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Imaging plus X: multimodal models of

neurodegenerative disease
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Purpose of review

This article argues that the time is approaching for data-driven disease modelling to take centre stage in the
study and management of neurodegenerative disease. The snowstorm of data now available fo the
clinician defies qualitative evaluation; the heterogeneity of data types complicates integration through
traditional statistical methods; and the large datasets becoming available remain far from the big-data sizes
necessary for fully data-driven machine-learning approaches. The recent emergence of data-driven disease
progression models provides a balance between imposed knowledge of disease features and patterns
learned from data. The resulting models are both predictive of disease progression in individual patients
and informative in terms of revealing underlying biological patterns.

Recent findings

Largely inspired by observational models, data-driven disease progression models have emerged in the last
few years as a feasible means for understanding the development of neurodegenerative diseases. These
models have revealed insights into frontotemporal dementia, Huntington’s disease, multiple sclerosis,
Parkinson’s disease and other conditions. For example, event-based models have revealed finer graded
understanding of progression patterns; self-modelling regression and differential equation models have
provided data-driven biomarker trajectories; spatiotemporal models have shown that brain shape changes,
for example of the hippocampus, can occur before detectable neurodegeneration; and network models
have provided some support for prion-like mechanistic hypotheses of disease propagation. The most mature
results are in sporadic Alzheimer’s disease, in large part because of the availability of the Alzheimer's
disease neuroimaging initiative dataset. Results generally support the prevailing amyloid-led hypothetical
model of Alzheimer’s disease, while revealing finer detail and insight into disease progression.

Summary

The emerging field of disease progression modelling provides a natural mechanism to integrate different kinds
of information, for example from imaging, serum and cerebrospinal fluid markers and cognitive tests, to
obtain new insights info progressive diseases. Such insights include fine-grained longitudinal patterns of
neurodegeneration, from early stages, and the heterogeneity of these trajectories over the population. More
pragmatically, such models enable finer precision in patient staging and stratification, prediction of
progression rates and earlier and better identification of atrisk individuals. We argue that this will make
disease progression modelling invaluable for recruitment and end-points in future clinical trials, potentially
ameliorating the high failure rate in trials of, e.g., Alzheimer’s disease therapies. We review the state of the
art in these techniques and discuss the future steps required to translate the ideas to frontline application.
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Neurodegenerative diseases present a global health-
care crisis. An estimated 47 million people suffer
dementia worldwide and cost over $800 billion per
year [1]. This will only intensify unless effective treat-
ments are developed. Efforts in this regard currently
face many challenges. Within a neurodegenerative
disease, population and temporal heterogeneity
couples with an oftentimes-protracted preclinical
phase to render early diagnosis difficult. Across the
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KEY POINTS

e Complex multifactorial neurodegenerative diseases such
as Alzheimer’s disease pose a global healthcare
challenge that we are currently failing to address, with
fewer than 1% of clinical trials in Alzheimer’s disease
alone resulting in FDA-approved drugs.

e Qualitative evaluation of all the available data is not
possible, and neuroimaging alone is not enough to
understand and manage such complex diseases.

e Data-driven disease progression modelling is an
emerging field of study that promises significant
advances in this challenge.

spectrum of neurodegenerative diseases, differential
diagnosis is complicated by overlapping phenotypes
and common diseases. Tracking neurodegenerative
disease progression has the same challenges, not to
mention the prohibitive expense of longitudinal pre-
clinical data acquisition at scale. Efforts are also con-
founded by comorbidities, environmental influences
and ageing effects. Simplistic model of the complex,
multifaceted nature of neurodegenerative diseases
such as Alzheimer’s disease has so far precluded the
development of precision medicine for personalized
treatment and care decisions, and is a likely factor
underlying the glut of failed clinical trials.

Recent advances in computational approaches to
the analysis of medical data are providing a powerful
means to understand neurodegenerative diseases and
to predict disease progression. By integrating a variety
of clinical and biomedical data, including risk factors,
biomarkers and interactions among them, these
models give a uniquely holistic picture of disease
progression from beginning to end. Such detailed
understanding of the full disease time course pro-
vides new promise in overcoming the myriad chal-
lenges in managing neurodegenerative diseases.

