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Pathophysiology

The development of heart failure is rarely dependent on primary 

alterations of cardiac metabolism. The majority of heart failure cases 

result from diseases of the cardiac muscle, most frequently ischaemic 

heart disease. However, whatever the cause of heart failure, the net 

result will be depletion of myocardial adenosine triphosphate (ATP), 

phosphocreatine and creatine kinase levels with decreased efficiency 

of mechanical work. Once heart failure has developed, the neuro-

hormonal axis is activated with the aim to sustain haemodynamic 

failure. Activation of adrenergic and renin-angiotensin-aldosterone 

systems indirectly determine specific metabolic alterations in the 

cardiac and skeletal muscles. Over the last two decades, despite the 

adoption of drugs able to block neuro-hormonal activation in heart 

failure dramatically improving the overall prognosis of this deadly 

disease, mortality and morbidity remain a critical problem. In fact, 

apart from the well-known effects on chronotropism, inotropism, 

vascular tone and blood volume, the residual physiological effects 

of neuro-hormones indirectly determine a state of low metabolic 

efficiency in both the skeletal and cardiac muscles. The aim of this 

review is to analyse the metabolic derangement in the failing heart 

and, on this basis, speculate on possible new therapeutic targets.

Deranged Cellular Metabolism in Heart Failure
Under normal conditions, the healthy heart derives most of its energy 

from the free fatty acid (FFA) pathway that accounts for approximately 

two-thirds of energy production; the other source of energy being 

derived from glucose oxidation and lactate.1,2 FFA and glucose 

metabolism inter-regulate each other, a process referred to as the 

Randle cycle.3 Increasing FFA oxidation in the heart decreases glucose 

oxidation, while increasing glucose oxidation inhibits FFA oxidation. 

However, energy being derived from FFA oxidation is a less efficient 

source of energy than glucose oxidation (in terms of ATP produced 

per O2 molecules consumed) and determines a reduction of cardiac 

efficiency. In fact, the amount of ATP produced per O2 consumed is 

greater when glucose is oxidised compared with FFA and, therefore, 

FFA is a less efficient energy substrate than glucose. Elevated FFA 

oxidation can result in up to a 30 % decrease in cardiac efficiency.2

Progressive heart failure induces an imbalance between the requirement 

of cardiac tissue for oxygen and metabolic supplies and their availability, 

resulting in functional, metabolic and morphological alteration of the 

myocardium. At a cellular level, glucose uptake is decreased and 

conversion to lactate is increased; lactate uptake by the heart is 

switched to lactate production, and pyruvate is mostly transformed into 

lactate, thereby increasing cell acidosis. The FFA pathway is also slowed 

down, yet most of the produced energy comes from FFA oxidation, 

resulting in less ATP production. These metabolic changes lead to 

disruption of cell homeostasis, alterations in membrane structure and, 

ultimately, cell death. The following sections will attempt to clarify the 

mechanism at the base of these metabolic changes.

Effects of the Neuro-hormonal Activation on 
Metabolism of the Failing Heart 
Neuro-hormonal activation significantly contributes to cardiac 

mechanical and metabolic inefficiency of the cardiac muscle and 
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whole body of patients with heart failure. This vicious circle is likely 

mediated by increased use of non-carbohydrate substrates for energy 

production,2 resulting from different mechanisms. Adrenergically 

mediated increased peripheral lipolysis (wasting of subcutaneous fat 

and skeletal muscle) results in grossly augmented FFA availability. 

In fact, fasting blood ketone bodies4 as well as fat oxidation during 

exercise5 have been shown to be increased in patients with heart 

failure. Adrenergic activation may also induce insulin resistance, 

which is also associated with heart failure6 and may further contribute 

to increased circulating FFA levels by the development of ketosis 

and consequent impaired suppression of lipolysis. Indirect effects 

of augmented adrenergic tone in heart failure include increased 

heart rate, vasoconstriction and inotropism, which, in turn, may also 

indirectly contribute to a state of functional and metabolic inefficiency.

Angiotensin II is also an important regulator of cardiac energy 

metabolism and function.7 There are several mechanisms through which 

angiotensin  II contributes to heart failure occurrence and persistence. 

