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Abstract

Purpose/Objectives—To develop a patient-specific “big data” clinical decision tool to predict 

pneumonitis in Stage I non-small cell lung cancer (NSCLC) patients after stereotactic body 

radiation therapy (SBRT).

Materials/Methods—61 features were recorded for 201 consecutive patients with Stage I 

NSCLC treated with SBRT, in whom 8 (4.0%) developed radiation pneumonitis (RP). Pneumonitis 

thresholds were found for each feature individually using decision stumps. The performance of 

three different algorithms (Decision Trees, Random Forests, RUSBoost) was evaluated. Learning 

curves were developed and the training error analyzed and compared to the testing error in order to 

evaluate the factors needed to obtain a cross-validated error smaller than 0.1. These included the 

addition of new features, increasing the complexity of the algorithm and enlarging the sample size 

and number of events.

Results—In the univariate analysis, the most important feature selected was the diffusion 

capacity of the lung for carbon monoxide (DLCO adj%). On multivariate analysis, the three most 

important features selected were the dose to 15 cc of the heart, dose to 4 cc of the trachea or 

bronchus, and race. Higher accuracy could be achieved if the RUSBoost algorithm was used with 

regularization. To predict radiation pneumonitis within an error smaller than 10%, we estimate that 

a sample size of 800 patients is required.

Conclusion—Clinically relevant thresholds that put patients at risk of developing radiation 

pneumonitis were determined in a cohort of 201 stage I NSCLC patients treated with SBRT. The 

consistency of these thresholds can provide radiation oncologists with an estimate of their 

reliability and may inform treatment planning and patient counseling. The accuracy of the 

classification is limited by the number of patients in the study and not by the features gathered or 

the complexity of the algorithm.
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1. Introduction

Thoracic malignancies are among the most common and deadly cancers worldwide and 

account for approximately 27% of all cancer deaths in the United States1, 2. Non-small cell 

lung cancer (NSCLC) accounts for over 85% of all new cases diagnosed, of which 

approximately 15% are diagnosed with localized disease. These patients are typically treated 

with surgery or stereotactic body radiation therapy (SBRT), also termed stereotactic ablative 

radiotherapy (SABR)1–5. Radiation induced pneumonitis (RP) remains the most important 

dose limiting side effect for these patients and the ability to predict RP is of paramount 

importance. Numerous studies have been performed attempting to identify features that 

correlate with RP. Dosimetric metrics that describe features of the spatial dose distribution, 

including V20 (the lung volume receiving a dose 20 Gy or more) 6–11, mean lung 

dose 9, 12–15, V30 10, 13, 16 V15 16, V40 10 and V50 10, as well as non-dosimetric factors, 

including tumor location 6, 17, age 18, 19, chemotherapy schedule 18, 20 and gender,18 have all 

been reported to correlate with the development of RP. These metrics have been used to 

estimate cutoff values with the intention of identifying patient cohorts at higher risk of 

developing RP. These cutoffs have failed to accurately predict RP in actual clinical practice, 

however, and thus new methods are needed to properly identify high risk populations.

The historical failure to predict RP is not surprising given that most cutoffs determined were 

those that maximized the Receiving Operating Curve (ROC) area of the data being analyzed; 

that is, the cutoffs that best identified RP using the data at hand. Rules that are determined 

based on their performance on the data being analyzed (referred to as the training set in 

Machine Learning) overfit the data and fail to predict new data (testing data) 21. For real 

learning to occur, metrics, algorithms and rules need to be chosen based on their 

performance on the testing set and not on the training set. The field of Machine Learning 

attempts to solve this problem. In that sense, previous studies have applied different machine 

learning algorithms to predict outcome, including RP, in radiation oncology17, 22–26. These 

include the observation that multivariate analysis and the combination of dosimetric and 

non-dosimetric features outperform univariate analysis or mechanistic Normal Tissue 

Complication Probability (NTCP) models 17, 23–25. The complexity of the algorithms used 

make them difficult to interpret, however, and studies at different institutions have 

demonstrated different results. Each study considered only one type of algorithm but a 

comparison of multiple algorithms that highlights their advantages and disadvantages of 

each approach is lacking. The classification accuracy of the algorithms developed to date is 

low, and a clear path to improve results has not been proposed. Neverthless, Machine 

Learning can provide a framework that can be followed to achieve the desirable accuracy 

and can be very useful in producing algorithms and rules that improve prediction over 

current methodologies.

