noncleavable coding sequence
of MYB83 significantly increased plant susceptibility, whereas a myb83 mutation rendered the plants less susceptible. In
addition, RNA-seq analysis revealed that genes involved in hormone signaling pathways, defense response, glucosinolate
biosynthesis, cell wall modification, sugar transport, and transcriptional control are the key etiological factors by which
MYB83 facilitates nematode parasitism of Arabidopsis. Furthermore, we discovered that miR858-mediated silencing of
MYB83 is tightly regulated through a feedback loop that might contribute to fine-tuning the expression of more than a
thousand of MYB83-regulated genes in the H. schachtii-induced syncytium. Together, our results suggest a role of the
miR858-MYB83 regulatory system in finely balancing gene expression patterns during H. schachtii parasitism of Arabidopsis to
ensure optimal cellular function.

Mature microRNAs (miRNAs) are small 21- to
22-nucleotide-long noncoding RNAs that are processed
from transcripts forming a stem-loop secondary struc-
ture. miRNAs operate through base pairing with their
target genes (Bartel, 2004; Voinnet, 2009). Once they
bind to their target sequences, miRNAs can trigger
mRNAdegradation or translational repression, causing
down-regulation of the target genes. With the fast ex-
pansion of high-throughput sequencing platforms,
genome-wide identification and differential expression
analysis of miRNAs have been accomplished in an in-
creasing number of plant species (Zhang et al., 2011;

Li et al., 2014). Despite the large number of miRNA
genes showing differential expression under various
developmental and stress conditions, only few of these
miRNAs have been functionally characterized.

Initial functional studies of miRNA genes revealed
their involvement in regulating a number of develop-
mental processes (Kidner andMartienssen, 2005; Chen,
2009; Chuck et al., 2009; Weiberg et al., 2014). None-
theless, the key regulatory roles of miRNAs in medi-
ating plant responses to pathogen infection are now
being increasingly recognized (Seo et al., 2013; Staiger
et al., 2013; Weiberg et al., 2014; Fei et al., 2016). Recent
studies have generated compelling proof for the im-
plication of miRNAs in regulating defense signaling
and immune responses during plant interaction with
various phytopathogens, including bacteria, fungi,
oomycetes, viruses, and nematodes (Seo et al., 2013;
Gupta et al., 2014; Yang and Huang, 2014; Hewezi and
Baum, 2015). miRNAs can function as negative regulators
of plant defenses, leading to increasing plant susceptibil-
ity to pathogen infection. For instance, miR844 and
miR400 were found to enhance plant susceptibility to
Pseudomonas syringae and Botrytis cinerea, respectively,
when overexpressed in Arabidopsis (Arabidopsis thaliana;
Park et al., 2014; Lee et al., 2015). In barley (Hordeum
vulgare), various miR9863 family members have been
demonstrated to target distinct alleles of theMla immune
receptors to inhibit immune response signaling in re-
sponse to infection by the powdery mildew fungus,
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Blumeria graminis (Liu et al., 2014a). A limited number of
miRNA genes have also been shown to modulate plant
innate immunity. For instance, overexpression of
Arabidopsis miR160a, which targets ARF10, ARF16,
and ARF17, activated callose deposition, resulting in en-
hanced plant resistance toP. syringae (Li et al., 2010).More
recently, miR444 has been found to activate plant
innate immunity against rice stripe virus in rice. The
expression of miR444 was activated upon virus in-
fection, and this activation was accompanied by down-
regulationof its target genesOsMADS23,OsMADS27a, and
OsMADS57, the repressors of RNA-DEPENDENT RNA
POLYMERASE1 (RdRP1), leading to activation of the
RdRP1-dependent antiviral silencing pathway (Wang
et al., 2016).

Detailed functional studies also revealed that the
samemiRNA gene can execute diverse functions against
different pathogens. For example, overexpression of rice
miR398b resulted in increasing plant susceptibility to
P. syringae via inhibiting callose deposition (Li et al., 2010).
In contrast, miR398b overexpression can also enhance
plant resistance against the blast fungusMagnaporthe oryzae
via increasing the production of hydrogen peroxide (Li
et al., 2014). Similarly, it has been shown that miR863-3p
can mutually regulate negative and positive mediators of
defense signaling in a pathogen infection stage-specific
fashion to fine-tune the timing of defense response (Niu
et al., 2016).

Plant-parasitic cyst nematodes are most destructive
root parasites, causing substantial yield losses in many
crop plants. These obligate parasites form, in the root
vascular tissues, a specialized multinucleate feeding
site, termed syncytium. The syncytium is a metaboli-
cally hyperactive sink-like structure from which the
nematodes feed throughout the parasitic stages. For-
mation of functional syncytia is a sophisticated cellular
process that involves an intricate interplay of numerous
signaling and developmental pathways, whose regu-
lation remains poorly understood. However, recent
studies point at vital regulatory functions of miRNAs
in syncytium formation and function. For example,
miR396 targeting of growth regulating factor 1 (GRF1)
and GRF3 was found to control syncytium initiation
and development via regulating numerous hormonal
signaling and developmental pathways (Hewezi et al.,
2012; Hewezi and Baum, 2012; Liu et al., 2014b). More
recently, it has been shown that Heterodera schachtii-
induced up-regulation of miR827 posttranscriptionally
silences the NITROGEN LIMITATION ADAPTATION
gene specifically in the syncytium to permanently at-
tenuate immune responses and enable successful par-
asitism (Hewezi et al., 2016). Also, miRNAs seem to
have functional roles in regulating phytohormone sig-
naling during plant interactions with root-knot nema-
todes. It has been recently demonstrated that tomato
(Solanum lycopersicum) miR319 regulates jasmonic acid
level during Meloidogyne incognita infection (Zhao et al.,
2015). Another recent study has suggested a role of Ara-
bidopsis miR319 in modulating auxin signaling during
Meloidogyne javanica parasitism (Cabrera et al., 2016).

miRNA-mediated post transcriptional control of
gene activity is a highly dynamic process that deter-
mines not only transcript stability and protein level but
also allows plant cells to establish metabolic and
physiological readjustment to cope with new functions
or fluctuating conditions. In plants, a significant num-
ber ofmiRNAgenes target transcription factors (Bonnet
et al., 2004; Jones-Rhoades and Bartel, 2004). In turn,
miRNA-regulated transcription factors have tremen-
dous potential to achieve such readjustment in cellular
metabolism and physiology because of their ability to
control numerous downstream targets. In addition,
miRNA genes and their targeted transcription factors
may correspondingly adjust the expression of each
other through feedback regulatory loops, in which the
transcription factors directly regulate the expression of
their negative regulators, resulting in tight control over
gene expression patterns (Meng et al., 2011). Further-
more, a transcription factor and its miRNA regulators
may antagonistically regulate common targets, although
such mechanisms have not yet been described in plants.