Angiotensin II damages mitochondria in the cardiomyocyte by increasing 

reactive oxygen species production8 and affects mitochondrial oxidative 

phosphorylation, including FFA oxidation.9,10 These data suggest 

that angiotensin II affects FFA oxidation. There is also evidence that 

angiotensin II regulates glucose oxidation7,11 and its inhibition may exert 

beneficial effects. In addition, by decreasing oxidative metabolism, 

angiotensin II can compromise ATP production, thus reducing its 

availability.12 In this context, angiotensin II antagonism represents an 

attractive therapeutic approach. Studies using the euglycaemic insulin 

clamp technique have indicated that the beneficial effect of angiotensin 

II is exerted on insulin sensitivity. In fact, angiotensin-converting enzyme 

(ACE) inhibitors and angiotensin receptor antagonists have been  

shown to improve both left ventricular function and glucose 

homeostasis.13,14 Increased blood flow in skeletal muscle, accumulation 

of bradykinin or more efficient insulin release may be suggested as 

potential modes of action.

Endothelial dysfunction, a critical component in the progression of 

heart failure, may result from increased oxidative stress, secondary 

to activation of the adrenergic and the renin-angiotensin systems and 

to the production of inflammatory cytokines.15 In heart failure, the role 

of reduced bioavailability of nitric oxide (NO) is still under debate,16,17 

while increased endothelin-1 (ET-1) levels are a mainstay.18 Growth 

factors, vasoactive substances and mechanical stress contribute to 

the increased ET-1 levels in patients with heart failure. Despite the 

known adaptative aspect of supporting contractility of the failing heart, 

persistent increases in cardiac ET-1 expression in the failing heart 

have a pathophysiological maladaptive aspect and are associated 

with the severity of myocardial dysfunction.19 It has been observed 

that trimetazidine could reduce endothelin release in patients with 

cardiac disease.20,21 Trimetazidine-induced reduction of intracellular 

acidosis in ischaemic myocardium might not only influence myocardial 

but also endothelial membranes.22 By decreasing endothelial damage, 

trimetazidine could inhibit ET-1 release that, in turn, may decrease 

myocardial damage. A second hypothesis is that, by just decreasing 

the effects of chronic myocardial ischaemia, trimetazidine could inhibit 

ET-1 release. Therefore, the observed decrease in ET-1 release with 

trimetazidine, could likely be linked to trimetazidine-induced reduction 

of myocardial ischaemia. Finally, keeping in mind the close relation 

between endothelium and insulin sensitivity, the observed effects of 

trimetazidine on endothelial function could also explain the beneficial 

action of trimetazidine on glucose metabolism.

In the same context, the potential beneficial effect of 6 weeks of oral 

L-arginine supplementation on endurance exercise, an important 

determinant of daily-life activity in patients with chronic stable 

heart failure, has been assessed.23 L-Arginine is the precursor 

of endogenous NO, which is a potent vasodilator acting via the 

intracellular second-messenger cyclic guanosine monophosphate. 

In healthy individuals, L-arginine induces peripheral vasodilation and 

inhibits platelet aggregation due to an increased NO production.  

The results of this study show that arginine enhanced endurance 

exercise tolerance, reducing both heart rate and circulating lactate 

levels, suggesting that chronic arginine administration might be useful 

as a therapeutic adjuvant to improve the patient’s physical fitness.

In summary, in the failing heart neuro-hormonal activation determines 

a combination of direct and indirect haemodynamic and metabolic 

actions, which, despite a potential teleological purpose, will eventually 

lead to further deterioration of cardiac function, mainly mediated by 

the resulting decreased metabolic efficiency of the cardiomyocytes. 

Specific therapies may attenuate these effects.

Abnormal Glucose Metabolism in Heart Failure
As glucose and lactate are more efficient fuels for aerobic respiration, 

increasing the use of these substrates can improve the oxygen 

consumption efficiency of the myocardium by 16–26 %.24 In addition, 

skeletal muscle glucose uptake in the heart and arm is inversely 

related to serum FFA levels25 and increased FFA flux from adipose 

tissue to non-adipose tissue amplifies metabolic derangements that 

are characteristic of the insulin resistance syndrome.26 Further findings 

suggest that raised FFA levels not only impair glucose uptake in heart 

and skeletal muscle but also cause alterations in the metabolism of 

vascular endothelium, leading to premature cardiovascular disease.27

Global Energy Expenditure in Heart Failure
Energy consumption at rest appears higher in patients with heart failure 

than in healthy subjects.28–30 It has been shown that increased rate of 

energy expenditure is related to increased serum FFA oxidation and 

that both energy expenditure and serum FFA oxidation are inversely 

correlated with left ventricular ejection fraction and positively correlated 

with growth hormone, epinephrine and norepinephrine concentrations.31 

Norepinephrine increases whole-body oxygen consumption, circulating 

FFA concentrations, and FFA oxidation.32 These changes have been 

attributed to stimulation of hormone-sensitive lipase in adipose tissue, 

and to stimulation of oxygen consumption independent of lipolysis by 

norepinephrine.33 These data, together with close correlations between 

plasma norepinephrine concentrations, energy expenditure at rest and 

FFA oxidation, make increased sympathetic activity the most likely 

explanation for alterations in fuel homeostasis in patients with heart 

failure.33 Therefore, intervention strategies aimed at optimising global 

and cardiac metabolism could be useful for interrupting the vicious 

circle of reduced function at greater metabolic expenses in different 

cardiac conditions.

