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Abstract

Genome-wide DNA replication timing (RT) profiles reflect the global 3D chromosome 

architecture of cells. They also provide a comprehensive and unique megabase-scale picture of the 

cellular epigenetic state. Thus normal differentiation involves reproducible changes in RT and 

transformation generally perturbs these, although the potential effects of altered RT on the 

properties of transformed cells remain largely unknown. A major challenge to interrogating these 

issues in human acute lymphoid leukemia (ALL) is the low proliferative activity of most of the 

cells, which may be further reduced in cryopreserved samples and difficult to overcome in vitro. In 

contrast, the ability of many human ALL cell populations to expand when transplanted in highly 

immunodeficient mice is well documented. To examine the stability of DNA RT profiles of 

serially passaged xenografts of primary human B- and T-ALL cells, we first devised a method that 

circumvents the need for BrdU incorporation to distinguish early versus late S-phase cells. Using 

this and more standard protocols, we found consistent strong retention in xenografts of the original 
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patient-specific RT features, for all 8 primary human ALL cases surveyed (7 B-ALLs and one T-

ALL). Moreover, in a case where genomic analyses indicated changing subclonal dynamics in 

serial passages, the RT profiles tracked concordantly. These results show that DNA RT is a 

relatively stable feature of human ALLs propagated in immunodeficient mice. In addition, they 

suggest the power of this approach for future interrogation of the origin and consequences of 

altered DNA RT in these diseases.
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Introduction

Significant strides have been made in identifying features of different human acute lymphoid 

leukemia (ALL) cases that predict treatment success or failure with a high probability. 

Nevertheless, many aspects of the leukemogenic process are still poorly understood. Current 

therapeutic regimens for ALL are also still less than 100% curative, particularly in adults, 

and also have deleterious short-term and long-term toxicities (Irving et al., 2016). New 

strategies for elucidating the biological heterogeneity of ALLs, improving their risk 

stratification, and for developing more personalized and less toxic curative therapies 

therefore continue to command interest.

DNA replication timing (RT) refers to the temporal order in which different segments of the 

genome replicate during S-phase. We recently demonstrated that the proliferating subset of 

cells in different subtypes of human pediatric B-cell precursor ALL (B-ALL) display 
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disease-specific features in their genome wide RT profiles (Pope et al., 2014; Ryba et al., 

2012). RT is fundamentally different from many hallmarks of cancer because it is a robust 

property of epigenetically distinct cell types and their megabase-level 3D chromosomal 

organization rather than of individual genes or regulatory elements (Rivera-Mulia and 

Gilbert, 2016a; Rivera-Mulia and Gilbert, 2016b). Because mutation rates are significantly 

higher in regions of DNA that are replicated during late versus early S-phase, knowledge of 

RT in patient samples aids the distinction of driver and passenger mutations (Lawrence et 

al., 2013; Lochovsky et al.; Polak et al., 2015; Shugay et al., 2012; Sima and Gilbert, 2014; 

Supek and Lehner, 2015; Woo and Li, 2012). RT patterns in human ALL cells may also 

contain information relevant to prognosis and therapy. However, at present, the multiplicity 

of factors that determine RT profiles and their stability remains unknown. Data for RT 

profiles of fresh and experimentally expanded samples of patient ALL should thus provide 

new opportunities to interrogate their biological and clinical significance.

A major impediment to studies of RT in human ALLs has been the usually low frequency of 

dividing cells in fresh or cryopreserved patients’ samples (Ryba et al., 2012). In addition, 

conditions that support or stimulate ALL cell survival and proliferation ex vivo are generally 

lacking or poorly understood, although some progress in this regard has been recently 

reported (Pal et al., 2016). Genetically engineered mouse models of human leukemia offer 

an experimental alternative, but these face the same cell growth problems and rarely 

recapitulate the genetic complexity associated with the clinical examples of the human 

leukemias they are intended to model (Beer and Eaves, 2015). A more promising alternative 

is afforded by the use of highly immunodeficient mice transplanted with primary patient-

derived ALL cells where retention of many characteristics of the initial leukemia cells, 

including their patterns of dissemination, organ infiltration, and immunophenotypic, and 

genomic stability have been demonstrated (Morisot et al., 2010; Nowak et al., 2015). 