Here, we review current progress in the field of
neurodegenerative disease progression modelling.
We start with an overview of the data upon which
such models are built, continue to review the cur-
rent technology and conclude with an outlook to
the future.

Accurate quantification of neurodegeneration in vivo
is challenging. The multifactorial nature of neuro-
degenerative diseases necessitates considering a
range of imaging and nonimaging biomarkers, which
we review in this section. We pay specific attention to
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imaging biomarkers, which lend themselves particu-
larly well to the kinds of model we discuss, but we
mention also various other biomarkers that comp-
lement information from imaging.

Magnetic resonance imaging

MRI provides a unique noninvasive examination of
tissue, in vivo [2]. MRI provides various markers
of neurodegenerative disease including regional
abnormalities in structure, microstructure, function
and metabolism. Changes in these features can be
subtle and occur at different disease stages.

Structural MRI reveals changes in brain struc-
ture. Abnormalities in the volume of a region of the
brain typically reflect neurodegeneration in later
stages of disease, although shape changes may occur
earlier [3]. Higher specificity to volume loss is
attained from short-term longitudinal data (atro-
phy) than from cross-sectional volumetric compari-
sons across individuals. Brain volume loss has been
used for subject selection and as an endpoint in
clinical trials for Alzheimer’s disease [4].

Various quantitative or microstructural MRI
techniques, for example using diffusion MRI [5,6],
magnetization transfer [7], relaxometry [8],
susceptibility imaging [9%,10] or combinations
thereof [11,12%13], can reveal changes at the cellu-
lar level that may precede macrostructural changes.

Diffusion MRI and functional MRI also provide
insight into brain connectivity. Diffusion MRI, via
tractography, enables the study of structural con-
nectivity, which can be affected in neurodegener-
ative diseases [14™], and may act as a network
supporting pathogen propagation [15,16]. Func-
tional MRI based on blood-oxygen-level-dependent
contrast imaging [17] is an indirect measure of
neuronal activity based on blood flow. It can reveal
regions active in cognitive tasks, which can be
disrupted in disease [18]. Moreover, temporal
correlations of this activity highlight functional
connectivity and its disruption in disease [19,20].
Similar functional information can come from elec-
troencephalography or magnetoencephalography
[21].

PET uses a radioactive tracer bound to a metab-
olite to map out various processes across the brain.
Notable pathogenic processes include glucose hypo-
metabolism [22] and concentrations of B-amyloid
[23] or tau [24"™"]. Abnormalities of each are common
markers of neurodegenerative diseases.

Cognitive and other clinical presentations

Cognitive and other clinical presentations play a key
role in differentiating between neurodegenerative
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diseases. Tests that measure cognitive impairment
are susceptible to learning effects [25"] and are
confounded by depression/anxiety [26]. In order
to improve the sensitivity of cognitive assessments
for early detection [27], cognitive composites have
been developed [28,29].

Cerebrospinal fluid

Pathogenically abnormal levels of, for example,
mistolded proteins (or neurofibrillary tangles) in
the brain can be detected in cerebrospinal fluid
(CSF) [30,31]. Changes are often detectable many
years prior to the clinical presentation of symp-
toms. However, CSF markers suffer from consider-
able variability within and between laboratories
and assays [31,32], require a highly invasive
spinal tap and lack spatial specificity within the
brain.

Fixed variables

Fixed-variables such as demographics, genetics,
environmental or lifestyle factors are also influential
on disease progression. For example, neurodegener-
ation differences exist between sexes [33], ApoE4
carriage is a genetic risk factor in Alzheimer’s disease
[34] and various environmental factors may influ-
ence neurodegeneration [35].