In Arabidopsis, miR858 posttranscriptionally
silences the expression of several MYB transcription
factors including MYB6, MYB11, MYB12, MYB13,
MYB20, MYB42, MYB63, MYB83, and MYB111
(Fahlgren et al., 2007; Addo-Quaye et al., 2008; Sharma
et al., 2016). These miR858-targeted MYBs are involved
in a variety of cellular processes, including plant re-
sponses to drought (MYB20 and 60), the phenylpropanoid
pathway (MYB11, 12, and 111), and secondary wall bio-
synthesis (MYB46 and 83; Cominelli et al., 2005; McCarthy
et al., 2009; Oh et al., 2011; Gao et al., 2014; Sharma et al.,
2016). Here, we report a novel function of the miR858-
MYB83 regulatory system in plant-cyst nematode inter-
action. Both miR858 and MYB83 were transcriptionally
activated in the syncytia of H. schachtii, and modulation
of their expression through gain- and loss-of-function
approaches altered Arabidopsis response to nematode
infection. In linewith the function ofMYB83 in facilitating
nematode infection of Arabidopsis, our transcriptome
analysis revealed that MYB83 regulates a substantial
number of syncytial genes encoding components essential
for syncytium formation and function. Also, our results
establish thatMYB83 through a feedback loop activates the
expression ofmiR858, thereby stabilizing its own transcript
abundance and its downstream regulated genesduring the
initiation and progression of nematode parasitism.

RESULTS

miR858 Is Expressed in the Syncytium during the Initiation
and Progression of Nematode Parasitism

In Arabidopsis, miR858 is encoded by one functional
genomic locus (miR858a, AT1G71002) that produces
21-nucleotide mature molecules and targets ten MYB
transcription factor mRNAs that contain the miR858
complementary sequences (Sharma et al., 2016). To in-
vestigate the functional role of miR858 during the
compatible interaction betweenArabidopsis and the beet
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cyst nematode H. schachtii, we first produced transgenic
Arabidopsis lines expressing the b-glucuronidase (GUS)
reporter gene driven by the miR858 promoter (pmiR858:
GUS). GUS activity of four independent transgenic lines
(T2 generation)were assayed both under noninfected and
H. schachtii-infected conditions. In noninfected 2-week-
old-plants, GUS staining was observed in leaf and root
vascular tissues (Fig. 1, A–C). Under H. schachtii-infected
conditions, GUS activity was observed in the developing
syncytium of the second stage nematode juvenile (J2) at
3 d postinfection (dpi) as well as in the syncytium of the
early J3 stage at 7 dpi (Fig. 1, D andE).However, at 10 and
14 dpi (late J3 and J4 stages), GUS staining in the
syncytium was absent (Fig. 1, F and G). The expres-
sion pattern of miR858 in the nematode feeding sites
points to a functional role of miR858 in suppressing
its target genes during the initiation and progression
of nematode parasitism. Therefore, reduced miR858
promoter activity at later stages suggests an unin-
hibited expression of these target genes at these time
points.

miR858 Posttranscriptionally Regulates MYB83 during
H. schachtii Parasitism of Arabidopsis

It has been shown recently that miR858 post-
transcriptionally silences the 10 MYB transcription
factors MYB6, MYB11, MYB12, MYB13, MYB20,
MYB42, MYB48, MYB63, MYB83, and MYB111 that
contain the miR858 binding site (Sharma et al., 2016).
Recent functional analyses have implicated MYB83
(AT3G08500) in the coordination of secondary wall bio-
synthesis and cell wall modifications in Arabidopsis
(McCarthy et al., 2009; Zhong and Ye, 2012), both of
which are fundamental cellular processes impacting
syncytium formation and development (Bohlmann and
Sobczak, 2014; Hewezi, 2015). Therefore, we directed our
focus to elucidating the potential regulatory role of the
miR858-MYB83 system in establishing the interactions
between Arabidopsis and H. schachtii. We generated
pMYB83:GUS transgenic lines to determine if MYB83
shares the temporal expression patterns with miR858 in
the syncytium, which would suggest that MYB83 is
posttranscriptionally down-regulated by miR858 also in
the nematode feeding site. GUS activities were assayed in
four independent transgenic lines (T2 generation) both
under noninfected and H. schachtii-infected conditions.
GUS activity of 2-week-old noninfected plants was ob-
served in leaf and root vascular tissues (Fig. 1,H–J). Under
H. schachtii infection, robust GUS stainingwas detected in
the syncytium during the J2, early J3, late J3, and J4 de-
velopmental stages at 3, 7, 10, and 14 dpi, respectively
(Fig. 1, K–N). The coincident up-regulation ofmiR858 and
MYB83 promoters in the syncytium at 3 and 7 dpi sug-
gests that MYB83 is targeted by miR858 for posttranscrip-
tional regulation during the early syncytium development
stage. At later stages, miR858 expression was down-
regulated in the syncytium; thus, MYB83 is unlikely to
be posttranscriptionally silenced by miR858.

In order to provide additional evidence that miR858
mediates posttranscriptional regulation of MYB83
during H. schachtii infection of Arabidopsis, we used
quantitative real-time RT-PCR (qPCR) to quantify the
levels of miR858 primary transcripts (pri-miR858),
mature miR858, as well as total and uncleaved tran-
script levels of MYB83 in the roots of wild-type (Col-0)
Arabidopsis plants inoculated with H. schachtii at 4,
7, 10, and 14 dpi, relative to the corresponding non-
inoculated controls. The relative levels of uncleaved
MYB83 transcripts were determined using a primer
pair flanking the miR858 binding site, whereas the rel-
ative levels of total (cleaved and uncleaved) MYB83
transcripts were determined using a primer pair located
downstream of the miR858 binding site as previously
described by Hewezi et al. (2016). Gene expression data
from three biologically independent replicates revealed
up-regulation of both primary and mature miR858 in

Figure 1. Histochemical staining of GUS activity driven bymiR858 and
MYB83 promoters in transgenic Arabidopsis lines in response to
H. schachtii infection. A to C, GUS activity of the pmiR858:GUS plants
under noninfected conditions. Shown are GUS activity in the vascular
tissues of leaves (A) and roots (B and C) of 2-week-old plants. D to G,
GUS activity of the pmiR858:GUS plants in response to H. schachtii
infection. StrongGUS activity was observed in theH. schachtii-induced
syncytia at 3 (D) and 7 (E) dpi, whereas at 10 and 14 dpi, GUS activity
was absent in the syncytia (FandG). H to J, GUS activity of the pMYB83:
GUS plants under noninfected conditions. Shown are GUS activity in
leaves (H) and vascular root tissues (I and J) of 2-week-old plants. K to N,
GUS activity of the pMYB83:GUS plants in response to H. schachtii
infection. StrongGUS activity was observed in theH. schachtii-induced
syncytia at 3 (K), 7 (L), 10 (M), and 14 (N) dpi. N, Nematode; S, syn-
cytium. Bars = 100 mm, except for A and H, which are 1 cm.
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infected roots at 4 and 7 dpi comparedwith noninfected
roots (Fig. 2), a result that is consistent with the in-
creased activity of the miR858 promoter in the syncy-
tium at the same time points. Meanwhile, the levels of
total MYB83 transcripts were significantly higher (P ,
0.05) than the level of uncleaved transcripts in infected
root tissues compared with noninfected roots at both
4 and 7 dpi (Fig. 2). At 10 dpi, the expression levels
of both primary and mature miR858 were slightly
up-regulated, and this up-regulation was accompanied
with small insignificant (P = 0.26) reduction in the level
of uncleaved MYB83 transcripts compared with the
total transcript level (Fig. 2). At 14 dpi, the expression of
primary and mature miR858 was sharply decreased
in the infected roots. At the same time, total and
uncleaved MYB83 transcripts accumulated at similar
levels (Fig. 2). These temporal expression patterns,
which show that the abundance of uncleaved MYB83
transcripts are inversely correlated with the expression
level of miR858, indicate that MYB83 is subjected to
posttranscriptional regulation by miR858 following
H. schachtii infection. Given our promoter data, this
regulation likely is at work in the syncytium.