Genomic analysis of such patient-derived xenografts (PDXs) has also been useful in 

revealing their subclonal architecture and evolution (Anderson et al., 2011; Notta et al., 

2011; Shlush et al., 2014).

Here, we demonstrate the feasibility of analyzing the RT profiles of human ALL cells before 

and after serial passaging as PDXs. The results reveal stability in both their patient- and 

subclone-specific RT profiles.

Materials and Methods

Patient samples

Patient bone marrow (BM) and peripheral blood (PB) samples were available from 

previously collected samples (Morisot et al., 2010; Ryba et al., 2012), or from patients 

enrolled in new studies (Medyouf et al., 2010). Informed consent was obtained in all cases 

and samples collected and assigned anonymized unique identifiers according to protocols 

approved by the Institutional Review Boards of the organizations where the samples were 

obtained. Subjects included all genders, minorities, and children. Fresh samples were 

centrifuged on Ficoll-Hypaque or Lymphoprep to isolate the low-density (≤1.077 g/L) 

fraction, which were then labeled with BrdU either when freshly obtained or after 

cryopreservation in media containing fetal bovine serum (FBS) plus 10% DMSO.

Sasaki et al. Page 3

Exp Hematol. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PDXs

All PDXs were generated by injecting cells intravenously into either 6–8-week-old NOD-

scid-IL2Rγc−/− (NSG) mice given an acute dose of 250 cGy 137Cs γ-rays, or NOD-

Rag1−/−-IL2Rγc−/− (NRG) mice given 900 cGy 137Cs γ-rays delivered over 3 hours (Miller 

et al., 2017). Mice were then monitored daily and euthanized if severely ill or as required 

experimentally. Spleens and/or BM cells were harvested from euthanized mice and single 

cell suspensions prepared. Low-density cells were used for phenotyping, genotyping, DNA-

RT assessments and for further transplants either directly or after cryopreservation. All 

methods using mice followed protocols approved by the Institutional Animal Care and Use 

Committees of the organizations where they were performed.

Genome-wide DNA-RT analysis

RT profiles were generated using one of the following 3 protocols depending on the number 

of proliferating cells available and their efficiency of BrdU incorporation. In the first, 

propidium iodide-stained cells were fractioned by fluorescent-activated cell sorting (FACS) 

into early and late S-phase fractions, total genomic DNA then extracted from both fractions. 

BrdU-labeled nascent DNA was then enriched by immunoprecipitation using an anti-BrdU 

antibody, differentially labeled with Cy3 or Cy5 and co-hybridized to NimbleGen HD2 

microarrays (E/L repli-chip). In the second method, cells were separated by FACS into G1- 

and S-phase fractions based on their propidium iodide-stained DNA content, and total 

genomic DNA extracted from both fractions, that were then differentially labeled with Cy3 

or Cy5 and co-hybridized to NimbleGen HD2 microarrays (S/G1 repli-chip). In the third 

method, BrdU-labeled cells were separated by FACS into early and late S-phase fractions, 

total genomic DNA extracted from both, adaptors for next-generation sequencing (Illumina) 

ligated using NEBNext® Ultra™ DNA Library Prep Kit for Illumina, and the BrdU-labeled 

nascent DNA from each fraction enriched by anti-BrdU immunoprecipitation prior to being 

indexed, amplified, pooled, and sequenced on a HiSeq2500 platform with 50 bp single end 

mode to obtain approximately ≥ 5 million mapped reads/library (E/L repli-seq).