ADVANCED COMPUTATIONAL MODELS
OF DISEASE PROGRESSION

Data-driven disease models have emerged in recent
years that provide uniquely rich disease signatures
without relying on a-priori classification or staging
of individuals. These models contrast with an earlier
modelling paradigm (Fig. 1) including hypothetical
models, such as those presented in [36-38], which
sketch disease signatures like those in Fig. 1a but are
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FIGURE 1. Old paradigm disease progression models. (a) It shows the hypothetical model of [36], which illustrates qualitative
sigmoid evolution in AD of scalar biomarkers such as CSF AB level, cognitive test scores and hippocampal volume or atrophy.
The lack of quantitative information prevents direct diagnostic usage. (b) It shows a traditional longitudinal model of AD
atrophy [39] by binning individuals a-priori into ‘mild’, ‘moderate’ and ‘severe’ classes based on cognitive test scores. The
model can potentially match new individuals to the same stages using imaging data, but must exclude cognitive scores to

avoid circularity. AD, Alzheimer's disease.
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not informed directly by measured data; traditional
longitudinal models, for example [39-41] (Fig. 1b),
which regress measured data against a prespecified
variable that defines the disease stage; and pattern
recognition approaches [42-44], which learn to
classify cases from a labelled training database.
Hypothetical models aid understanding, but lack
the quantitative nature required for classification
or prediction. Traditional models are inherently
limited by, typically crude, a-priori staging and
can model only variables that do not contribute
to the stage assessment. Pattern recognition
approaches are similarly limited by the a-priori
labelling and provide no explicit disease signature
to enhance understanding.

Discriminative models

Supervised machine-learning approaches use
labelled data to discriminate between individuals
who will/will not progress clinically, or do/do not
have a disease [42-44]. They have shown the
value of including both neuroimaging and non-
imaging markers [44]. Straightforward classification
approaches do not provide insight on the full dis-
ease time course, although many supervised
machine-learning techniques also have the capa-
bility for regression so might be used to predict
variables indicative of disease progression. However,
such an approach still suffers from inherent limita-
tions of the a-priori labelling.

Unsupervised learning techniques, or cluster-
ing, offer potential in disease subtyping and staging
[45,46,47""]. Direct application of these ideas simply
identifies groups of patients with similar appear-
ance, but does not account for the temporal nature
of progressive diseases where a single phenotype
may appear very different at the beginning to the
end of the full disease time course.

The recent rise of deep learning techniques
potentially benefits discriminative models of disease
progression, but such approaches typically need large
amounts of data for both training and validation.
Current medical data sets rarely approximate the data
sets of billions of images that deep learning has used
to show great success in, for example, computer
vision tasks such as in [48], but the technology never-
theless may prove beneficial, particularly by exploit-
ing transfer learning [49].

Generative models

Advanced generative models of neurodegenerative
disease progression avoid the need for a-priori stag-
ing to construct a quantitative signature from all
available biomarkers. They fall broadly into two
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categories: models for unstructured data and models
for structured data.

Models for unstructured data

These models work with a vector of scalar bio-
markers with no assumption of a particular structure
or relationship among them. They are designed to
tfuse together information from the constellation of
multimodal biomarkers typically available in studies
of neurodegenerative diseases.

The event-based model (EBM) [50-52] (Fig. 2)
learns an ordering and uncertainty in the ordering,
in which a set of biomarkers becomes abnormal
directly from a measured data set, possibly entirely
cross-sectional, and requires no predefined staging
variable. EBM uses the idea that more individuals
from a cohort containing a spectrum of disease stages
will show abnormality in biomarkers that change
early in the progression. The EBM has been used to
study familial Alzheimer’s disease [50,52], Hunting-
ton’s disease [50] and sporadic Alzheimer’s disease
[51,52].

Scalar trajectory models, derived from differen-
tial equation models [52-54] or self-modelling
regression [55,56], reconstruct typical continuous
trajectories of scalar biomarkers from a measured
data set. As shown in Fig. 3, this gives a more
complete temporal picture than the EBM’s
sequence of abnormality. Current implementations
of differential equation models [52-54] treat each
biomarker independently, whereas self-modelling
regression pools information across biomarkers to
estimate trajectories on a common time frame.
Model estimation requires no staging variable,
although the data set must contain at least short-
term longitudinal information to support estimates
of the temporal scale of the trajectories.