An excellent review guiding researchers in predicting outcomes in radiation oncology using 

machine learning approaches was published recently by Kang et al 27. Among the core 

principles provided, the authors emphasized: the need to consider both dosimetric and 

nondosimetric features (also referred to as predictors); the use of cross-validation methods 

that test a model using new data; and the importance of comparing multiple models. 

Importantly, the facts that Bayes networks cannot measure how well a model will perform 
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on new data, and that the widely used technique of linear regression performs poorly with 

regard to highly collinear data (such as dose-volume histogram - DVH - data), were also 

highlighted.

In the present paper we predict RP using a highly curated data set characterizing RP 

following SBRT. Multiple machine learning algorithms are evaluated with an emphasis on 

interpretability, and several debugging strategies are used to identify the key factors for 

improving prediction accuracy and establishing a clear method to clinically useful 

predictions. A univariate analysis with features that satisfy both in and out-of-sample 

behavior is used to determine the out-of-sample rules, and complements the more accurate 

multivariate analysis. Finally, balanced errors that account for the imbalanced dataset are 

reported.

2. Material and Methods

2.1 Data collection

In an Institutional Review Board (IRB) approved retrospective analysis, the predictive value 

of 61 features (dosimetric and non dosimetric) was assessed in 201 consecutive stage I 

NSCLC patients treated with SBRT. These features were divided in 7 categories as shown 

below:

- Comorbidities: Referring Provider, Reason for SBRT, Medically Inoperable vs 

Patient Refusal, Seen by a Thoracic Surgeon, Diabetes, Multiple lesions treated, 

Autoimmune/Immunosuppression, DLCO adj %, FEV1(L), FEV1/FVC and 

FEV1 % Predicted.

- Drugs: Decadron/Prednisone, Metformin and COX Inhibitors.

- Dosimetric Indices from: Lung, Heart, Chest Wall, Rib, Skin, Esophagus, 

Trachea and Great Vessels. All indices have been calculated with heterogeneity 

corrections using the Analytical Anisotropic Algorithm (AAA), Varian Inc, Palo 

Alto, CA.

- Fractionation: Number of Fractions, Dose per Fraction, Total Dose.

- Staging: TNM Stage, Histology, Stage I NSCLC, EGFR Mutation, KRAS 

Mutation (Y-N-Unknown), Biopsy, Tumor Size (cm), ALK Translocation (Y-N-

Unknown).

- Tumor Location: Tumor location (Right vs. Left: Upper, Medium, Lower), 

Mediastinal Sampling (Mediastinoscopy vs. EBUS vs. none), Lymph Node 

Sample.

- Other Attributes: Marital Status, Race, COPD, Smoking Status, Pack-Years, 

Sex, Age, Weight, Height, BMI.

All patients were planned using a consistent set of institutional dose constraints based on 

Radiation Therapy Oncology Group protocols : RTOG 0618, 0813 and 0915. Specifically, 

the lung constraints used were: Dose 1500 cc < 7Gy, Dose 1000 cc < 7.4 Gy and V20 < 

10%. Pneumonitis was graded from 0 to 5 based on CTCAE v4, as follows: Grade 0: no 
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increase in symptoms; Grade 1: imaging changes or symptoms not requiring initiation or 

increase in steroids and/or oxygen; Grade 2: symptoms requiring initiation or increase in 

steroids; Grade 3: symptoms requiring oxygen or hospitalization; Grade 4: life threatening 

or symptoms requiring assisted ventilation; or Grade 5: causing death. Patients with Grade 2 

and greater (Grade ≥2) were labeled as having developed RP. In total, 8 developed grade ≥2 

RP.

2.2 Machine Learning Analysis

2.2.1 Univariate Analysis—Univariate pneumonitis thresholds for each of the features 

collected were determined using decision stumps (simple univariate thresholds) 

implemented in Matlab R2015a. The objective of the decision stumps was to find thresholds 

that would best separate patients developing RP from those who would not into different 

nodes, Figure 1 A). The thresholds that minimize the sum of the Gini Diversity Index over 

all nodes were selected. The Gini Index is a measurement of how well a threshold separates 

the different categories (in our case developing RP or not). This approach is equivalent to the 

univariate analysis performed by other investigators 7, 9–17. In our case, however, each 

threshold was also scored according to both the probability of random occurrence, and the 

Generalization Score, defined as the fraction of the recall obtained using balanced cross-

validation (testing) to the recall of the training set. The Generalization Score is the ratio of 

true positives (true RP patients identified by the algorithm as having RP) for out-of-sample 

and in-sample classifications and was designed to identify those thresholds that will perform 

best in the clinic.