Computational methods

For Repli-chip data (both S/G1 and E/L methods), fluorescence intensities were first 

normalized within and between arrays using the limma package in R to determine a log2 

ratio of signals from “early S” vs. “late S” fractions, or “S” vs. “G1” fractions, for each 

probe, as described (Ryba et al. 2011a). Repli-seq data were first clipped using a quality 

score of 30 as the threshold, then mapped to HG19 by bowtie2 and reads per million counted 

for non-overlapping 6-kb windows in each library. Finally, the log2 ratio of “reads from each 

early S fraction”/"reads from the matching late S fraction” was calculated for each sample. 

Repli-chip and repli-seq data were then re-scaled to equivalent ranges by quantile 

normalization as described (Rivera-Mulia et al., 2015), and smoothened using loess with a 

span of 300 kb to 1 Mb.

Cluster analyses were performed as described (Rivera-Mulia et al., 2015). Briefly, data were 

averaged into non-overlapping 204-kb windows (13,158 windows throughout the autosomal 

genome). Early and late replication patterns were defined by RT log2 ratios of ≥ 0.3 or ≤ –

0.3, respectively. Significantly variable regions were defined as those that replicated early in 
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at least one sample and late in at least one other sample (Rivera-Mulia et al. 2015). K-means 

clustering was performed using Cluster 3.0 (de Hoon et al. 2004) after constant regions were 

removed, leaving 1,514 windows. Further hierarchical clustering was then performed. 

Heatmaps and dendrograms were generated in JavaTreeView (Saldanha, 2004). A 

correlation matrix was made using the corrplot R package.

Copy number variant (CNV) analysis

CNVs was estimated from array and DNA sequencing data as follows: read counts from 

early- and late-S fractions were collected for non-overlapping 6-kb windows, respectively, 

then compensated for mapping using the read counts in the same window sizes as for the 

control human DNA (average of many samples). Read counts for E and L fractions in 6-kb 

windows were further windowed into 50-kb non-overlapping bins. After quantile 

normalization, total read counts (E+L) for each sample were calculated. Finally, log2 ratios 

of sample/control were calculated for CNV analysis with the DNA copy package in (http://

bioconductor.org/packages/release/bioc/html/DNAcopy.html).

Results

Establishment of protocols for generating RT profiles from proliferating ALL cells 
independent of their ability to actively incorporate BrdU

The most robust method for obtaining RT profiles is to pulse-label cells with BrdU for 

approximately 20% of the S–phase period, then separate the cells into early and late S-phase 

fractions by FACS, and isolate the nascently synthesized (BrdU-substituted) DNA in the two 

fractions by anti-BrdU immunoprecipitation (Dileep et al., 2012; Ryba et al., 2011). The 

relative enrichment of any given sequence in the BrdU-substituted DNA from each of the 

two fractions is then calculated. Sequences identified in early S-phase are set as the 

numerator and those in late S-phase as the denominator (E/L) to enable more positive values 

to be represented in the early S-phase cells. This method has a dynamic range of 4,000-fold 

(when sequencing is used; Repli-seq) or 64-fold (using microarrays; Repli-chip) (Dileep et 

al., 2015), but requires a minimum of 2,000 BrdU-labeled cells (1,000 per S-phase fraction). 

We previously found that a few million freshly obtained BM or PB cells from ALL patients 

at diagnosis or relapse consistently yielded sufficient S-phase cells for high quality RT 

analysis (Ryba et al., 2012). However, subsequent attempts to apply this method to 

cryopreserved ALL samples failed in nearly half the cases tested.