Overexpression of miR858 Confers Enhanced Resistance
to H. schachtii

Promoter and qPCR analyses of miR858 expression
during nematode infection revealed two distinct

patterns (i.e. up-regulation during J2 and early J3 stages
and down-regulation during late J3 and J4 stages).
Thus, we investigated whether constitutive over-
expression of miR858 would modulate Arabidopsis
susceptibility to H. schachtii. To this end, we produced
transgenic Arabidopsis lines overexpressing the pri-
mary miR858 sequence under the control of 35S pro-
moter (35S:miR858). Four independent nonsegregating
T2 overexpression lines (1-3, 1-4, 19-1, and 21-1)
showing between 6- and 18-fold increases in miR858
expression levels relative to the Col-0 plants were se-
lected (Supplemental Fig. S1A). MYB83 transcript
levels were significantly decreased in these lines rela-
tive to Col-0 plants (Fig. 3A), which is consistent with
posttranscriptional degradation of MYB83 transcripts
by miR858. The root lengths of miR858 overexpression
lines were comparable to Col-0 plants, with the excep-
tion that line 21-1 showed a slight increase of about 5%
(Fig. 3B; Supplemental Fig. S2A). No other develop-
mental defects were observed when these lines were
grown under standard growth conditions (Fig. 3, B and
C), confirming the results recently obtained by Sharma
et al. (2016). The four miR858 overexpression lines were
assayed for H. schachtii susceptibility. These lines dis-
played statistically significant decreases in susceptibility
levels with 30 to 42% reduction in J4 female nematode
counts compared to Col-0 plants (Fig. 3D). These results
indicate that constitutive overexpression of miR858 in-
terferes with H. schachtii parasitism of Arabidopsis.

Overexpression of a Mimic Sequence for miR858
Augments Plant Susceptibility to H. schachtii

The implication of miR858 in modulating plant re-
sponse to nematode infection was further examined
by generating transgenic Arabidopsis plants with re-
duced miR858 expression. This was accomplished by
expressing a mimic sequence for miR858 in its mature
form (MIM858; Fig. 4A). The artificial noncleavable
binding site for the mature miR858 contained a three-
nucleotide bulge (TGA) that does not interfere with
miR858 binding but would prevent transcript cleavage
and hence sequester miR858 activity. Three indepen-
dent transgenic lines showing between 2.7- and 6.8-fold
reduction in the mature miR858 expression levels were
selected (Supplemental Fig. S1B). qPCR quantification
revealed that miR858 down-regulation in the MIM858
lines was correlated with significant increases in
MYB83 expression levels (Fig. 4B), a finding that con-
firms the efficiency of our target mimicry construct in
sequestering the activity of miR858. Other than minor
reductions in root lengths of MIM858 plants, no no-
ticeable morphological differences between MIM858
lines and Col-0 plants were detected (Fig. 4, C and D;
Supplemental Fig. S2B). Interestingly, when the sus-
ceptibility of the MIM858 lines to H. schachtii was de-
termined, these lines were significantlymore susceptible
than the wild-type plants, showing up to 56% increase in
the number of J4 nematodes (Fig. 4E). Together, these

Figure 2. miR858 posttranscriptionally down-regulates MYB83 during
H. schachtii parasitism of Arabidopsis. The abundance of primary and
mature miR858 as well as total and uncleaved transcript levels of
MYB83weremeasured using qPCR in the roots of wild-type Col-0 plants at
4, 7, 10, and 14d afterH. schachtii infection, relative to noninfected control
plants. The total transcript levels ofMYB83 were inversely correlated with
the expression levels of primary andmaturemiR858 at the four time points.
In addition, the levels of uncleavedMYB83 transcripts were lower than the
level of total transcripts at 4 and 7 dpi, indicative of a posttranscriptional
down-regulation ofMYB83 bymiR858 at these two time points. Datawere
obtained from three biological samples and represented as mean 6 SE.
Normalization of the expression levels of miR858 andMYB83was carried
out using U6 and Actin8 as internal reference genes, respectively. Statisti-
cally significant differences between the levels of total and uncleaved
MYB83 transcripts were determined using t tests (*P , 0.05).
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data confirm that increased expression of miR858 is ac-
countable for the reduced susceptibility phenotype seen
in miR858 overexpression plants.

Ectopic Overexpression of a Nondegradable Coding
Sequence of MYB83 Enhances Arabidopsis Susceptibility
to H. schachtii

The gene expression analyses and nematode suscep-
tibility assays of miR858 and MIM858 overexpression
linesmentioned above indicate that inhibition of miR858
activity facilitates H. schachtii infection, most likely

through the up-regulation of its MYB target genes. If
miR858 modulates plant susceptibility mainly through
posttranscriptional regulation ofMYB83, manipulation
of MYB83 expression should also influence plant sus-
ceptibility to H. schachtii but in the opposite direction.
To investigate this assumption, we generated trans-
genic Arabidopsis lines overexpressing a miR858-
resistant variant of MYB83 under the control of 35S
promoter (35S:rMYB83). The noncleavable variant
rMYB83 was constructed by creating six-nucleotide
mismatches in the miR858 target site without altering
the encoded protein sequences (Fig. 5A). Four non-
segregating T2 lines showing between 16- and 31-fold
MYB83 mRNA up-regulation were selected and phe-
notypically analyzed (Supplemental Fig. S1C). These
lines were indistinguishable from the nontransgenic
plants in term of root and shoot morphology and de-
velopment (Supplemental Fig. S2C). Interestingly,
when these lines were used in H. schachtii infection
assays, all lines exhibited statistically significant in-
creases in susceptibility compared with Col-0 plants
(Fig. 5B). In addition, a T-DNA insertional mutant of
MYB83 (CS1004395; Supplemental Fig. S3) was identi-
fied, and no obvious morphological defects in roots or
shoots were observed. In contrast to the rMYB83
overexpression lines, the myb83 mutant showed re-
duced nematode susceptibility relative to the wild-type
Col-4 plants (Fig. 5C). Taken together, these results link
the activity of the MYB83 to the function of miR858 in
modulating plant responses to H. schachtii infection.

RNA-Seq Analysis of miR858 and rMYB83
Overexpression Plants

The robust effects of MYB83 overexpression and
knockout mutant lines on nematode susceptibility sug-
gest that this transcription factor may control down-
stream target genes encoding proteins necessary for
syncytium formation/function. Therefore, we performed
RNA-seq analysis on root tissues isolated from the 35S:
miR858 (line 1-4), 35S:rMYB83 (line 8-1), and wild-type
Col-0 plants in order to identify the downstream targets
that may be directly or indirectly controlled by MYB83.
Three biological samples of root tissues were collected
from each plant line (2 weeks old) for mRNA isolation
and library preparation. Differentially expressed genes
(DEGs) were determined using adjusted P values, 0.05.
We identified 4,386 and 2,908 DEGs in P35S:miR858 and
35S:rMYB83, respectively, compared with Col-0 plants.
Out of the 4,386DEGs identified in the 35S:miR858 plants,
2,082 genes were up-regulated and 2,304 genes were
down-regulated (Supplemental Data Set 1). In the 35S:
rMYB83 plants, 1,249 genes were up-regulated and 1,659
genes were down-regulated (Supplemental Data Set 2).
Comparison of the DEGs in these two transgenic lines
revealed that 2,193 genes were common to both sets (Fig.
6A; Supplemental Data Set 3). The fact that this over-
lapping gene list represents more than 50% of the DEGs
identified in the 35S:miR858 plants, indicates thatMYB83
is the main target of miR858 in roots.