2.2.1 Multivariate Analysis—In order to account for the possible interaction of features 

and to improve the prediction of RP, three different types of algorithms were considered 

using Matlab R 2015 a: Decision Trees, and two ensemble methods: boosting with 

RUSboost and bagging with Random Forests28–30. Decision Trees produce interpretable 

models, naturally incorporate mixtures of numeric and categorical predictor variables and 

missing values, are invariant to scaling of predictors and are resistant to the inclusion of 

many irrelevant predictor variables 31. Decision Trees are known for overfitting the data, 

however, and their complexity needs to be controlled. In our case, the complexity of the 

decision tree was optimized through the use of feature selection, minimum number of 

observations per tree leaf (MinLeaf), and the prior probability of the minority sample (prior). 

Specifically, a forward floating sequential selection method (SFFS) with balanced cross-

validation (equal representation of the minority class in all samples) using Decision Trees as 

the baseline algorithm was implemented 3. The Loss function used in all balanced cross-

validations was the F1 score, which is commonly used on imbalanced data set32. Decision 

Trees suffer from high variance even when the complexity is controlled, and they do not 

provide, in general, accuracy comparable to other methods. Ensemble algorithms that 

combine the outputs of many “weak” classifiers (single trees) to produce a powerful 

“committee” were developed to overcome this limitation 31. In boosting, weak classification 

algorithms with high bias-low variance (shallow Decision Trees) are constructed 

sequentially by repeatedly modifying the weights of each observation in the data to obtain 

the expert “committee.” Boosting improves the accuracy of Decision Trees by reducing the 

bias inherent in weak learners31. Specifically, RUSboost was designed for and shown to 
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outperform most algorithms in skewed data sets, such as the data used here 28. The 

elimination of the need for artificially choosing prior probabilities makes this algorithm very 

attractive. Feature selection does usually improve the accuracy of the algorithm and it is 

required 28. Regularization through shrinkage is also straight forward in RUSBoost. In 

contrast to boosting, Random Forests improve the accuracy of Decision Trees by combining 

low bias-high variance trees (deep trees) through a majority voting rule and reduces the 

variance of the algorithm by de-correlating them through random subsampling of the 

features 29, 30. Compared with traditional methods including support vector machines 

(SVMs), neural nets, logistic regression, bayes networks, naive bayes and others, Random 

Forests and Gradient Boosting are the most accurate algorithms available for medium size 

datasets (hundred to thousands of observations) 29, 30. While Random Forests require the use 

of prior knowledge in skewed data sets, additional feature selection is generally not 

necessary as it is automatically handled by the algorithm. Finally, when missing values were 

present, surrogate splits as implemented in Matlab R2015a were used. Surrogate splits find 

for each missing value on the dataset a surrogate split which uses a different feature and 

which most resembles the original split according to an indicator function. The feature with 

the maximum number of missing values was DLCO adj %, with 60% of values missing. 

This was generally due to patients not being assessed for or unable to physically perform 

this test, in comparison to their being able to complete other pulmonary function tests; no 

other feature had a significant percentage of missing values.

3. Results

3.1 Univariate Analysis

Univariate thresholds determined using decision stumps as described in Figure 1 A) are 

presented in Table 1. In contrast to earlier approaches, features that satisfy both in-sample 

performance (p < 0.05) and out-of-sample behavior (Generalization Score > 0.75) are 

shown. Only features satisfying both criteria are shown, with the exception of dosimetric 

indices where only the ten most important are included. Conventional dosimetric indices, 

such as V20, did not have both p <0.05 and generalization > 0.75. The most important 

threshold found to identify patients who developed RP was a non-dosimetric index, DLCO 

adj % < 38.5, which will result in a cohort with 0.235 probability of developing pneumonitis 

(4/17) vs. 0.016 (1/61) in the general population. Unfortunately, this feature also had by far 

the highest percent of missing values. The tumor size (cm) > 3.45 cm threshold identified a 

cohort of patients with a 0.25 probability of developing RP (3/12) in the in sample analysis; 

this feature performed slightly worse than DCLO adj % for the out of sample evaluation. 

Additionally, none of the genetic mutation features were identified as significant. Finally, 

when all 61 features are analyzed, the probability of finding one feature that splits the data 

with a probability of random occurrence p increases compared to when only one feature was 

analyzed. In fact, the probability (P) that at least one feature will have a threshold that splits 

the data with a probability of random occurrence smaller than p is related to the latest 

according to:

(I)
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In that sense, in order for P to be higher than 0.5 (random occurrence), p needs to be equal 

or smaller than 0.011. The features with p ≤ 0.011 are shown bolded in Table 1. .All other 

thresholds with their respective p-values have a random probability of occurrence higher 

than 0.5.