Models for structured data

These models work with structured data such as
images, geometric meshes or networks in which
data values have a well-defined spatial organization.

Spatiotemporal models [57,58,59*] construct a
four-dimensional picture of how an image or image
region typically evolves in shape and/or appearance
during a disease or developmental process.
Traditional longitudinal models of this type are
straightforward to construct by binning individuals
according to a predefined variable, such as age or a
cognitive test score, and computing statistics within
each bin. Most current models [58,59™] still rely on
a-priori labelling. However, recent advances [57]
avoid any predefined stage variable by simul-
taneously estimating a central image trajectory, a
deformation of each time point of each individual to
align with the central trajectory and a ‘timewarp’ for
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FIGURE 2. Eventbased models of disease progression. (a) An EBM of familial AD from [49]. The set of biomarkers (vertical
axis) includes atrophy rates in each cortical region. The positional variance diagram is a visualization of the uncertainty in the
ordering: each row is a grayscale histogram of probabilities that the event occurs in each position of the ordered sequence.
Groups of interchangeable events appear as large blocks (e.g. later in the progression, lower right), whereas strong
confidence in the ordering of events appears as a thin diagonal (e.g. earlier in the progression, upper left). (b) An EBM of
sporadic AD learned from the ADNI data set in [50] with more diverse biomarkers: CSF tau and AB; cognitive test scores;
regional atrophy and volumes from MRI. The model defines a staging system based on the set of biomarkers showing

abnormality. (c) Stage assignments of cognitively normal, mild

cognitive impaired (MCI) and AD individuals showing

classification accuracy similar to state-ofthe-art pattern recognition approaches [44], but with an explicit generative model. AD,
Alzheimer’s disease; ADNI, Alzheimer’s disease neuroimaging initiative; CSF, cerebrospinal fluid; EBM, event-based model.

each individual and time point that defines the
position along the central trajectory.

Network propagation models [60-64] attempt
to explain disease progression in terms of spatial
propagation through anatomical or functional

networks in the brain, which thus induce measure-
ment changes sequentially along the nodes of a
network. The pattern of propagation depends on,
and can thus reveal, mechanisms of propagation. In
particular, Zhou et al. [62] translate various popular
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FIGURE 3. The temporally continuous selfmodelling regression approach of [55]. The model shows the characteristic

trajectories of a diverse set of biomarkers against a common

continuous disease stage variable learned from the ADNI and

PAQUID (Personnes Agées Quid) data sets. The model can potentially estimate the disease stage of a new patient by
identifying the position along the trajectory set that best matches their data.
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models for neurodegenerative disease propagation:
‘nodal stress’ — the most active regions or ‘hubs’ are
most vulnerable [65,66]; ‘transneuronal spread’ — a
prion-like agent propagates along network connec-
tions [15,16,67,68]; ‘trophic failure’ — opposite to
‘nodal stress’, the most isolated nodes are most
vulnerable [69,70]; and ‘shared vulnerability’ -
evenly distributed vulnerability over networks. Each
model predicts different patterns of atrophy severity
within networks, enabling comparison of the differ-
ent propagation hypotheses in various neurological
diseases. Dynamical system models [61,63] support
the prion-like propagation hypothesis in a similar
way. More recently, a multifactorial network model
was proposed [64] that considers multiple brain
networks and their interactions.

Although spatiotemporal models express the
trajectory of much richer objects than scalar trajec-
tory models, currently they typically model just one
object (image or image region) derived from a single
modality. Current formulations do extend naturally
to vector-valued images, or multiple interacting
regions, but the methods are memory and processor
intensive so such extensions present practical diffi-
culties. Network propagation models are typically
used to make a single gross inference of propagation
mechanism rather than a detailed disease signature
so are somewhat distinct from the other models
above and do not directly support diagnosis, staging
OI prognosis.