We therefore investigated a third protocol that exploits the relative CNV between cells in 

early and late S-phase fractions to infer RT data (Gilbert, 2010) (see also Figure 1A). When 

unlabeled proliferating cells are first sorted into separate populations of cells distributed 

throughout S-phase and cells in G1 and then whole genome sequencing is performed on 

these two fractions, RT can then be expressed as the ratio of reads found in S:G1. DNA that 

replicates earlier is present in S-phase cells at up to twice the copy number as DNA that 

replicates later and normalizing the reads for S-phase cells to reads for cells in G1 controls 

for any sample-specific CNVs (Gilbert, 2010). This protocol circumvents the need for viable 

cells to incorporate BrdU, but decreases the dynamic range of the data to less than 2-fold.
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Figure 1B shows an example of results obtained when all 3 methods (Repli-chip E/L and 

S/G1; and Repli-seq E/L) were applied to the same sample; in this case spleen cells isolated 

from a mouse transplanted with a primary B-ALL sample and subjected either directly to the 

S/G1 method or first labeled ex vivo with BrdU and then subjected to the E/L method. The 

ex vivo BrdU method for labeling DNA was selected as preliminary experiments with the 

same cells indicated that an intravenous injection of BrdU did not yield sufficient BrdU-

immunoprecipitated DNA (data not shown). Despite the difference in dynamic range 

between the 2 methods for RT profiling, the data obtained proved to be comparable after 

scaling and quantile normalization. Together, these results establish protocols for generating 

high quality RT profiles from human cells even when those in S-phase at the time of analysis 

may no longer be viable.

PDXs of patient ALL cells retain global RT profiles of their cell type of origin

We then used these protocols to examine the uniqueness of the RT profiles generated from 

different patient ALL samples and the stability of these profiles after serial passaging in 

mice. PDXs were generated from 7 B-ALL patients and from one T-ALL sample. In 4 of 

these cases, samples from secondary and sometimes tertiary passages were obtained and 

analyzed (Table I and Supplementary Table 1). From a first-pass visual inspection, the RT 

profiles obtained for each patient’s initial clinical sample appeared to have unique features 

that were also present in the derived PDX(s) (Figure 2A). This suggested extensive 

preservation of the mechanisms that account for these differences.

To determine whether these RT profiles are preserved genome wide, we first divided the 

autosomal genome into 13,158 non-overlapping 204-kb segments. We then generated a 

correlation matrix between all sample datasets including several additional samples of non-

leukemic cells as comparators (Figure 2B). This analysis showed the B-ALL PDX RT 

profiles to be more similar globally to the RT profiles of a large group of primary B-ALL 

cells, as compared to a series of non-leukemic B-cell lines or freshly isolated PB T-cells. The 

PDX RT profiles were also shown to be substantially different from the RT profiles of the 

human embryonic stem cells analyzed. Although the RT profiles for different B-ALL 

patient’s cells were more heterogeneous than those for the non-leukemic B- and T-cells, 

those from the B-ALL patients’ cells still formed a correlated group (Figure 2B). The RT 

profile of the T-ALL patient’s sample was also strongly correlated to its PDX and more 

strongly to the RT profile of normal PB T-cells than to the RT profiles of the non-leukemic 

B-cell lines. These results demonstrate the ability of the protocols shown in Figure 1 to 

detect case-specific RT features preserved in PDX (Figure 2A) and that RT profiles are 

globally preserved after passage through PDX (Figure 2B).

PDX samples retain the unique RT signatures of the initial ALL sample

Correlations of RT derived from genome wide analyses (Figure 2B) do not, however, usually 

allow closely related cell types to be distinguished, due to the fact that they include spurious 

measurements of differences in regions that do not differ in RT (noise). In a previous 

analysis of 26 different normal human cell types, we used unsupervised K-means and 

hierarchical clustering to identify 200 kb segments of chromosomal DNA that showed cell 

type-specific RT patterns, to which we then assigned the term, “RT signatures" (Rivera-
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Mulia et al., 2015). We restricted the identification of these RT signatures to include only 

those segments defined as “RT variable” because they were found to have replicated with a 

Log2(E/L) of ≥0.3 in at least one cell type and ≤-0.3 in at least one other cell type. These 

criteria enabled differences in the RT profiles of closely related stages of differentiation in 

the same lineage to be resolved.

