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Abstract

Background

Starting from a forensic problem, Homer et al. showed that it was possible to detect if an indi-

vidual contributes only 0.5% of the DNA in a pool. The finding was extended to prove the

possibility of detecting whether a subject participated in a small homogeneous GWAS. We

denote this as the detection of a subject belonging to a certain cohort (SBCC). Subse-

quently, Visscher and Hill showed that the power to detect SBCC signal for an ethnically

homogeneous cohort depends roughly on the ratio of the number of independent markers

and total sample size. However, it is not clear if the same holds for more ethnically diverse

cohorts. Later, Masca et al. propose running as SBCC test a regression of departure from

assumed population frequency of i) subject genotype on ii) cohort of interest frequency.

They use simulations to show that the approach has better SBCC detection power than the

original Homer method but is impeded by population stratification.

Approach

To investigate the possibility of SBCC detection in multi-ethnic cohorts, we generalize the

Masca et al. approach by theoretically deriving the correlation between a subject genotype

and the cohort reference allele frequencies (RAFs) for stratified cohorts. Based on the

derived formula, we theoretically show that, due to background stratification noise, SBCC

detection is unlikely even for mildly stratified cohorts of size greater than around a thousand

subjects. Thus, for the vast majority of contemporary cohorts, the fear of compromising pri-

vacy via SBCC detection is unfounded.

Introduction

Spurred by stricter NIMH requirement for sharing data, in the beginning of Genome Wide

Association Studies (GWASs) era most researchers published in a timely manner summary

statistics from studies, e.g. Z-scores, odds ratios (OR) and, even reference allele frequency
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(RAF) by case status. However, this free sharing did not last long before privacy concerns were

raised. First, Homer et al.[1], starting from a forensic problem, showed that it was possible to

detect if an individual contributes only 0.5% of the DNA in a pool. In the same paper, the

authors extended the findings to show that you can detect if a subject participated in a small

(N�1,500) homogeneous GWAS by using only summary statistics and RAFs. We denote this

the detection of a subject belonging to a certain cohort (SBCC).

Subsequently, Visscher and Hill [2] used a likelihood ratio (LR) approach to show that the

power to detect SBCC signal for an ethnically homogeneous cohort depends roughly on the

ratio of the number of independent markers and total sample size. Unfortunately, even though

Visscher and Hill implied that at larger sample sizes the power of detecting whether a subject

is the member of a cohort is much smaller, this finding was not enough to avoid a chilling

effect on the free sharing of summary data.

By using a Bayesian approach Clayton [3] investigated the conditions needed for SBCC

detection for a homogeneous cohort. He computes Bayes factors for subject belonging to case

and control group and derives their upper limit as a function of allele frequency. He also

touches on the lack of good reference data making SBCC even harder. In the end, Clayton con-

cludes that that “scenarios in which an individual might be identified in this manner are some-

what improbable—particularly when so many SNPs would be needed that linkage

disequilibrium could not be ignored (so that any potential invader of privacy would also

require access to an individual-level data set from which to estimate the linkage disequilibrium

structure)”.

Later, Masca et al. [4] propose as SBCC statistic an empirical regression test of departure

from assumed population frequency of i) subject genotype on ii) cohort of interest frequency.

They use simulations to show that i) their approach is more powerful than Homer et al., ii)

population stratification impedes SBCC detection and ii) SBCC detection is possible only at

smaller sizes.

In this paper we attempt to answer the question whether, from an SBCC perspective, not

sharing data is scientifically defensible for present day GWAS studies. To answer it we theoret-

ically extend Masca et al SBCC approach, ii) update it for stratified cohorts and ii) use the

approach for SBCC signal testing. As a measure of SBCC signal strength we propose the corre-

lation between a subject genotype and the cohort RAFs (CGR). We show that for unstratified

cohorts, CGR is equivalent to Visscher and Hill LR, which suggest our approach is locally uni-

form most powerful (UMP) test under modest stratification. Based on the functional form of

CGR statistic we argue that, for the vast majority of contemporary cohorts, stopping the free

sharing of data due to SBCC concerns is not scientifically justified.