Current limitations

One of the most common limitations in disease
progression models is the assumption of a common
disease trajectory across individuals. Neurodegener-
ative diseases are highly heterogeneous and clearly
violate this assumption. However, it does enable the
models to elicit an average or canonical trajectory,
which may often be sufficient to capture broad
disease characteristics and discriminate different
conditions. Various models naturally provide
measures and visualizations of the uncertainty in
that canonical trajectory, see for example the pos-
itional variance diagrams of the EBM in Fig. 2,
although these cannot be interpreted directly as
pictures of population heterogeneity. Various
enhancements aim to estimate features of the popu-
lation heterogeneity. For example, [71] estimates
the distribution of the EBM ranking over Alz-
heimer’s disease neuroimaging initiative individuals
by replacing the single ordering with a Mallows
model [72]; [47%"] identifies distinct components
of Alzheimer’s disease atrophy; and [73"%] uses a
mixture of EBMs to identify subgroups of the popu-
lation with distinct orderings. These ideas go some
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way toward ameliorating this limitation, but further
work is required.

Another limitation in disease progression
models is the assumption of biomarker independ-
ence. This may be valid for early vs. late biomarkers,
but it is unlikely to be true for all biomarkers across
the full disease time course. Some scalar trajectory
models, in particular [55,56], avoid this assumption
by explicitly pooling information across biomarkers
in order to estimate disease progression. Recent
spatially fine-grained models of disease accumu-
lation across the brain use weak assumptions on
the spatial correlation structure [74], or explicitly
seek clusters with a correlated atrophy pattern [75].
The work in [75] further highlights, particularly for
complex models such as spatiotemporal shape
models of the brain, the need to balance parsimony
and information content. This complexity control is
necessary to make inference tractable in large data
sets, while retaining the critical information about
disease progression.

To date, little effort has gone into incorporating
information from fixed variables into disease pro-
gression models. Simple approaches, such as con-
structing separate models for particular genotypes,
for example as in [51], highlight that progression
does depend on such information. However, lower
level integration of such variables into the models
may produce interesting new findings.

Other limitations arise from idiosyncrasies of
medical data sets. Longitudinal data censoring
because of participant dropout can lead to under-
sampling of later disease stages and, if not accounted
for, can bias models towards earlier disease stages.
Measurement error can bias even simple models, for
example regression dilution, and so explicitly quan-
tifying and expressing uncertainty within disease
models is important [54]. Outliers can bias models
and frequently arise, for example because of unrelated
disease such as a brain tumour causing exaggerated
brain volumes, or erroneous data entry. Missing data
are also common and, although disease progression
models often have formulations that handle missing
data in theory [73"], the effect on downstream infer-
ence remains to be quantified precisely.

Enhancing existing models

The combination of phenomenological models and
mechanistic models offers powerful opportunities to
compare hypotheses on disease propagation. Early
explorations of mechanistic models [61,62] compare
with only end-stage atrophy patterns. However, such
models can predict the whole time course of
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neurodegeneration. Matching just the overall atrophy
pattern is analogous to guessing the story of a movie
from only the final scene. The temporal disease sig-
natures uniquely provided by longitudinal data-
driven disease progression models, such as the EBM
or continuous trajectory models, open up the possib-
ility of matching the whole pattern of appearance of
disease — viewing the whole neurodegeneration movie
as it unfolds for much stronger inferences on
underlying mechanisms.

Recent advances include automatic determi-
nation of disease subtypes via data-driven mixture
modelling [73"]. The use of subtype models to
identify the distinct phenotypes among patients
provides fundamentally new knowledge that may
reveal new subgroups in diseases that are known to
be highly heterogeneous, or highlight common
comorbidities. This has the potential to aid treat-
ment development through identifying smaller and
more homogeneous patient cohorts more likely to
have coherent underlying biochemistry and disease,
and thus to respond consistently to a single treat-
ment. The subtype models further offer the radical
possibility of challenging the traditional labels of
dementia subtypes (Alzheimer’s disease, dementia
with Lewy bodies, frontotemporal dementia,
posterior cortical atrophy and so on.) for the first
time. Data-driven subtypes may prove more homo-
geneous and inherently easier to recognize from
clinical data than the traditional labels. They may
thus prove simpler targets for drug development
thereby supporting precision medicine more
readily, by matching individuals to treatments
more precisely.