Figure 3. Overexpression of miR858 confers enhanced resistance to
H. schachtii. A, Constitutive overexpression of miR858 in four inde-
pendent transgenic Arabidopsis lines resulted in significant decreases in
MYB83 expression levels. The expression levels of MYB83 were de-
termined in the roots of 2-week-old transgenic lines relative to the wild-
type Col-0 plants using qPCR. Shown are average expression levels
obtained from three biological samples 6 SE. Statistically significant
differences were determined using t tests (*P, 0.01). B and C, Root (C)
and shoot (B) phenotypes of 3-week-old transgenic Arabidopsis plants
overexpressing miR858. D, Nematode infection assays of the miR858
overexpression lines showing reduced susceptibility to H. schachtii
compared with the wild-type Col-0 plants. Shown are average numbers
of J4 females per root system 6 SE (n = 20) at 3 weeks postinoculation.
Statistically significant differences from wild-type Col-0 plants were
determined using t tests (*P , 0.05).

Plant Physiol. Vol. 174, 2017 1901

miR858/MYB83-Mediated Transcriptome Reprogramming

http://www.plantphysiol.org/cgi/content/full/pp.17.00273/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00273/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00273/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00273/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00273/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00273/DC1


Gene Ontology (GO) classification and enrichment
analyses of the DEGs in the 35S:miR858 and 35S:
rMYB83 plants were performed. Thirty-five GO bio-
logical process terms, which are mainly associated with
metabolic processes and response to biotic and abiotic
stimuli, were identified (Fig. 6B). While several GO
terms were enriched among the up-regulated or down-
regulated genes in both lines, enriched GO terms spe-
cific to each line were also seen. For example, GO terms
corresponding to defense response, and responses to
bacterium and abscisic acid stimulus were enriched
uniquely among the up-regulated genes in 35S:miR858
plants (Fig. 6B). Similarly, GO terms corresponding to
carbohydrate metabolic processes as well as secondary
metabolic process were significantly overrepresented
uniquely among the up-regulated genes in 35S:rMYB83
plants (Fig. 6B). The same observation is equally evi-
dent among the down-regulated genes. For example,
enrichment of GO terms corresponding to flavonoid
biosynthesis and metabolic processes were identified
only among the down-regulated genes in 35S:miR858
plants (Fig. 6B). GO terms corresponding to signal
transduction, auxin transport, lignin metabolic process,
cell wall organization, and responses to wounding,
osmotic stress, oxidative stress, salt stress, chitin, auxin
stimulus, and jasmonic acid stimulus were significantly

enriched exclusively among the down-regulated genes
in the 35S:rMYB83 plants (Fig. 6B).

Identification of Putative Direct Targets of MYB83

Recently, the ACC(A/T)A(A/C)(T/C) consensus se-
quence was identified as the MYB83 cis-binding element
in Arabidopsis (Zhong and Ye, 2012). Therefore, we
scanned the promoters of the DEGs identified in the
35S:rMYB83 plants (2,908 genes) for the presence of this
cis-element within 1.5 kb upstream of the transcription
start site (TSS) to identify putative direct targets of MYB83.
The number of cis-elements identified in these DEGs
ranged between 0 and 15 elements, with the largemajority
containing between 0 and 2 elements (Supplemental Fig.
S4A). Also, we determined the average number of this cis-
element in the promoters of 2,908 randomly selected genes
to be 1.02 elements. Thus, DEGs with at least threeMYB83
cis-binding elements in the promoters of the MYB83-
regulated genes were considered as putative direct
targets ofMYB83 (P value 2.69E-65, Fisher’s exact test).
As a result, 1,055 of the MYB83-regulated genes were
identified as bona fide direct target candidates
(Supplemental Data Set 4). The cis-elements are equally
distributed across the gene promoters (Supplemental

Figure 4. Constitutive down-regulation of miR858 increased plant susceptibility to H. schachtii. A, Approach for creating a
mimic binding site for miR858 (MIM858). The miR399 mimic sequence in the IPS1 was replaced by an artificial noncleavable
binding site for the mature miR858. The artificial binding site contained a three-nucleotide bulge (TGA) that would prevent
transcript cleavage and hence sequester miR858 activity. B, Constitutive overexpression of MIM858 in three independent
transgenic Arabidopsis lines resulted in significant up-regulation of MYB83. The expression levels of MYB83 were quantified in
the roots of 2-week-old transgenic lines relative to the wild-type Col-0 plants using qPCR. Shown are average expression levels
obtained from three biological samples6 SE. Statistically significant differences were determined using t tests (*P, 0.01). C and
D, Shoot (C) and root (D) phenotypes of 3-week-old transgenic Arabidopsis plants overexpression MIM858. E, Nematode in-
fection assays of theMIM858 overexpression lines showing increased susceptibility toH. schachtii compared with the wild-type
Col-0 plants. Shown are average numbers of J4 females per root system 6 SE (n = 20) at 3 weeks postinoculation. Statistically
significant differences from wild-type Col-0 plants were determined using t tests (*P , 0.05).
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Fig. S4B). However, 77% (815/1055) of these putative
direct targets contain at least one cis-element within
500 bp of the TSS (Supplemental Fig. S4C). GO enrich-
ment analysis revealed that genes involved in transport,
primary metabolic processes, secondary metabolic pro-
cesses, particularly glucosinolate, and responses to biotic
and abiotic stresses were significantly enriched among
the direct targets that were positively regulated in the
35S:rMYB83 plants. GO categories associated with tran-
scription, metabolic process, defense response, and re-
sponses to stress, nematode, hormone, and biotic stimuli
were significantly enriched among the putative direct
target genes that were negatively regulated in the 35S:
rMYB83 plants (Supplemental Fig. S5).

MYB83 Regulates Key Cellular Processes in the Syncytium
of H. schachtii

Consistent with the function of MYB83 in promoting
plant susceptibility to H. schachtii, we found a signifi-
cant overlap between the MYB83-regulated genes and
the syncytium DEGs previously identified by Szakasits
et al. (2009). Out of the 2,908 MYB83-regulated genes
1,286 overlapped with the 7,725 syncytium DEGs (Fig.
6C; Supplemental Data Set 5). This significant overlap
(44.2%, x2 = 224.729, P value = 1.909E-48) indicates that
16.6% of the syncytium transcriptome is regulated by
MYB83. Also, we compared the identified 1,055 direct
target genes of MYB83 with the syncytium DEGs to
determine the extent to whichMYB83 directly regulates

gene expression in the syncytium. A common set of
471 genes (44.6%, x2 = 79.765, P value = 3.452E-17) was
identified, implying that 6% of syncytium genes are
under direct control of MYB83 (Fig. 6D; Supplemental
Data Set 6). Of these 471 genes, 216 (46%) were
up-regulated in of MYB83 overexpression plants and
255 (54%) were down-regulated, suggesting that MYB83
has a dual transactivation and transrepression function.
GO term analysis of the 1,286 MYB83-regulated genes
overlapping with the syncytium DEGs revealed an en-
richment of genes involved in receptor-mediated signaling
pathways, transport, metabolic processes, cell wall orga-
nization, and responses to stress, chitin, and bacterium,
together with responses to biotic, abiotic, hormone, auxin,
and ethylene stimuli (Fig. 6E). When this analysis was
conducted to include only the 471 genes predicted as
putative direct targets of MYB83 in the syncytium, GO
terms associated with transcription, transport, metabolic
process, responses to stress, oxidative stress, bacterium,
and biotic stimulus were significantly enriched (Fig. 6E).