Methods

Given that the information relating to SBCC for certain disorders is likely to be much more

detrimental than him/her belonging to the cohort of a quantitative trait, in this paper the focus

in on case control cohorts. Due to subjects’ contribution to i) the Z-scores being adjusted for

unknown ancestry components and ii) RAFs incorporating solely unadjusted subjects’ contri-

bution, we argue that RAFs are likely to provide much more information on whether a subject

belongs to a cohort. Consequently, this paper will treat only the privacy concerns relating to

the worst-case scenario of sharing case RAFs.

Correlation between case genotype and in-cohort RAF

Assume the cohort under investigation consists of n cases and n0 controls for a certain disor-

der. Further assume that the cohort samples m subpopulations, with the i-th subpopulation
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having ni cases and n0i controls. Under stratification, an important index for population diver-

gence is Wright’s fixation index Fst, which is the quotient of the variance in subpopulation fre-

quencies and the variance of the allele in cohort (1). Fst was also shown to be the apparent

correlation of alleles in the same subpopulation (1). (Alleles from different subpopulations are

uncorrelated.) Let Fi denote the correlation of the alleles in the i-th subpopulation.

Before proceeding to deduce the correlation between case genotype and in-cohort RAF, i.e.

CGR, we establish some basic relationships for variance and covariance of subjects’ genotypes.

Assume that X1 and X2 are the additively coded alleles (i.e. the number of reference alleles) of

an individual from the i-th subpopulation, then the genotype G = X1 + X2. Then, Var(G) = Var
(X1 + X2) = Var(X1) + Var(X2) + 2 Cov(X1 + X2), i.e.

Var ðGÞ ¼ pð1 � pÞ þ pð1 � pÞ þ 2pð1 � pÞFi ¼ 2pð1 � pÞð1þ FiÞ ð1Þ

Let G1 = X11 + X12 and G2 = X21 + X22 be the bi-allelic genotype for 2 subjects from the

same subpopulation (with fixation index Fi) or two different subpopulations. Then Cov(G1,

G2) = Cov(X11 + X12, X21 + X22) = Cov(X11, X21) + Cov(X11, X22) + Cov(X12, X21) + Cov(X12,

X22) = 4 Cov(X11, X21) Eq (2). Thus,

CovðG1;G2Þ ¼
4pð1 � pÞF subjects from same population

0 otherwise
ð2Þ

(

With these notations, assume that Gi,j (G0i,j), i = 1, . . ., m and j ¼ 1; . . . niðni0Þ are the addi-

tively coded genotype at the variant under investigation for the j-th individual in the i-th sub-

population in the cases (controls). For this variant, having a population RAF of p, let

p̂A ¼
Pm

i¼1

Pni
j¼1

Gi;j

2 n and p̂U ¼
Pm

i¼1

Pn0i
j¼1

G0i;j
2 n0 be the estimated allele frequency in the affected

(cases) and unaffected (controls) subjects, respectively. Suppose studies publicly report RAF

estimate of the form: p̂ ¼ o p̂A þ ð1 � oÞp̂U : For example, from a population genetics point

of view might be of interest to report p̂ for ω = K, i.e. the population RAF estimate. [Other

interesting scenarios is to report both p̂A (ω = 1) and p̂U(ω = 0).]

Assuming that the study reports such p̂ estimates for all common SNPs, for privacy consid-

erations it is desirable to compute the expected correlation between a certain case genotype,

Gi0,j0, and p̂. To this end we start by first estimating Var ðp̂Þ and E½ðGi0;j0 � 2 pÞð p̂ � pÞ�. Rela-

tionship Eqs (1) and (2) from above [also in Devlin et al.(1)], can be re-written as: Var ðGi;jÞ ¼

Var ðG0i;jÞ ¼ 2pð1 � pÞð1þ FiÞ and CovðGi;j;Gi;j0 Þ ¼ CovðG0i;j;Gi;j0 Þ ¼ CovðGi;j;G0i;j0 Þ ¼
4 pð1 � pÞFi and Cov(Gi0,j,Gi,j0) = 0 for i0 6¼ i.