To investigate further the patient specificity of the RT profiles obtained in the present study, 

we adopted these same criteria to derive RT signatures from the data obtained for all of the 

patient and PDX samples as well as for the non-leukemic cell types shown in Figure 2B. The 

complete array of “RT variable” segments thus identified were found to cover 40% of the 

200 DNA segments used to subdivide the entire genome. K-means and hierarchical 

clustering of these variable segments showed the original B-ALL cells and their 

corresponding PDXs formed separate patient-specific clusters (Figure 3A). The same 

analysis also identified specific clusters (RT signatures) for pluripotent cells (clusters 4, 5, 

11 and 13), non-leukemic lymphoid cells (clusters 1, 6 and 10) B-ALL cells (clusters 2 and 

14) and the single case of T-ALL before and after passage in PDX (clusters 3 and 7).

To further stratify the ALL samples (initial and PDX-derived), we repeated the above 

analysis after removing the data for all of the other samples, but using the same criteria to 

define RT variable regions. This reduced the RT variable regions to only 10% of the genome 

and spread the relative correlation between samples over a broader dynamic range but still 

retained a high correlation between each patient and his/her PDX samples (Figure 3B), with 

the exception of B-ALL #4 (discussed below). These results revealed additional ALL case-

specific RT signatures not detected in Figure 3A. Statistical significance of these RT 

signatures was confirmed by pairwise T-test with bonferroni correction (Supplementary 

Figure 1). Importantly, patient and corresponding PDX samples cluster in all cases (except 

patient 4 discussed below), demonstrating that the RT features (RT of individual 

chromosomal segments that constitute each RT signature) extracted by unbiased clustering 

are stably maintained through multiple serial passages of each ALL in immunodeficient 

mice.

The RT signatures unveiled in Figure 3B are dominated by those of the single T-ALL case 

and its PDX. This is due to the fact that most genomic segments that survive the stringent 

filter imposed for “RT variable” regions reflect differences between the B-ALL samples and 

the single T-ALL sample. To analyze the differences between the B-ALL samples with 

greater sensitivity, we identified 60 kb chromosomal segments with the top 10% standard 

deviation in RT between the three frozen banked B-ALL patient samples analyzed and then 

repeated an unsupervised K-means and hierarchical clustering analysis of these. This 

allowed us to segment the same percentage of the genome as in Figure 3B, but focused on 

the differences that exclusively distinguish the three B-ALL patients. The results revealed 

distinct patient specific clusters (RT signatures) that track with each patient and its 

corresponding PDX(s) (Figure 4A). Examples of these regions, which included those 

features identified by visual inspection in Figure 2A, are shown in Figure 4B. Statistical 

significance of these RT signatures was confirmed by pairwise T-test with bonferroni 

correction (Supplementary Figure 2). Altogether, these results demonstrate that patient-

specific RT features are stably maintained through multiple serial PDX passages.
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RT profiles can identify subclone outgrowths in PDXs

As shown in Figures 3A–C and 4A, cells from case B-ALL #4 exhibited an interesting 

exception to the general stability of the RT profile seen in other patients’ PDXs. In the case 

of B-ALL #4, many of the specific features of the RT profile of the original sample were 

also present in the second PDX but the RT signatures of the first and third passage PDXs 

formed a separate cluster. Examples of RT features from these distinct RT signatures are 

shown in Figure 5A. Since RT profiles inherently quantify the relative abundance of 

sequences across the entire genome, the data derived from them can also detect the CNV 

signature of the cells present (Ryba et al., 2012). Thus, we next asked whether the altered RT 

signatures obtained in the first and third passage PDXs were accompanied by parallel 

fluctuations in the prevalence of genomically distinct subclones. Examination of the CNV 

status of the cells from B-ALL #4 through the same serial PDX passages revealed 2 

autosomal CNVs that were present in the patient’s initial cells and the second passage PDX 

but absent from the first and third passage PDXs that displayed a common deviant RT-

signature (Figure 5B). This result is consistent with the first and third PDXs being derived 

from a subclone that was not evident in the patient’s original sample. These findings are 

interesting because unique CNV profiles reflect the composite prevalence of genetically 

distinct subclones within the population analyzed, whereas RT profiles are determined 

exclusively by those cells that were proliferating which are not known to be a constant 

fraction of all subclones. However, the observed concordance in the fluctuating dynamics of 