Finally, the features relating to dosimetric indices were found to be highly correlated. A heat 

map showing the correlation of the most important dosimetric indices, as well as the PTV 

volume, is provided in Figure 1 B). As can be observed, all of the lung indices are highly 

correlated with one another and with the volume of the PTV. Therefore, the use of a 

threshold from one of these features will necessarily contain information regarding the 

others. Conversely, indices describing the dose to the heart and the maximum skin dose (to 

10 cc) correlate weakly with the volumetric dose indices, and thus their thresholds are likely 

associated with a different mechanism. In the case of the dose to the heart, other authors 

have found similar indices to also be associated with pneumonitis33. In the case of the skin 

dose, indices involving beam selection may be driving the correlation.

3.2 Multivariate Analysis

In order to improve the accuracy of univariate analysis, the combination of dosimetric and 

non-dosimetric features to predict RP using different algorithms was performed. Three 

algorithms were evaluated: Decision Trees for their simplicity, RUSboost for its reported 

accuracy handling skewed data sets and simplicity of regularization (stricter complexity 

control to avoid overfitting) and Random Forests for their accuracy in high variance 

problems. In order to control the complexity of Decision Trees and avoid overfitting in a 

highly correlated feature space, feature selection was performed. Because our problem is ill 

posed, however, the SFFS algorithm converges to different feature sets if run multiple times. 

Figure 2 A), shows the features that are selected by SFFS at least 10% of the maximum 

number of times a feature is selected when the algorithm is run 100 times. The three most 

important features are the dose to 15 cc of the heart, the dose to 4 cc of the trachea or 

bronchus, and race. Due to the high number of missing values, DLCO adj % was not 

selected as a feature by the algorithm. Figure 2 B) and C) show two possible Decision Trees 

with similar accuracy constructed using this final feature set. To construct the tree shown in 

Figure 2 C), the chest wall dose to 30 cc was removed to force the tree to select another 

feature. The existence of degenerate solutions is expected in ill posed problems with highly 

correlated features. Conversely, the probabilities for the high risk populations observed in 

Figure 2 B) and C) are an overly optimistic estimation of the real performance of these 

thresholds in identifying patients at high risk of RP because they represent the performance 

on the training data. To evaluate the performance of these trees on the testing data, a 

balanced cross-validation using 7/8 of the data as the training set and predicting the 1/8 left 

out was performed. The resulting confusion matrix is shown in Table 2. For those patients 

identified as high risk, the probabilities of developing RP dropped to 0.15 (4/26) and 0.23 

(5/22) respectively compared to those in Figure 2. Even these probabilities obtained using 

cross validation are likely to be an over estimation of the true performance of the tree 

because, although using cross-validation, the hyperparameters and features were selected 

using the whole data set. In order to obtain a lower bound estimation of the error, the 

hyperparameters and the features selected could be obtained using only 90% of the data 

Valdes et al. Page 6

Phys Med Biol. Author manuscript; available in PMC 2017 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(80% for training 10% for hyperparameter/features selection). In a data limited problem as 

the one we are solving (see discussion below), however, the estimation of the error in this 

manner is overly pessimistic. A confusion matrix derived using this approach is shown in 

Table 2. The true performance of the trees derived in this paper will be between those 

derived using the optimistic cross validation performance and the lower bound estimation.

3.3 Different Algorithms’ Tradeoffs and Performance

Table 2 shows confusion matrixes for the Random Forests and RUSboost classifiers. The 

confusion matrix for the Random Forests corresponds to an algorithm grown with the 

original data set (not feature selection performed), deep trees, 4 features sampled at each 

node and a prior equal to 0.8116 which was obtained through cross-validation. The 

confusion matrix for RUSboost corresponds to an algorithm grown with a learning rate = 

0.25 (shrinkage parameter providing regularization) and the feature set obtained on Figure 2 

A). These parameters were obtained by analyzing Figure 3. The out of sample 1-F1 Score, a 

magnitude that describes the error on the out of sample data, is plotted against the number of 

trees used for RUSBoost and Random Forests for different hyperparameters. As we move 

from Figure 3 A) to 3 C), the number of splits on the Decision Trees used in RUSBoost and 