With these relationships Var ðp̂Þ ¼ Var o

2 n

Xm

i¼1

Xni

j¼1

�
Gi;j þ

ð1� oÞ

2 n0

Xm

i¼1

Xn0

j¼1
G0i;jÞ

becomes Var ðp̂Þ ¼ 2pð1 � pÞ o2

4 n2 ½nð1þ FiÞ þ 2
Xm

i¼1
niðni � 1Þ Fi�

n
þ

4oð1� oÞ

4 n n0

Xm

i¼1
nin0 iFi þ

ð1 � oÞ
2

4 n02½n0ð1þ FiÞ þ 2
Xm

i¼1
n0iðn0i � 1ÞFi�g. Similarly, E½ðGi0 ;j0 � 2 pÞð p̂ � pÞ� ¼ E

½ðGi0 ;j0 � 2 pÞ½
o

2 n
Sm
i¼1

Sni
j¼1
ðGi;j � 2 pÞ þ

ð1 � oÞ

2 n0
Sm
i¼1

Sn0 i
j¼1
ðG0 i;j � 2 pÞ�g simplifies to E½ðGi0;j0 �

2pÞð p̂ � pÞ� ¼ 2pð1 � pÞ o

2 n ½1þ Fi0 þ 2 � ðni0 � 1ÞFi0 � þ 2
ð1� oÞ

2 n0 n
0
i0Fi0

� 	
: Thus, given that Var

(Gi0,j0) = 2p(1 − p)(1 + Fi), the correlation of interest becomes:

CorðGi0;j0 p̂Þ ¼
o

2n ½1þ ð2 ni0 � 1ÞFi0 � þ
ð1� oÞn

n0 n0iFi0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ FiÞ o2

4n2 ½nð1þ FiÞ þ 2
Pm

i¼1
niðni � 1ÞFi� þ

4oð1� oÞ

4nn0
Pm

i¼1
nin0 iFi þ

ð1� oÞ2

4n02
½n0ð1þ FiÞ þ 2

Pm
i¼1
n0 iðn0 i � 1ÞFi�

� �r :
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Further manipulations, reduces the correlation to:

CorðGi0;j0 p̂Þ ¼
1þ ð2 ni0 � 1ÞFi0 þ 2

ð1� oÞn
on0 

ð1þ FiÞ½nð1þ FiÞ þ 2
Pm

i¼1
niðni � 1ÞFi� þ

4ð1� oÞn
o n0

Pm
i¼1
nin0 iFi þ

ð1� oÞ2 n2

o2n02
½n0ð1þ FiÞ þ 2

Pm
i¼1
n0 iðn0 i � 1ÞFi�

q :

If we assume the same Fst for all populations and an equal number of cases and controls in

each subpopulation, i.e. Fi = F and ni ¼ n0i ¼
n
m, for large numbers the formula is approximated

by:

CorðGi0;j0 p̂Þ ffi
1þ 2 1þ

ð1� oÞ

o

� �
n
m Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ FÞ 1þ
ð1� oÞ2

o2

h i
n þ 1þ

2 ð1� oÞ

o
þ
ð1� oÞ

o

2
h i

2 n2

m F
� �r

Thus, under stratification, the correlation between the genotype of a case (ω = 1, above) and

the allele frequency of cases can be approximated by

rðFÞ ¼ CorðGi0;j0 p̂Þ ¼
1þ 2 n

m Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ FÞ n þ 2 n2

m F
� �q ð3Þ

The functional form from equation form was empirically validated [see subsection 1.3 and

Fig A in S1 File]. The correlation between a subject genotype and RAF can be also estimated

for a subject not belonging to the cohort (subsection 1.1 in SM).

Using correlation between case genotype and in-cohort RAF to test

SBCC

ρ(F) from Eq 3 can be approximated via first order Taylor series:

rðFÞ ¼
1
ffiffiffi
n
p þ

ffiffiffi
n
p

m
F ¼ rð0Þ þ

ffiffiffi
n
p

m
F

(for more details, see Eqs B and C in S1 File).

Because the
ffiffi
n
p

m F bias might not be negligible even for moderately sized intracontinental

meta-analyses, to test the true correlation due to belonging to the case cohort -rð0Þ;
ffiffi
n
p

m F bias

needs to be subtracted. Based on the above Taylor series approximation, ρ(0)can be estimated

by r̂ð0Þ ¼ ffî rðFÞ �
ffiffi
n
p

m
~F , where ~F is estimated using a relevant and ideal, i.e. perfectly

matching ethnic distribution, panel of size n@ ¼ n
k (k>> 10 for large meta-analyses). It follows

that Var ½̂rð0Þ� ¼ 1

oþ
k
m2 (Eq 4 in subsection 1.4 of SM), where o is the equivalent number of

independent SNPs in genome scan. Thus the expectation of Z-score for testing ρ(0) = 0 (sub-