CNV and RT profiles with serial passaging suggests that these were related, at least in this 

example.

DISCUSSION

As normal cells differentiate, the timing of replication of different segments of their 

chromosomal DNA changes, reflecting their changing 3D folding states (Dileep et al., 

2015). DNA replication that occurs early in S-phase increases gene dosage, and cells use 

specific mechanisms to compensate for gene dosage effects incurred during their passage 

through each cell cycle (Voichek et al., 2016). DNA RT patterns are likewise affected by 

genetic and epigenetic changes that confer malignant properties on cells. RT patterns are 

therefore of interest both as potential novel biomarkers of different diseases and as possible 

hallmarks of the altered properties these cells acquire, particularly those responsible for 

perturbing cell growth in vivo.

We have previously documented changes in the RT profiles of human B-ALL (Ryba et al., 

2012), but the extent of their specificity or stability has not been previously investigated. 

Here we report the results for samples from 8 additional ALL patients, 5 of which were also 

examined after passage and expansion in mice. The RT profiles obtained confirm their 

disease and patient specificity and further demonstrate their preservation in the derived 

PDXs. These results thus establish RT as a stable epigenetic property of patient-derived ALL 

cells that is retained after many cell divisions.

Interestingly, the PDXs derived from B-ALL #4 showed subclone-specific differences in the 

RT signatures obtained from the cells harvested from different passages of PDXs. In this 

example, the RT profile of the second passage PDX mirrored that of the primary sample, but 
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the first and third PDXs were different and similar to one another. Tracking CNVs within 

these same cells revealed a picture of alternating dominant subclones derived from the same 

patient. This dynamic is similar to a previously reported example of a serially passaged B-

ALL in which CNV data also showed that a subclone not initially detectable in the patient’s 

original sample emerged in the first PDX, and was then followed by re-emergence of the 

CNV pattern in the original cells in a second passage PDX (Nowak et al., 2015). It is also 

similar to data obtained for adult AML or colon cancer using Southern blots to track the 

changing growth dynamics of subclones identified by retroviral insertion sites (Hope et al., 

2004; Kreso et al., 2013). Similar data has also been obtained for genetically defined (Eirew 

et al., 2015) or DNA-barcoded (Nguyen et al., 2014) subclones tracked in PDXs derived 

from primary samples of human breast cancer or de novo generated human breast cancers 

(Nguyen et al., 2014). It remains unclear as to whether these dynamic fluctuations in 

dominant subclones are stochastically or biologically determined since a similar result can 

be obtained with cell lines that have a very high innate tumorigenic efficiency in the same 

types of immunodeficient hosts (Nguyen et al., 2014). Regardless, our results demonstrate 

that RT profiles are a stable epigenetic property of these subclones throughout their dynamic 

fluctuations.

Taken together, these results underscore the promise of DNA RT of PDXs as a new and 

promising approach to elucidate the subclonal dynamics that underpin the variable evolution 

and progression of human ALLs and possibly other human malignancies as and the 

mechanisms driving these changes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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1. DNA RT profiling methodology for cryopreserved ALL samples and PDXs.