Random Forests changes from 1 split (Stump Trees) to 128 splits (Maximum Number of 

splits needed to separate all the points in the data set). Each panel also shows the behavior of 

RUSBoost for different regularization parameters (Learning Rate) and different number of 

features sampled at every split for Random Forests. Additionally, the errors for Deep trees 

(grown without control for complexity), the best Stump (univariate tree or threshold cutoff), 

and the complexity controlled Decision Tree (Optimum Tree) grown as explained above are 

shown as straight lines for comparison with the ensemble methods. In all cases, RUSBoost 

outperformed the other algorithms, as is the case in other skewed data sets 28. It can also be 

appreciated in Figure 3 that all the algorithms are behaving as expected in our data set. 

Specifically, the expected behaviors are as follows. Deep Trees grown without control of 

their complexity perform poorly when trying to explain data that they have not seen. 

Univariate Stump trees perform better than the Deep Trees but worse than our multivariate 

Decision Tree were the complexity has been controlled through the hyperparameters. 

Random Forests improves performance as the Trees used in the ensemble grow deeper 

(going from Figure 3 A to 3 B). For shallow Trees (high bias), Random Forests performs 

better when more features are used for each split, which decreases the bias of the Trees 31. 

As the Trees get deeper (Figure 3 B and 3 C), however, smaller numbers of features are 

preferred by Random Forests. Conversely, RUSBoost shows the higher accuracy for 8 splits 

(going from Figure 3 A to 3 C) and as the number of split increases, the need for stronger 

regularization (smaller Learning Rate) is observed.

3.4 Learning Curves and Training vs Testing Error

As indicated by the results shown on Table 2, higher accuracy of the algorithms is desirable. 

In Machine Learning the process of evaluating different approaches to obtain higher 

accuracy is typically referred to as “debugging a machine learning problem”. Learning 

curves and the behavior of the training and the testing error offer unique insights. In sample 

(training) and out of sample (testing) errors plotted as a function of the number of patients 

used in the training sample for each algorithm are shown in Figure 4 A and B. As the 
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number of patients in the training error is increased, the out of sample error of the 

classification of patients that developed RP diminishes while the training error remains 

constant (0) for all algorithms. The 0 classification error of the training data is an indication 

that Decision Trees and Random Forests are overfitting the data even when their complexity 

has been controlled. However, in the case of RUSBoost, stronger complexity control has 

been applied (regularization) through the learning rate parameter and its 0 error on the 

training data is not likely to indicate overfitting. In fact, for smaller number of patients the 

performance of the RUSBoost algorithm over Decision Trees or Random Forests in the 

classification of out of sample RP is at the expense of making more mistakes on the 

classification of patients that have not developed RP, Figure 4 B). As the number of patients 

is increased, however, the classification of patients that do not develop RP is similar to 

Decision Trees and Random Forests, while RUSBoost performs better classifying patients 

that develop RP. These results offer unique insights into our problem and are discussed 

below.

4. Discussion

4.1 Univariate Analysis

In the present paper we aim to predict RP for stage I SBRT patients and lay out a strategy to 

improve the accuracy of the algorithms to desirable clinically relevant levels. In that sense, 

we have collected a highly curated data set of patients treating consistently at our institution 

as described in the material and method section. We have used a consistent dose calculation 

algorithm with heterogeneity corrections, one patient population (stage I) and one technique 

(SBRT). These factors have not been well controlled previously19, 23, 25 yet they are 

essential in order to reduce the inherited noise in the data and obtain an accurate 

classification. With this unique data set, univariate clinical thresholds (cutoff values) similar 

to those previously developed by other authors were obtained7–11, 13, 15, 16, 23, 25. In this 

work, however, higher emphasis was placed on finding cutoff values that could best predict 

data that was not used in the derivation of the thresholds. This approach is fundamentally 

different to finding the thresholds that best predict the data at hand. This is consistent with 

clinical reality, in which clinicians care about predictors of RP for patients in the future, and 

not about finding the thresholds that best fit the data of the patients that has already been 

collected. The field of Machine Learning has shown extensively that these thresholds are 

different. In that sense, we not only identified features with thresholds that will predict RP 

with a probabaility of random ocurrence smaller than 0.05, but also evaluated the 

performance of these thresholds in out of sample data through the Generalization Score. 

This criteria allowed us to critically evaluate commonly used dosimetric indices like V20. 

While no patients with V20 <2.63% developed pneumonitis (n=81, p<0.05), the 

Generalization Score was low, indicating that this threshold will fluctuate depending on the 

data set, with poorer performance for future patients than obtained for the data analyzed. 