Enhancing these models to include causal infer-
ence will be an important advance. A recent multi-
factorial model [64] incorporated linear systems
control theory into a model with causal structure’
to suggest necessary features of putative treatments
that could have disease-modifying effects.

The complementary information provided by
each type of disease progression model mentioned
above can be combined into uniquely rich, quan-
titative signatures of disease that avoid the need
for a-priori staging. This could be achieved
through a single unified modelling framework.
For example, there are natural links from the
EBM to scalar trajectory models, to spatiotemporal
trajectory models. Such a wunified modelling
framework potentially supports rigorous inference
from the collection of disparate information

' Although the model structure (mathematics) is causal, the data-driven
model (parameters estimated from the data) is not causal because it
was built on cross-sectional data.
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available, balancing evidence from the multiple
modalities appropriately.

Translational requirements to realize the
potential of disease progression modelling

Currently, disease progression models remain
largely in the technical research domain — being
developed by computer scientists and statisticians in
collaboration with clinical experts. They have great
potential for application in the clinic and in clinical
trials, but likely require several stages of develop-
ment and proof of concept to reach the necessary
level of maturity.

We must find ways to demonstrate consistent
levels of performance. This requires robust and
interpretable metrics of predictive performance,
which include evaluation against known ground
truth in simulations and well-phenotyped data sets
(e.g. familial cohorts). Larger, less well-phenotyped
data sets support performance evaluation in terms of
model stability (e.g. cross-validation and intercentre
generalizability), temporal resolution and staging
self-consistency.

Clear performance metrics and yardsticks will
provide developers of disease models with a clear
understanding of how model assumptions bias
model predictions and how to interpret and temper
those predictions in practice. We must also find
ways to transmit that understanding to end users
to avoid abuse through misunderstanding. This
involves the development of clear user interfaces
to make the model output accessible and digestible
by nonexpert users, and clear instructions and case
studies demonstrating how to use the technology in
practical situations.

Thus, key steps that remain for translation are:

(1) External validation of predictive ability of
developed models on research data sets. Several
works already show this, but the community
still has a need for unbiased evaluation in
entirely unseen test sets. Community wide
challenges such as [76,77] provide a valuable
resource in this way.

(2) Translation between data sets. Key questions
remain on how well within-dataset performance
will translate to other data sets, that is if we train
models on a data set with a particular acqui-
sition protocol, how well can we expect it to
perform on unseen data from different proto-
cols or acquired in different centres? Little
exploration of this has been performed.

(3) Demonstration in clinical trials. Initial steps to
demonstrate potential to improve outcome via
retrospective analysis of clinical trial data would
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support more ambitious work in demonstrating
the potential of multimodal modelling in a
prospective clinical trial.

(4) Success in a small number of trials involving
model developers can motivate adaptation of
the technology for general usage without devel-
oper intervention and widespread deployment
in treatment development. Such advances will
require substantial efforts in interface design
and user workflow modelling.

CONCLUSION

We have reviewed data-driven model-based
analyses of neurodegenerative disease. We have
argued the potential for generative data-driven
models to take centre stage in the study and man-
agement of neurodegenerative diseases if we are to
generate new avenues for disease understanding in
the earliest, preclinical stages. This is necessitated
by the challenges in monitoring any neurological
disease over its full time course, coupled with over-
lapping phenotypes and lack of a single biomarker
that is dynamic across the full disease time course.
The main focus of development and application to
date has been in Alzheimer’s disease, but various
efforts including the EuroPOND project are expand-
ing the application to other dementias, multiple-
sclerosis, prion diseases, normal ageing and devel-
opment, and even non-brain applications. These
techniques have the potential for widespread
impact in realising precision medicine across many
such domains.
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