Pharmacological Implications of Impaired 
Myocardial Metabolism in Heart Failure 
Given the above-described pathophysiological background and the 

difficulty of standard treatment to control the total symptomatic 

and prognostic burden in many patients with heart failure, it seems 

logical to consider pharmacological manipulation of cardiac energy 

metabolism as an adjunctive therapeutic option. Optimisation of cardiac 

energy metabolism is based on promoting cardiac glucose oxidation. 
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Stimulation of myocardial glucose oxidation can be achieved either 

directly with stimulation of glucose metabolism, or indirectly through 

inhibition of fatty acid beta-oxidation, in order to shift energy substrate 

utilisation away from fatty acid metabolism and towards glucose 

metabolism which, as explained above, is more efficient in terms of ATP 

production per mole of oxygen used. Therefore, metabolic therapy could 

play a beneficial role in terms of glucose metabolism homeostasis. 

The concept that drugs able to promote the use of glucose and 

non-fatty substrates by the mitochondria may increase metabolic 

efficiency and function of the failing heart has prompted several 

clinical studies. Experimental studies have first shown that stimulation 

of pyruvate dehydrogenase activity leads to enhanced glycolysis and 

use of lactate by the myocardium for aerobic respiration.34 Myocardial 

consumption of FFA is simultaneously inhibited, with the overall effect 

of a change of substrate use from predominantly non-esterified FFA 

to glucose and lactate,35 finally resulting in improved left ventricular 

mechanical efficiency.36

Trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine dihydrochloride) 

has been shown to directly inhibit FFA oxidation by blocking 

3-ketoacyl-coenzyme A thiolase (3-KAT), the last enzyme involved 

in beta-oxidation,37 although this issue remains controversial.38,39 

Trimetazidine affects myocardial substrate use by inhibiting oxidative 

phosphorylation and by shifting energy production from FFA to 

glucose oxidation (see Figure 1).40 Several studies have outlined the 

potential benefits of this agent on regional and global myocardial 

dysfunction.41–49 3-KAT inhibitors could also play a beneficial role in 

terms of glucose metabolism homeostasis at both cardiac and skeletal 

muscle level. The beneficial effect of trimetazidine on left ventricular 

function, has been attributed to preservation of phosphocreatine (PCr) 

and ATP intracellular levels.50 Clinical studies using phosphorus-31 

magnetic resonance spectroscopy to measure PCr:ATP ratios in 

human myocardium have shown that this ratio is reduced in failing 

human myocardium.51 The PCr:ATP ratio is a measure of myocardial 

energetics and its reduction may depend on imbalance of myocardial 

oxygen supply and demand,52 and reduction of the total creatine pool, 

a phenomenon known to occur in heart failure.53 In a study performed 

in patients with heart failure of different aetiologies receiving full 

standard medical therapy, it was observed that the trimetazidine-

induced improvement of functional class and left ventricular function 

was associated with an improvement of PCr:ATP ratio, supporting the 

hypothesis that trimetazidine may preserve myocardial high-energy 

phosphate intracellular levels.54 These results appear particularly 

interesting, especially in view of previous evidence indicating the 

PCr:ATP ratio as a significant predictor of mortality.55 In fact, imetazidine 

has been shown to improve prognosis in patients with heart failure in 

a multicentre retrospective cohort study56 and in two meta-analyses.57,58 

On this basis, its use in patients with heart failure has been advocated 

in a recently published position paper.59

Similarly to trimetazidine, ranolazine has also been shown to 

significantly improve left ventricular performance in experimental 

models of heart failure.60–63 Sabbah et al. measured haemodynamics 

before and 40 minutes after intravenous ranolazine administration in a 

canine model of heart failure.60 Results in 13 experimental dogs were 

compared with those obtained in eight normal healthy dogs. Ranolazine 

significantly decreased left ventricular end-diastolic pressure and 

increased left ventricular ejection fraction in the absence of any effects 

on heart rate or blood pressure. In subsequent experiments from 

the same laboratory, Chandler et al. reproduced these findings and 

determined that the improvement in left ventricular performance was 

not associated with an increase in myocardial oxygen consumption 

(MO2) compared with an intravenous infusion of dobutamine that 

improved left ventricular performance to a similar extent, but was 

associated with a significant increase in MO2 requirements.61

Overall, these data confirm that selective inhibition of 3-KAT represents 

a new therapeutic window in the treatment of patients with heart 

failure of different aetiologies. 