Therefore, the use of thresholds shown in Table 1 should offer better results than V20 

regarding the prospective identification of RP rates. Furthermore, we note that most of these 

features, including those characterizing dose-volume in normal lung (ex. Lung Mean Dose 

and Lung Dose 1–10%) are highly correlated, as shown in Figure 1 B), and the use of one of 

them is equivalent to the use of other like indices. Finally, it is important to remember that 
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when a large number of predictors is analyzed, the probability of finding at least one 

predictor with a significant p value increases dramatically. In fact, when 61 features are 

analyzed, a p ≤ 0.011 is required to guarantee that this level of significance did not happen 

randomly. Table 1 shows those features where p values for at least one feature could have 

not occurred randomly. Some of these features, such as the mean lung dose, PTV volume or 

PTV size have been found to be relevant in other data sets; however, DLCO adj%, heart 

dose, chest wall dose to 30 cc and skin dose to 10 cc have not been as widely 

reported. 7–11, 13, 15, 16, 23, 25 Specifically, DLCO adj % was found to be a very strong 

predictor: 4 out of 17 patients with DLCO adj %< 38.5 developed pneumonitis vs 1/63 

otherwise. Nevertheless, the use of this feature as a clinical predictor is limited by the data 

available. While others have studied DLCO adj % and observed it to be a weak predictor of 

RP 23, those analyses were always performed as multivariate analysis where the handling of 

missing values is quite important. Similarly, when we performed a multivariate analysis, the 

DLCO adj % was no longer identified as an important feature in our dataset.

4.2 Multivariate Analysis

While univariate analyses are important and help us understand the problem and drive the 

dose optimization during treatment planning, multivariate algorithms are inherently more 

accurate. Additionally, there are several important questions to address when RP is modeled 

using machine learning: Which algorithms should be used? Is the solution unique? How 

should feature selection be performed? Is the model overfitting the data? How can the 

accuracy be improved? The present paper is novel in answering each of these questions. 

First, when the algorithm is selected, a tradeoff between interpretability and accuracy is 

usually performed. Decision Trees, which closely mimic the human thought process, are 

highly interpretable but tend to overfit the data. Additionally, when used in problems with 

highly correlated features as in our case, the final tree depends highly on the initial data set, 

and the algorithm will converge to different solutions. This is demonstrated in Figure 2 A); if 

the SFFS algorithm is run 100 times, different features will be selected. Therefore, when 

Decision Trees are developed, performing feature selection and controling the complexity of 

the trees as we have done in this work is of paramount importance. Even when the trees are 

carefully constructed, however, they still can converge to different solutions and overfitt the 

data, specially in a correlated feature space, Figure 2 B and 2 C). This can be seen as a 

drawback of Decision Trees because it leaves clinicians asking which tree should be used. 

Despite this limitation, Decision Trees are extremely easy to interpret as can be observed in 

Figure 2 B and 2 C). In addition, the performance of the Decision Trees can be enhanced by 

previous clinical experience through selection of the Decision Trees that fits clinical 

intution.

Different techniques such as boosting and bagging can also be used to improve the accuracy 

of decision trees, but at the expense of losing interpretability. RUSBoost (boosting) and 

Random Forests (bagging), have consistently been shown to outperform other modern 

algorithms in terms of accuracy on skewed data sets29, 30. As observed in Table 2, the 

Random Forests classifier offers similar accuracy as our Decision Trees but the results are 

less interpretable. Conversely, RUSBoost, especially designed to handle skewed data sets, 

outperforms both of them. Regularization and the simplicity of handling skewed data sets 
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are the key factors that lead to better performance. Similar results have been reported 

previously for RUSBoost 28. Interpretability is nevertheless lost, which is particularly 

important when the accuracy of the algorithms is not high. Therefore, at this stage, Decision 

Trees may still be preferable to more complex algorithms. As additional data are collected, 

however, Random Forests and especially RUSBoost should significantly outperform the 

Decision Trees. In that case, the prediction of the algorithms will be more reliable, and the 

higher accuracy and consistency of Random Forests and RUSBosst should become the key 

factor in the selection of the algorithm, with other techniques used to interpret their results. 

It is important to highlight the fact that our data set behaves as expected when analyzed with 

the wide set of algorithms and techniques as presented in this paper. There is no indication, 

therefore, that the problem of predicting RP is particularly difficult and cannot be 

completely solved with machine learning with sufficient data. In the following section, a 

discussion on how to improve accuracy is presented.