ject not in cohort) vs. ρ(0)> 0 (which likely yields higher power than testing the more appro-

priate ρ(0) = 0 vs rð0Þ ¼ 1ffiffi
n
p [subject in cohort]), is

m ¼

1ffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffi
1

o þ
k
m2

q ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi
n
o þ

kn
m2

q ð4Þ

for subjects in the case cohort. We stress that if non-stratification is assumed (i.e. to eliminate
kn
m2 in relationship (4)), the equivalent X2test has the noncentrality parameter l ¼ m2 ¼ o

n which

is similar to the one deduced by Visscher and Hill using a likelihood ratio (LR) approach when

either i) not augmenting the data with a reference panel and ii) being able to use the cohort

sample along with reference panel to estimate ~F . Given the desirable properties of LR tests [5]
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(Theorem 8.3.1-Neyman Pearson Lemma)) and the fact that F is very small in practice (e.g.

F = 0.006 in the most divergent European populations [6]) it follows that test based on rela-

tionship (4) is UMP or close to UMP for modest stratification. Assuming (extremely) conser-

vatively that the number of independent SNPs is o =1, instead of o = 50,000 as in [2], we

compute the upper bound for the probability (power) of detecting a significant signal for sub-

jects belonging to case cohort at a certain type I error, α, is

q ¼ F ð
1
ffiffiffiffi
kn
m2

q � taÞ

where τα = ϕ−1(1−α).

Simulated scenarios used to evaluate power to detect SBCC

To give an idea about power to detect SBCC signal we present a range of scenarios inspired by

existing data sets. As possible values of the parameters (present and future) we chose: panel

sample size of n@ ¼ n
k ¼ f1; 000; 10; 000; 30; 000; 100; 000g, and the number of subpopula-

tions set to m ¼ max 〚 n
ns
〛; 2

� �
, where 〚:〛 is the rounding to the nearest integer function

and, rather conservatively, (as multiple studies target the same subpopulation) ns = {700; 1,400,

2,800} is the average number of cases per study. The values for the number of cases per study is

informed by the analysis of the second schizophrenia cohort from the Psychiatric Genetics

Consortium (PGC) [7], which averages 700 cases per study. The assumptions regarding ns are

conservative because i) in many large studies (PGC included) multiple sub-studies are target-

ing the same subpopulation and ii) with the increase of total sample sizes of meta-analyses the

sample sizes coming from each subpopulation are expected to increase.

Practical application

We apply the method to PGC2 schizophrenia (SCZ) [7]. It discovered 108 loci by analyzing a

multiethnic cohort which included slightly more than 30,000 cases. Each individual study con-

tributed around 700cases. We assume that ~F is estimated using the publicly available subpanel

of Haplotype Reference Consortium [8], which contains around n@ = 12,000 subjects.

Results

With these conservative assumptions, we obtain an upper limit for the detection power, q, as a

function of sample size, n (Fig 1). These calculations show that, at a type I error of 0.05, there is

some modest power to detect the case belonging signal (Fig 1) only when i) (perfectly match-

ing) panel size is extremely large and ii) cohort size is lower than 1,000. For more realistic

parameter scenarios, the power of detection is practically negligible.

For the practical application to PGC2 SCZ, assuming 700 cases per individual study and

n@ = 12,000, the power to detect SBCC signal is around 6.6% for a type I error rate of α = 5%. If

using the smaller 1000 Genome reference phase 1 [9] (n@ = 1,000) and 3 [10](n@ = 2,504) the

power decreases to 5.7% and 5.5%, respectively. However, even such near-false-positive-rate

detection powers are likely overestimates due to poor panel coverage of many PGC2 SCZ

subpopulations.

Discussion

SBCC related privacy concerns do not preclude sharing summary data (even case RAFs) even

when analyzing cohorts of rather modest stratification and size. This is due SBCC signal (for a
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cohort of size > ~ 1,000) being overwhelmed by the stratification background noise even

when very large reference panels are available. Consequently, as far as SBCC detection is con-

cerned, there is no scientifically valid reason why the summary data for most genetic studies,

including case RAFs, should not be made publicly available. However, our work does not pre-

clude data sharing raising privacy concerns from, currently unidentified, non-SBCC vantage

points.
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