In addition to GO analysis, careful examination of
the known functions of MYB83-regulated genes over-
lapping with the syncytium DEGs enabled more de-
tailed insights into the functional role of MYB83 during
H. schachtii infection. As shown in Figure 7, genes in-
volved in hormone signaling pathways (Fig. 7A), defense
response and glucosinolate biosynthesis (Fig. 7, B and E),
cell wall modification and sugar transport (Fig. 7C), and
transcriptional control (Fig. 7D) seem to be the key etio-
logical factors of MYB83 in facilitating nematode para-
sitism of Arabidopsis.

Figure 5. Constitutive overexpression of miR858-resistant variant of MYB83 increased plant susceptibility to H. schachtii. A,
Schematic representation showing the generation of a miR858-resistant variant ofMYB83 (rMYB83) by introducing synonymous
mutations to the miR858 binding site in the MYB83 coding sequence. B and C, Nematode infection assays of rMYB83 over-
expression lines and a MYB83 mutant line. Three independent transgenic lines overexpressing 35S:rMYB83 construct showed
increased susceptibility toH. schachtii comparedwith thewild-typeCol-0 plants (B). In contrast, themyb83 knockoutmutant line
CS1004395 showed reduced susceptibility compared with the wild-type Col-4 plants (C). Shown are average numbers of J4
females per root system6 SE (n = 20) at 3 weeks postinoculation. Statistically significant differences from the corresponding wild-
type plants were determined using t tests (*P , 0.05).
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miR858 and MYB83 Constitute a Feedback Regulatory
Loop That Involves MYB12

We next examined the promoter of miR858, 2 kb
upstream of the TSS, for the presence of MYB83 cis-
binding element. Interestingly, seven cis-binding ele-
ments were identified, emphasizing the possibility that

MYB83 regulates the expression of miR858. To inves-
tigate this possibility, we quantified the expression of
primary and mature miR858 in the 35S:rMYB83 plants
as well as the myb83 knockout mutant line (CS1004395)
using qPCR. Data from three biological samples indi-
cated about 2-fold up-regulation of both primary and

Figure 6. Functional classification and GO enrichment analyses of differentially expressed genes identified in 35S:miR858 and
35S:rMYB83 lines. A, Venn diagram displaying the number and overlap of the DEGs identified in miR858 and rMYB83 over-
expression lines. B, GO classification and enrichment analyses of the DEGs identified in 35S:miR858 and 35S:rMYB83 lines.
Enrichment analyses of up-regulated and down-regulated genes were performed separately. C, Venn diagram shown the overlap
between MYB83-regulated genes and syncytium DEGs. D, Venn diagram shown the overlap between MYB83 putative
targets and syncytium DEGs. E, GO classification and enrichment analyses of MYB83-regulated genes and its putative
direct targets overlapping with syncytium DEGs. Enrichment analyses of up-regulated and down-regulated geneswere performed
separately. Enrichment analysis was performed using Fisher’s exact test and Bonferroni multitest correction with a significance cutoff
P , 0.05.
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mature miR858 in the transgenic plants overexpressing
MYB83 (Fig. 8A) compared to Col-0 plants. In contrast,
both primary andmaturemiR858 transcripts were down-
regulated in the myb83 mutant compared with the wild-
type Col-4 (Fig. 8B). Taken together, these results imply
that MYB83 positively regulates the expression of its
negative regulator through a feedback regulatory loop to
maintain proper level of its transcripts.
We then examined our RNA-seq data set to find out if

any of the confirmed targets of miR858 were inversely
regulated in the MYB83 overexpression plants and
hence constitute part of the regulatory loop. Interest-
ingly, we identified MYB12, a confirmed target of
miR858, among the MYB83 positively regulated genes.
This finding guided us to test whether MYB12 is an
integral part of the miR858/MYB83 regulatory circuit
impacting plant response to nematode infection. To this
end, we generated transgenic plants overexpressing a
miR858-resistant variant ofMYB12 (rMYB12) driven by
the 35S promoter (Supplemental Fig. S6). A nematode
infection assay of three independent overexpression
lines displayed significant increases in plant suscepti-
bility to nematode infection compared with Col-0
plants (Fig. 8C). In addition, a T-DNA insertional mu-
tant of MYB12 (FLAG_150B05; Supplemental Fig. S7)
was identified, and no obvious morphological defects
in roots or shoots were detected. Contrary to rMYB12
overexpression lines the myb12 mutant exhibited

reduced susceptibility compared with the wild-type
Wassilewskija plants (Fig. 8D). Together, these results
suggest that MYB12 may constitute part of miR858/
MYB83 regulatory loop regulating plant response to
nematode infection.

DISCUSSION

Arabidopsis miR858 has been shown to regulate
various growth and plant developmental processes
(Guan et al., 2014; Jia et al., 2015; Sharma et al., 2016).
However, a regulatory function of miR858 in plant-
pathogen interactions has not been reported. Here,
we report a crucial regulatory role of miR858 during
H. schachtii parasitism of Arabidopsis. In response to
H. schachtii infection, miR858 exhibited a biphasic ex-
pression pattern, including strong activation in the
developing syncytia at 3 and 7 dpi and a subsequent
down-regulation in the mature syncytia at 10 and 14
dpi. This pattern of miR858 expression suggests dif-
ferent functions during the two distinct stages of syn-
cytium formation and maintenance. As a result,
constitutive overexpression of miR858 resulted in sig-
nificant decreases in nematode infection. In contrast,
inactivation of miR858 by overexpressing an artificial
target mimic sequence produced the opposite pheno-
type of enhanced susceptibility. It may be important to

Figure 7. Differential expression
patterns of a set of MYB83-regulated
genes involved in key biological
processes associated with nema-
tode parasitism. The RKPM values
of the selected MYB83-regulated
genes overlapping with the syncy-
tium DEGs were row-wise normal-
ized using Z score and used to
construct the heat maps. Shown are
genes involved in hormone signaling
pathways (A), defense response (B),
cell wall modification and sugar
transport (C), and transcriptional
control (D). Putative direct targets
of MYB83 are highlighted in bold.
Not that MYB83-regulated genes
were identified under noninfected
conditions and were compared with
the syncytiumDEGspreviously iden-
tified by Szakasits et al. (2009) at 5
and 15 dpi. E, Schematic depicting
the glucosinolate biosynthesis path-
way in which 6 MYB83-regulated
genes are highlighted in red.
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mention that no complementary sequences for miR858
were identified in Heterodera spp. when we scanned all
available transcripts in the databases. Thus, it is un-
likely that miR858 triggered host-induced gene silenc-
ing during nematode feeding on the transgenic lines
overexpressing miR858.

The influence of miR858 expression changes on plant
responses to H. schachtii seems to be mediated through
posttranscriptional regulation of its MYB transcription
factor genes, specificallyMYB83. TheMYB83 promoter
was predominantly active in the syncytium during all
nematode parasitic stages. Posttranscriptional silencing
of MYB83 by miR858 was evident at 4 and 7 dpi as
shown by low levels of uncleaved MYB83 transcripts
compared with the total transcript levels. MYB83 ex-
pression increase seems to be conducive to H. schachtii
infection of Arabidopsis because rMYB83 overexpression
enhanced plant susceptibility, whereas a myb83mutation
rendered the plants less susceptible.