2. RT is a stable characteristic of patients’ ALL cells and subclone outgrowths.

3. PDXs can be exploited to study the biological significance of altered RT in 

ALL
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Figure 1. RT profiles from ALL PDXs
A. Outline of a genome-wide RT assay. BrdU labeling of nascent DNA (E/L) is preferred 

whenever cells are actively proliferating. However, RT profiles can also be obtained on 

patient samples that have lost metabolic activity but retain their S-phase DNA content based 

on an analysis of their DNA copy number differences (S/G1). B. Comparison of log2 ratios 

for both methods applied to the same spleen cells derived from a B-ALL PDX. Although the 

S/G1 method gives a dynamic range of <2-fold vs. up to >1,000-fold from the E/L method, 

the profiles are comparable. In the bottom panel, data from all 3 methods were quantile 

normalized to each other. C. Exemplary scaled and normalized plot of chromosome 1 from 

the same samples as in B.
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Figure 2. Preservation of RT profiles in PDXs
A. Representative loci that showed patient-specific RT differences. RT of DNA from each of 

3 primary patient samples and their PDXs has been conserved at the loci shown. B. 
Genome-wide Pearson correlation matrix using 204-kb windows. Cell types are color-coded 

as B-ALL (purple), embryonic stem (ES) cells (gray), and normal T- or B-cells (orange).
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Figure 3. RT signatures of patients are preserved in PDX
K-means and hierarchical clustering of initial ALL samples, derived PDXs and multiple 

samples of non-leukemic cells (A), and the same analysis of patient and their PDX samples 

only (B). RT variable 204-kb windows were defined as early replicated in at least one 

sample (RT log2 ratio ≥0.3) and late replicated in at least one other sample (RT log2 ratio 

≤-0.3) and processed by cluster analysis. The percentage of autosomal DNA segments that 

showed significant variation in RT is shown. Dendrograms were constructed based on the 

correlation values between distinct cell types (distance = correlation value -1). A correlation 

threshold of >0.6 was used to color label the major branches of the dendrograms. The 

distinct RT signatures identified are indicated by numbered grey boxes. Method of RT 

profiling is indicated (E/L vs. S/G1). Since the single T-ALL patient sample exhibits the 

most significantly different RT differences as compared to the BALL samples, most of the 

K-means clusters (RT signatures) are unique in the T-ALL patient sample. Figure 4 shows a 

clustering excluding this sample.
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Figure 4. RT signatures distinguishing B-ALL patients are also preserved in PDX
A. Similar analysis as shown in Figure 3 except that 60kb RT variable regions were defined 

as the top 10% regions of standard deviation amongst only the B-ALL patients and their 

PDX and only those patients and PDX were subjected to K-means and hierarchical 

clustering analysis. Clusters 3,5, and 6 are specific for patient 11-064. Clusters 7 and 9 

distinguish the clonal architecture of patient 4 (see Figure 5). Cluster 10 is shared between 

11-064 and Case21. B. Exemplary plots of selected RT signature features (chromosomal 

segments or rows in Fig 4A) with the K-means cluster indicated in each panel. As expected, 

this unbiased analysis identified the regions shown in Figure 2A that were detected by visual 

inspection (panels i and ii). Panels vii and viii show signature features that distinguish the 

different clones in Patient 4 (P4) and those P4 profiles are extracted and shown separately 

below each panel. Note that examples of features that are significantly different for one 

particular patient are shown (panels iii, iv, vi, ix) with the outlier patient indicated but most 

RT features are variable between all patients. All features distinguish some patients from 

others while each patient has a unique pattern within each RT signature.
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Figure 5. Changes in RT signatures in a serially passaged PDX mirror changes in genomically 
defined subclonal differences
(A) Exemplary chromosomal region where B-ALL #4 RT matched the 2nd, but not the 1st 

and 3rd, serial PDX passage. (B) Two autosomal CNVs identified in the RT data of the 

original ALL cells were found to be present in the 2nd, but not the first or third passage. 

PDX. Note that these CNVs did not result in a change in RT that would be detected as a 

significant RT variation but rather served as a genetic marker to track the alternating 

outgrowth of different subclones in sequential passages.
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