Combined Metabolic Action of Beta-blockers 
and Trimetazidine
ACE inhibitors and beta-blockers remain the clinical mainstay of the 

treatment of heart failure. It is interesting to note that beta-blockers may 

yield an ancillary metabolic effect. Their principal mechanism of action 

is based on reduction of oxygen consumption by reduced heart rate and 

inotropism. However, a direct complementary metabolic effect could be 

exerted by beta-blockers themselves, by reducing peripheral lipolysis 

and determining reduction of FFA availability. There is indeed evidence 

that beta-blockade can reduce FFA use in favour of greater glucose use 

in patients with cardiac disease.64 This change in myocardial energetics 

could provide a potential mechanism for the decreased MO2 and 

improved energy efficiency seen with beta-adrenoreceptor blockade in 

the treatment of ischaemic heart disease and heart failure.65

 

The issue of whether non-selective, compared with selective beta-

adrenoreceptor blockers are more efficient in shifting total body 

substrate use from lipid to glucose oxidation66 remains controversial.67 

Nevertheless, a better metabolic disposition of non-selective beta-

blockers may contribute to improved survival rates observed with their 

use.68 In addition, central inhibition of sympathetic nervous activity 

with moxonidine has been associated with increased mortality rates 

in patients with chronic heart failure.69 In fact, despite a significant 

reduction of cathecolamine spillover and, consequently, heart rate, 

moxonidine has been shown to increase FFA use and increase MO2 

consumption.70 This could be the reason for the failure of central 

sympathetic inhibition in preventing death in long-term studies in 

patients with chronic heart failure. It also indicates that the predominant 

Figure 1: Metabolic Vicious Circle in Heart Failure.
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mechanism of action of beta-blockers in cardiac syndromes is 

likely related to mechanisms of action other than simple heart rate 

reduction. In patients with heart failure the magnitude of heart rate 

reduction may therefore be a marker of improved functional response 

following beta-blockade administration, a consequent effect rather 

than a mechanism. Nonetheless, a clinical trial in which the cardiac 

‘funny’ (If) channel inhibitor ivabradine (a pure heart rate-lowering 

agent) was added to beta-blockade (SHIFT [Systolic Heart Failure 

Treatment With the lf Inhibitor Ivabradine Trial]) clearly demonstrated 

that the greater the heart rate reduction the greater the reduction of 

hospitalisation events in patients with heart failure.71 Therefore, apart 

from the importance of heart rate lowering per se, a complementary 

synergistic metabolic action of beta-blockers and trimetazidine can be 

hypothesised: whereas the former reduce FFA availability, the latter 

decrease their cardiac use. Overall, this drug-induced metabolic shift 

could reduce FFA oxidation and increase the flux through pyruvate 

dehydrogenase with a consequent energy-sparing effect.54,72

 

Additional data also suggest that the metabolic effect of trimetazidine 

may also take place in other organs and tissues.72 In fact, apart 

from a reduction of whole-body energy demand, a trend for a 

reduction of whole-body lipid oxidation and of fasting plasma FFA 

concentration has also been observed.72 This general metabolic shift 

could reduce the overall metabolic requirements of the body, resulting 

in an attractive adaptation strategy in the context of coronary and 

myocardial insufficiencies. Interestingly, beta-blockers have also been 

shown to exert a direct effect on whole-body metabolism. In trained 

athletes, beta-adrenergic blockade abolishes the marked increase in 

plasma glucose levels during intense exercise as a result of enhanced 

peripheral glucose uptake, with no significant change in glucose 

production.73 These effects of adrenergic blockade on glucose kinetics 

could be mediated by direct effects or indirectly through changes in 

lipid substrates and/or counter-regulatory hormones.