The regulatory relationship between miR858 and
MYB83 seems to be established through a feedback
regulatory loop. Our finding that the MYB83 binding
motif occurs repeatedly in the miR858 promoter led us
to examine a possible role of MYB83 in regulating the
expression of miR858. The transcript abundance of pri-
miR858 and mature miR858 was considerably increased
in the rMYB83 overexpressing plants but decreased in
themyb83mutant, indicating that MYB83 participates in

a feedback loopwith its negative regulator to stabilize its
own transcript abundance. A reciprocal feedback loop
controlling the expression of miR396 and its target
transcription factors GRF1 and GRF3 has been demon-
strated to coordinate transcriptional events required for
proper syncytium formation and function (Hewezi and
Baum, 2012; Hewezi et al., 2012; Liu et al., 2014b). In
addition, a number of miRNAs and their transacting
targets were found to be intricately connected through
feedback circuits in different growth and developmental
contexts, where robust and adaptable transcriptional
responses were established (Xie et al., 2003; Gutierrez
et al., 2009; Wu et al., 2009; Marin et al., 2010; Yant et al.,
2010; Merelo et al., 2016). Our data suggest that the
miR858/MYB83 regulatory circuit may involveMYB12,
a confirmed target of miR858, whose transcript abun-
dancewas positively regulated byMYB83. Thus,miR858
appears to fine-tune the function of MYB83 at various
levels. MYB12 is also of functional importance for nem-
atode parasitism since constitutive changes in its ex-
pression levels through overexpression and T-DNA
insertional mutant lines altered plant response to nem-
atode infection.

The miR858/MYB83 regulatory loop may enable
controlling precise expression levels of genes involved
in critical cellular processes required for syncytium
differentiation without turning gene expression on and
off to prevent syncytium degeneration and collapse.

Figure 8. miR858/MYB83 regulatory loop involves MYB12. A and B, MYB83 positively regulates the expression of miR858. The
expression levels of primary and mature miR858 transcripts were quantified in the roots of 2-week-old rMYB83 overexpression
plants (A) as well as the myb83 mutant line CS1004395 (B) relative to the wild-type Col-0 or Col-4 plants, respectively using
qPCR. Shown are relative expression values obtained from three biological samples6 SE. Statistically significant differences were
determined using t tests (*P, 0.05). C and D, MYB12 phenocopied the effects of MYB83 on plant susceptibility to H. schachtii.
Three independent transgenic lines overexpressing the 35S:rMYB12 construct increased susceptibility to H. schachtii compared
with thewild-type Col-0 plants (C), whereas themyb12mutant line FLAG_150B05 showed reduced susceptibility comparedwith
the wild-type Wassilewskija plants (D). Shown are average numbers of J4 females per root system 6 SE (n = 20) at 3 weeks
postinoculation. Statistically significant differences from the corresponding wild-type plants were determined using t tests (*P ,
0.05).
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Our finding that 1,286 genes of the 2,193 MYB83-
regulated genes were among the previously identified
syncytium DEGs (Szakasits et al., 2009) may reflect a
key regulatory function of MYB83 in reprogramming
syncytium transcriptomes. It may be worth mentioning
that other than significant differences in the numbers of
female nematodes, we did not observe aberrant phe-
notype for nematode and syncytium development be-
tween the transgenic lines and wild-type controls. The
transcriptome reprogramming mediated by the coor-
dinated function of miR858 and MYB83 could be facil-
itating the formation of functional syncytium. We
therefore focused our discussion on the potential im-
portance of these genes for syncytium formation and
nematode parasitism. Levels and signaling of phyto-
hormones play fundamental roles in determining syn-
cytium cell fate reprogramming and differentiation
(Grunewald et al., 2009b; Gheysen and Mitchum,
2011; Goverse and Bird, 2011; Cabrera et al., 2015;
Kammerhofer et al., 2015). In particular, auxin signaling
has been shown to be rapidly activated upon nematode
infection leading to syncytium differentiation and de-
velopment (Goverse et al., 2000; Karczmarek et al.,
2004; Grunewald et al., 2009a; Absmanner et al., 2013;
Hewezi et al., 2014). Several genes encoding numerous
functions of the auxin signal transduction cascade, in-
cluding the auxin receptor TIR1, the auxin response
factors 2, 4, 6, 9, and 10, the auxin influx carrier LAX1,
and the auxin efflux transporter ABCB4 were among
MYB83-regulated genes in the syncytium (Fig. 7A).
Additional key genes involved in the auxin response
(SHY2, ARGOS, and PLDP2) and auxin homeostasis
(GH3.17) were also regulated by MYB83 in the syncy-
tium (Fig. 7A). It has been recently reported that cyto-
kinin signaling is critical for syncytium development
and successful H. schachtii parasitism of Arabidopsis
(Shanks et al., 2016; Siddique et al., 2015). MYB83-
regulated genes overlapping with syncytium DEGs
included various components of cytokinin signaling
pathway, namely, the cytokinin synthase IPT5, the His
kinase receptors AHK2 and AHK4, and the His phos-
photransfer protein AHP (Fig. 7A). Together, these re-
sults indicate thatMYB83 regulates auxin and cytokinin
responses at various levels of biosynthesis, signal
transduction, and downstream responses.
Also, ethylene has been shown to play contrasting

dual functions during various nematode parasitic
stages (Wubben et al., 2001; Kammerhofer et al., 2015).
Notably, numerous ethylene response factors (ERFs),
which control the downstream signaling of ethylene
response, were also identified among the MYB83-
indcued genes overlapping with the syncytium DEGs
(Fig. 7A). This included ERF6, ERF9, and ERF72, which
play key regulatory functions in biotic stress responses
(Ogawa et al., 2005; Camehl and Oelmüller, 2010;
Moffat et al., 2012; Maruyama et al., 2013; Meng et al.,
2013; Chen et al., 2014; Xu et al., 2016), as well as
ERF109, which regulates the accumulation of reactive
oxygen species following biotic and abiotic stresses
stimuli (Matsuo et al., 2015). Remarkably, a substantial

number of genes associated with gibberellin, jasmonic
acid, and abscisic acid signal transduction networks
were directly or indirectly regulated by MYB83 in the
syncytium (Fig. 7A). While the function of jasmonic
acid and abscisic acid signaling in directing plant re-
sponse to cyst nematodes is not fully understood
(Kammerhofer et al., 2015), it has been recently dem-
onstrated that these pathways regulate defense re-
sponses and basal immunity against sedentary and
migratory nematodes (Nahar et al., 2011, 2012; Ozalvo
et al., 2014).