Other Inhibitors of Fatty Acids Oxidation
Etomoxir, perhexiline and oxfenicine are carnitine palmitoyltransferase 

I (CPT-I) inhibitors. CPT-I is the key enzyme for mitochondrial FFA 

uptake; its inhibition, therefore, reduces FFA oxidation and their 

inhibitory effect on pyruvate dehydrogenase. As a consequence, 

glucose oxidation is increased.74,75 Etomoxir, initially developed as an 

antidiabetic agent, has been observed to improve left ventricular 

performance of pressure-overloaded rat heart.76 These effects have 

been considered due to a selective modification of gene expression 

of hypertrophic cardiomyocytes.77 Etomoxir has also been shown to 

increase phosphatase activation, have a direct effect on peroxisome 

proliferator-activated receptor-alpha and upregulate the expression 

of various enzymes involved in beta-oxidation.77 The first clinical trial 

employing etomoxir in patients with heart failure showed a significant 

clinical and cardiac function improvement.78 In experimental animal 

studies, etomoxir has also been shown to improve glucose metabolism.79 

However, the use of etomoxir may be limited by the observations that it 

may cause cardiac hypertrophy80 and oxidative stress.81

Analogous to etomoxir, perhexiline and oxfenicine, originally classified 

as calcium antagonists, reduce cardiac use of long-chain fatty acids 

by inhibiting CPT-I.82–84 They were initially developed as antianginal 

agents.85,86 However, they have since been employed in patients with 

heart failure. In a previous study, metabolic modulation with perhexiline 

improved maximal oxygen consumption at the cardiopulmonary 

exercise test, left ventricular ejection fraction, symptoms, resting and 

peak stress myocardial function, and skeletal muscle energetics.87 More 

recently, and similarly to trimetazidine, perhexiline has been shown to 

improve cardiac energetics and symptom status with no evidence 

of altered cardiac substrate use, further supporting the hypothesis 

of energy deficiency in heart failure and further consideration of 

metabolic therapies in its management.88 Therefore, similarly to 3-KAT 

inhibitors, CPT-I inhibitors may represent a novel treatment in patients 

with heart failure with a good safety profile, provided that the dosage 

is adjusted according to plasma levels.

FFA Inhibition in Older Patients
Age-related changes of mitochondria impair the human host cells 

homeostasis and contribute to the development of most common 

ageing diseases. Older subjects without overt cardiac diseases are 

prone to develop heart failure with preserved ejection fraction. Risk 

factors do not fully account for the aged heart functional loss that might 

be underlined by a common pathogenic denominator (i.e. cell energy 

alteration at mitochondrial level in organs requiring high energy). In 

older men without overt cardiovascular disease, the presence of pre-

pathologic conditions (pre-hypertension, reduced insulin sensitivity, 

impaired myocardial contractile reserve, inadequate vasodilation 

due to endothelial dysfunction, reduced cardiomyocytes renewal, 

systemic inflammation and raised coagulation capacity) are possibly 

related to reduced mitochondrial function and density. Several studies 

have indeed shown reduced mitochondrial content and function with 

ageing, leading to the theory that decreased mitochondrial content 

and increased uncoupling with age compromises the energy state 

of the cell.89 Indeed, altered beta-oxidation increases the reliance on 

long-chain fatty acids relative to glucose with subsequent decrease 

of cellular metabolic efficiency at any given level of tissue activity. On 

this basis, in older patients with coronary artery disease, partial fatty 

acid oxidation inhibition by trimetazidine added to standard optimal 

medical therapy has been shown to improve reverse remodelling 

of chronically dysfunctional myocardium90 and improve cardiac 

symptoms and quality of life.91 The observed improvement could be 

related to increased cellular energy reserve,54 which could be pivotal 

in a context of ageing-induced reduction of mitochondrial efficiency.

The Importance of a Correct Metabolic 
Substrate Availability 
It remains questionable whether metabolic substrate availability rather 

than pharmacological shift from fatty acids to glucose oxidation may 

be appropriate in patients with long-lasting heart failure.92 In fact, the 

anti-lipolytic drug acipimox, which reduces substrate availability and 

impairs fatty acid oxidation, has been shown to worsen left ventricular 

function in patients with idiopathic dilated cardiomyopathy.93 In 

addition, when substrate availability is acutely modulated during 

exercise testing in patients with stable coronary artery disease and 

preserved left ventricular function using a high-carbohydrate meal 

versus a high-fat meal, a lower ischaemic threshold and greater 

ischaemia magnitude is observed following the high-carbohydrate 

meal.94 Reduced lipid uptake and disposal in the setting of heart 

failure may represent therefore a maladaptive response. A recent 

study evaluated the metabolic and functional effects of high- and 

low-serum FFA availability in the presence of normal fasting serum 

glucose and insulin concentrations.95 In patients with chronic heart 

failure, short-term reduction in serum FFA concentration, while serum 

glucose and insulin concentrations remained closed to the fasting 

levels, induced an impairment of left ventricular energy metabolism 

and left ventricular function at rest. A two-fold serum FFA increment 
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