Interestingly, we noted that genes encoding func-
tions that mediate the interplay between various hor-
mone signaling pathwayswere also regulated byMYB83
(Fig. 7A). This included, for example, ERF109 and
ANTHRANILATE SYNTHASE ALPHA SUBUNIT1,
which mediate the interplay between jasmonic acid and
auxin biosynthesis and transport in roots (Sun et al., 2009;
Cai et al., 2014), and the acyl acid amido synthetase
GH3.5, which regulates the homeostasis and responses of
salicylic acid and auxin following pathogen infection
(Zhang et al., 2007; Westfall et al., 2016). Thus, miR858/
MYB83-mediated precise regulation of transcript levels of
various phytohormone signaling genes may allow infec-
ted root cells to properly differentiate and develop into
functional syncytia in a stage-specific fashion, taking into
consideration that the levels of these phytohormones are
anticipated to vary throughout various stages of syncy-
tium initiation, formation, and maintenance. It is plausi-
ble also that MYB83 may integrate signals from these
hormone pathways to fine-tune the biosynthesis of de-
fense components. In this context, pathogenesis-related
(PR) genes, whose expression is linked to the signaling
pathways of salicylic acid (thaumatin-like) and jasmonic
acid (PR4 and PDF2.1), were among the identi-
fied MYB83-regulated genes in the syncytium (Fig. 7B).
PDF2.1 was recently confirmed to be strongly expressed
in the syncytium using reporter lines (Siddique et al.,
2011). Interestingly, two genes encoding the cytochrome
P450 enzymes CYP79B2 and CYP79B3, which are in-
volved in the conversion of Trp to indole-3-acetaldoxime
(Hull et al., 2000; Mikkelsen et al., 2000), were oppositely
regulated byMYB83 (Fig. 7, B andE). The fact that indole-
3-acetaldoxime is the metabolic branch node bringing
about the biosynthesis of auxin and indole glucosinolate
(Bak et al., 2001) suggests a role of MYB83 in regulating
the balance between auxin homeostasis and glucosinolate
biosynthesis. In support with this suggestion, several
syncytium DEGs that are involved in the biosynthesis of
glucosinolate were among the identifiedMYB83-regulated
genes, from which four were considered as direct target
gene candidates (Fig. 7E).

Several transcription factors of MYB, NAC, and
WRKY familieswere among theMYB83-regulated genes
in the syncytium (Fig. 7D), suggesting a role ofMYB83 in
forming a complex and highly interconnected regulatory
network in the syncytium. Of the MYB transcription
factors, MYB108, which regulates wound-induced cell
death in an abscisic acid-dependent manner (Cui et al.,
2013), andMYB51, a key regulator of indole glucosinolate
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biosynthesis (Frerigmann and Gigolashvili, 2014) were
found. Additional MYB transcription factors included
MYB12 andMYB59 that are involved in phenylpropanoid
biosynthesis and cell cycle progression, respectively
(Mehrtens et al., 2005; Mu et al., 2009). Thus, cross-
regulation among certain MYB transcription factors in
the syncytium may constitute a subregulatory network
that contributes to the establishment of a syncytium-
specific transcriptional program. Of the WRKY tran-
scription factors regulated by MYB83, WRKY72 was
previously reported to contribute to basal resistance
against the root-knot nematode M. incognita and the
oomycete Hyaloperonospora arabidopsidis (Bhattarai et al.,
2010). Also, WRKY60 and WRKY11, the negative regula-
tors of defense response (Journot-Catalino et al., 2006; Xu
et al., 2006), were found to be regulated by MYB83 in
opposite direction, implying a role of MYB83 in the con-
trol of defense response and inhibition of autoimmunity.

Positive and negative regulators of plant immunity
are frequently dysregulated upon cyst nematode in-
fection (Szakasits et al., 2009; Kandoth et al., 2011).
Notably, master regulators of plant immunity were
identified among the MYB83-regulated genes in the
syncytium (Fig. 7B). This included KUNITZ TRYPSIN
INHIBITOR1 and alpha-dioxygenase1, which encode
functions that antagonize oxidative stress and cell
death during pathogen infection (De León et al., 2002;
Li et al., 2008). Other regulators of plant immunity in-
cluded, for example, PROPEP1, the precursor of Pep1,
which stimulates the transcription of the plant defensin
gene PDF1.2 (Huffaker et al., 2006), the SUPPRESSOR
OF MKK1 MKK2 2, an immune receptor that is

involved in triggering defense responses against bac-
teria (Zhang et al., 2012), and BON ASSOCIATION
PROTEIN1, a general suppressor of defense responses
and programmed cell death (Yang et al., 2006, 2007).

Further inspection of the MYB83-regulated genes in
the syncytium provided additional insights into the
function of MYB83 during nematode parasitism. In-
terestingly, a number of genes encoding transmem-
brane sugar transport proteins were positively or
negatively regulated byMYB83, including SWEET2, 12,
13, and 14, the sugar transporter protein 7 and 12, and
the MONOSACCHARIDE TRANSPORTER6 (Fig. 7C).
These sugar transporters may function in sugar remo-
bilization to the syncytium during nematode feeding
and development (Hofmann et al., 2009). As shown in
Figure 7C,MYB83-regulated genes in the syncytium also
included several expansins and genes coding for en-
zymes that participate in cell wall biogenesis and mod-
ification, comprising cellulose synthases, b-glucosidases,
pectate lyases, and peroxidases; some of them were
previously shown to modulate plant-nematode interac-
tions (Wieczorek et al., 2006; Jin et al., 2011; Bohlmann
and Sobczak, 2014; Wieczorek et al., 2014). Collectively,
these data suggest a functional role ofMYB83 in a variety
of cellular processes associated with nematode infection.

Finally, we propose a model for miR858-MYB83 in-
teraction during H. schachtii parasitism of Arabidopsis
(Fig. 9). H. schachtii-induced activation of miR858 dur-
ing the initiation and progression of nematode para-
sitism posttranscriptionally silences MYB83. MYB83 in
turn positively regulates the expression of miR858,
which contains several MYB83 cis-binding elements in

Figure 9. Model for miR858-MYB83
interaction. Our results indicate that
miR858 and MYB83 expression are
connected through a feedback circuit in
which miR858 regulates the expression
ofMYB83 and responds to its expression
levels. This regulatory mechanism en-
sures proper expression levels of more
than a thousand MYB83-regulated genes
in the H. schachtii-induced syncytium.
This fine-tuning mechanism appears to
include MYB12, which was oppositely
regulated by miR858 and MYB83, pro-
viding additional layer of tight control
over gene expression.
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its promoter. This feedback regulatory circuit may
function as a homeostatic control mechanism to ensure
proper expression levels of more than a thousand of
MYB83-regulated genes in the H. schachtii-induced
syncytium. The miR858/MYB83 regulatory system
may also involve MYB12, which was oppositely regu-
lated by miR858 and MYB83, providing additional layer
of tight control over unidentified MYB12-regulated
genes in the syncytium.

MATERIALS AND METHODS

Plant Material and Growth Conditions

All transgenic Arabidopsis (Arabidopsis thaliana) lines were generated in the
Col-0 background. The myb83 T-DNA insertional mutant (CS1004395) in the
Col-4 background was obtained from the Arabidopsis Biological Resource
Center. The myb12 T-DNA mutant (FLAG_150B05) in the Wassilewskija back-
ground was obtained from the Genomic Resource Center, INRA-Versailles,
France. Plants were grown at 24°C under light conditions of 16 h light and 8 h
dark.

Nematode Infection Assay

Seeds of the transgenic and mutant lines along with the wild-type controls
(Col-0, Col-4, or Wassilewskija) were sterilized using a 2.8% bleach solution for
5 min followed by four washes with sterilized double-distilled water. The
sterilized seeds were then randomly distributed in 12-well culture plates (BD
Biosciences) containing modified Knop’s medium solidified with 0.8% Daishin
agar (Brunschwig Chemie) with each line being replicated 20 times. The plates
were placed in a growth chamber at 24°C with 16-h-light/8-h-dark conditions.
Freshly hatched J2 Heterodera schachtii nematodes were surface-sterilized using
a fresh solution of 0.01% mercuric chloride for 5 min followed by four washes
with sterilized double-distilled water. The J2 nematodes were then suspended
in a 0.1% agarose solution and used to inoculate 10-d-old seedlings with ;250
nematodes per seedling. The nematode susceptibility of the lines was deter-
mined 3 weeks after inoculation by counting the number of female nematodes
per plant using a dissecting microscope. Statistically significant differences
between the lines and the corresponding wild-type control were determined
using t test on SASwith a P value cutoff of 0.05. Nematode infection assayswere
repeated at least two times and similar results were obtained.

Histochemical Analysis of GUS Activity

GUS activity of the pmiR858:GUS and pMYB83:GUS transgenic plants was
determined by staining the plants at various time points post H. schachtii in-
fection according to Jefferson et al. (1987). All tissues were stained for;6 hwith
the exception that pmiR858:GUS infected plants at 10 and 14 dpi were stained
overnight to confirm the complete absence of the promoter activity in the
syncytium at these two time points. At least 50 syncytia at each time point were
examined, and the staining patterns were common to at least 90% of the ex-
amined syncytia in four independent transgenic lines. The images of both
infected and noninfected plants were taken using a Zeiss digital camera and
then analyzed with the Zeiss Axio Vision SE64 software (version 4.8).

Vector Construction and Production of Transgenic Plants

The binary vector of miR858 overexpression was constructed by amplifying
the miR858 precursor (200 bp) from Col-0 genomic DNA using a primer pair
containing BamHI and SacI restriction sites as overhangs. The amplified frag-
ment was digested, gel-purified, and then ligated into the binary vector pBI121
under the control of 35S promoter. The wild-typeMYB83 coding sequence was
amplified from first-strand cDNA and the noncleavable MYB83 variant was
constructed by creating 10 mismatches in the miR858-binding sites without
altering the amino acid sequences. The modified MYB83 sequence was then
cloned in the pBI121 binary vector under 35S promoter using XbaI and SacI
restriction sites. The MIM858 overexpression was generated as recently de-
scribed byHewezi et al. (2016). Briefly, the 22-nucleotidemiR399-complementary

region in the Arabidopsis IPS1 gene, a noncoding phosphate starvation-induced
transcript, was substituted with a mimic sequence for the mature miR858 se-
quences. The miR858 mimic sequence contained a three-nucleotide bulge (TGA)
between the nucleotide numbers 10 and 11 of the binding region and two ad-
ditional mismatches at the nucleotides numbers 1 and 10 of the binding site. The
modified IPS1 genes containing the miR858 mimic sequence was cloned in the
pBI121 vector under the control of 35S promoter using SacI andBamHI restriction
sites.

The miR858 promoter (2,513 bp upstream of the miR858 TSS) was amplified
from Col-0 genomic DNA using a primer pair containing BamHI and SacI re-
striction sites. Similarly, the MYB83 promoter (1,970 bp upstream of the
translation start codon) was PCR amplified using a primer pair containing
BamHI and SalI restriction sites. The PCR-amplified products were digested,
gel-purified, and finally ligated to the binary vector pBI101 in the corre-
sponding restriction sites to drive GUS gene expression. All constructs were
confirmed by sequencing and introduced into Agrobacterium tumefaciens strain
C58 by the freeze-thaw method. The bacteria were used to transform Arabi-
dopsis wild-type Col-0 plants by the floral dipmethod (Clough and Bent, 1998).
Transgenic T1 lines were identified by screening the seeds on Murashige and
Skoog agar medium supplemented with 50 mg/L kanamycin. Transgene ex-
pression in various transgenic lines was quantified using qPCR. The primers
used for binary plasmid construction are included in Supplemental Table S1.

RNA Isolation and Quantitative Real-Time
RT-PCR Analysis

To assess the expression level of miR858 (both mature and primary tran-
scripts), total RNA was extracted from 20 mg root tissues using TRIzol reagent
(Invitrogen) according to the manufacturer’s instructions. Total RNA including
miRNAs was then polyadenylated and reverse transcribed using the Mir-X
miRNA First-Strand Synthesis Kit (Clontech). Approximately 50 ng of the
synthesized cDNAwas used as a template for qPCR reaction. qPCRwas carried
out using SYBR Advantage qPCR Premix (Clontech). The mature miR858 se-
quence appended with two adenines on the 39 end was used as forward primer
sequence to ensure correct binding of the primer to the poly(T) region of the
mature miR858 cDNA and preclude potential binding to the miR858 precursor.
The primary transcript of miR858 was quantified using a forward primer spe-
cific to miRNA precursor and the universal reverse primer mRQ 39 (provided
with the kit). U6 small nuclear RNAwas used as an internal control for miRNA
gene expression normalization. The PCR reactions were performed in Quant-
Studio 6 Flex Real-Time PCR System (Applied Biosystems) using the following
program: 95°C for 3 min followed by 40 cycles of 95°C for 30 s and 60°C for 30 s.
The PCR products were then exposed to a temperature ramp to generate the
dissociation curves and determine amplification specificity. The dissociation
program was 95°C for 15 s and 50°C for 15 s, followed by a slow gradient from
50°C to 95°C. For the quantification ofMYB83 expression levels, total RNAwas
isolated from 20 mg root tissues according to Verwoerd et al. (1989). The iso-
lated total RNAwas treated with DNase I (Invitrogen) and;25 ng was used in
qPCR reactions using Verso SYBR green One-Step qRT-PCR Rox mix (Thermo
Scientific) following the manufacturer’s protocol. The PCR amplification pro-
ducts were then subjected to a temperature ramp to create the dissociation
curves using the following program: 95°C for 15 s and 60°C for 75 s, followed by
a slow gradient from 60°C to 95°C. Primers used for qPCR quantification assays
are included in Supplemental Table S1.

RNA-Seq Library Preparation and Data Analysis

P35S:miR858 (line 1-4), P35S:rMYB83 (line 8-1), and Col-0 were grown in
Murashige and Skoog plates, and three biological samples of root tissues were
collected of 2-week-old plants. mRNA was isolated from 20 mg grounded root
tissue using magnetic mRNA isolation kit (NEB) following the manufacturer’s
protocol. Approximately 250 ng of mRNA was used for RNA-seq library
preparation using NEBnext mRNA library prep master mix (NEB) following
the manufacturer’s protocol. The nine RNA-seq libraries were multiplexed and
sequenced using HiSeq 2500 system with 100-bp single-end reads. Quality of
the sequenced data was assessed using FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Low-quality reads were trimmed using
Trimmomatic (Bolger et al., 2014). After trimming, uniquely mapped read was
aligned to the Arabidopsis reference genome (TAIR10) using TopHat v2.0.14
(Trapnell et al., 2009). Number of reads assigned to individual genes were
counted using HTSeq (Anders et al., 2015). DEGs were determined using the R
package DESeq2 (Love et al., 2014) using an adjusted P value cutoff of 0.05. GO
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terms enrichment analysis of the DEGs was performed using agriGO database
(Du et al., 2010) with Fisher’s exact test and Bonferroni multitest adjustment
with a significance cutoff P value of 0.05.

Accession Numbers

Sequence data of Arabidopsis genes described in this study can be found in
The Arabidopsis Information Resource database under the following accession
numbers: miR858 (AT1G71002), MYB83 (AT3G08500), MYB12 (AT2G47460),
and Actin8 (AT1G49240). The RNA-seq data described in this manuscript were
submitted to the National Center for Biotechnology Information, Gene Ex-
pression Omnibus under accession number GSE95198.
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Supplemental Figure S1. Gene expression levels of miR858, MIM858, and
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Supplemental Figure S2. Root lengths of miR858, MIM858, and rMYB83
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Supplemental Figure S3. Characterization of the MYB83 T-DNA mutant
line (CS1004395).

Supplemental Figure S4. Enrichment of MYB83 cis-binding element in the
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