4.3 Debugging a Machine Learning Algorithim and Improving Accuracy

We can observe in Table 2 that better accuracy is needed for these algorithms to have a 

higher impact in the clinic. Different steps can be taken to improve the prediction accuracy 

in Machine Learning: gather new features from the same patient data set, use more complex 

algorithms, or increase the number of patients analyzed. Typically, the first two approaches 

are less expensive. For example, image-based features (radiomics) have been proposed to be 

correlated with pneumonits 34 and different algorithms have been used by other investigators 

hoping to obtain improved results 23, 25, 26. In this work, for example, radiomics-based 

features could have been collected or other algorithms could have been investigated. An 

incorrect evaluation of the state of a problem in machine learning, however, can be costly, 

sending an investigator down an unfruitful path. Therefore, the question of what is currently 

needed to improve the accuracy of an algorithm is of paramount importance. Learning 

curves for predicting RP were developed, and comparison of in sample (training) and out of 

sample (testing) errors plotted as a function of the number of patients used in training the 

algorithms offer unique insights, Figure 4. As can be observed from the training errors, the 

features and the algorithm used are complex enough that they can identify 100% of the 

patients developing RP if they are present in the training sample. If the complexity of the 

algorithms was biasing the solution (i.e., too simple to explain the data), or the features used 

(61 in total) were not significantly correlated to the outcome, the error obtained on the 

training sample would be unacceptably large. Conversely, the difference between the 

training and testing error as well as the slope of the testing error versus number of patients 

tell a different story. At the current stage, a large difference between the training and the 

testing error is observed for all algorithms used. Additionally, the testing error decreases as 

the number of patients in the training sample increases. This behavior is typical of problems 

where the accuracy of the algorithm is limited by the size of the data set. As Figure 4 shows, 

the RP testing error decreases as the number of patients in the study is increased for all 

algorithms. This behavior indicates that real learning is occurring, and if enough high quality 

data are accumulated, the algorithms will be able to predict RP with high accuracy. 

Additionally, by assuming exponential decay of the error, it can be estimated within a 95% 

confident interval that approximately 800 patients would be needed to reduce the error to 

less than 10%. Therefore, at the present stage, collecting additional data from new patients is 
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the limiting factor, and gathering new features, whether radiomics-based or others, or using 

different algorithms, will only produce marginal improvement. Finally, while collecting 

additional data for one modality and one stage represents a significant challenge, it is an 

essential task if we are to predict RP with an even greater clinically relevant accuracy. In that 

sense, data sharing collaborations and distributed learning as suggested by Lambin et al may 

play a key role in radiation oncology35. The fact that different feature sets are selected by 

different algorithms that are aimed at predicting the same outcome, as well as the low ROC 

reported, are all indications of high variance problems limited by data. 19, 23, 24 The need for 

additional data is not unique to our study, as most data sets in the literature are of similar 

size as ours; the low incidence of RP for stage I NSCLC patients treated with SBRT imposes 

further limitations in our case.

5. Conclusions

In this paper, an initial investigation in predicting radiation-induced pneumonitis using 

Machine Learning for stage I NSCLC patients treated with SBRT was performed. The power 

of learning curves and comparison of the testing and training error to guide the discovery 

process in the era of big data is highlighted. With the low number of RP events, we conclude 

that the acquisition of a data set of approximately 800 patients is needed in order to predict 

RP with greater accuracy, and should be the subject of future efforts. The different analyses 

performed on our data set indicate that predicting RP is not a particularly difficult problem, 

and could be solved using Machine Learning provided there is sufficient curated data.

References

1. Arias M, Diez FJ. The problem of embedded decision nodes in cost-effectiveness decision trees. 
Pharmacoeconomics. 2014; 32:1141–1145. [PubMed: 25080020] 

2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA 
Cancer J Clin. 2015; 65:87–108. [PubMed: 25651787] 

3. Pudil JNP, Kittler J. Floating search methods in feature selection. Pattern Recognition Letter. 1994; 
15(6)

4. Simone CB 2nd, Wildt B, Haas AR, Pope G, Rengan R, Hahn SM. Stereotactic body radiation 
therapy for lung cancer. Chest. 2013; 143:1784–1790. [PubMed: 23732589] 

5. Dorsey CBSJF 2nd. Additional data in the debate on stage I non-small cell lung cancer: surgery 
versus stereotactic ablative radiotherapy. Annals of Translational Medicine. 2015; 3

6. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, Perez CA. Clinical dose-
volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer 
(NSCLC). Int J Radiat Oncol Biol Phys. 1999; 45:323–329. [PubMed: 10487552] 

7. Kim M, Lee J, Ha B, Lee R, Lee KJ, Suh HS. Factors predicting radiation pneumonitis in locally 
advanced non-small cell lung cancer. Radiat Oncol J. 2011; 29:181–190. [PubMed: 22984669] 

8. Moiseenko V, Craig T, Bezjak A, Van Dyk J. Dose-volume analysis of lung complications in the 
radiation treatment of malignant thymoma: a retrospective review. Radiother Oncol. 2003; 67:265–
274. [PubMed: 12865174] 

9. Kong FM, Hayman JA, Griffith KA, Kalemkerian GP, Arenberg D, Lyons S, Turrisi A, Lichter A, 
Fraass B, Eisbruch A, Lawrence TS, Ten Haken RK. Final toxicity results of a radiation-dose 
escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation 
pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys. 2006; 65:1075–1086. [PubMed: 16647222] 

10. Rancati T, Ceresoli GL, Gagliardi G, Schipani S, Cattaneo GM. Factors predicting radiation 
pneumonitis in lung cancer patients: a retrospective study. Radiother Oncol. 2003; 67:275–283. 
[PubMed: 12865175] 

Valdes et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2017 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Robnett TJ, Machtay M, Vines EF, McKenna MG, Algazy KM, McKenna WG. Factors predicting 
severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int J 
Radiat Oncol Biol Phys. 2000; 48:89–94. [PubMed: 10924976] 

12. Chang DT, Olivier KR, Morris CG, Liu C, Dempsey JF, Benda RK, Palta JR. The impact of 
heterogeneity correction on dosimetric parameters that predict for radiation pneumonitis. Int J 
Radiat Oncol Biol Phys. 2006; 65:125–131. [PubMed: 16427214] 

13. Hernando ML, Marks LB, Bentel GC, Zhou SM, Hollis D, Das SK, Fan M, Munley MT, Shafman 
TD, Anscher MS, Lind PA. Radiation-induced pulmonary toxicity: a dose-volume histogram 
analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys. 2001; 51:650–659. 
[PubMed: 11597805] 

14. Martel MK, Ten Haken RK, Hazuka MB, Turrisi AT, Fraass BA, Lichter AS. Dose-volume 
histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol 
Biol Phys. 1994; 28:575–581. [PubMed: 8113100] 

15. Kwa SL, Lebesque JV, Theuws JC, Marks LB, Munley MT, Bentel G, Oetzel D, Spahn U, Graham 
MV, Drzymala RE, Purdy JA, Lichter AS, Martel MK, Ten Haken RK. Radiation pneumonitis as a 
function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol 
Phys. 1998; 42:1–9. [PubMed: 9747813] 

16. Tsujino K, Hirota S, Kotani Y, Kado T, Yoden E, Fujii O, Soejima T, Adachi S, Takada Y. 
Radiation pneumonitis following concurrent accelerated hyperfractionated radiotherapy and 
chemotherapy for limited-stage small-cell lung cancer: Dose-volume histogram analysis and 
comparison with conventional chemoradiation. Int J Radiat Oncol Biol Phys. 2006; 64:1100–1105. 
[PubMed: 16373082] 

17. Hope AJ, Lindsay PE, El Naqa I, Alaly JR, Vicic M, Bradley JD, Deasy JO. Modeling radiation 
pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys. 
2006; 65:112–124. [PubMed: 16618575] 

18. Theuws JC, Kwa SL, Wagenaar AC, Boersma LJ, Damen EM, Muller SH, Baas P, Lebesque JV. 
Dose-effect relations for early local pulmonary injury after irradiation for malignant lymphoma 
and breast cancer. Radiother Oncol. 1998; 48:33–43. [PubMed: 9756170] 

19. Lind PA, Wennberg B, Gagliardi G, Rosfors S, Blom-Goldman U, Lidestahl A, Svane G. ROC 
curves and evaluation of radiation-induced pulmonary toxicity in breast cancer. Int J Radiat Oncol 
Biol Phys. 2006; 64:765–770. [PubMed: 16257129] 

20. Theuws JC, Kwa SL, Wagenaar AC, Seppenwoolde Y, Boersma LJ, Damen EM, Muller SH, Baas 
P, Lebesque JV. Prediction of overall pulmonary function loss in relation to the 3-D dose 
distribution for patients with breast cancer and malignant lymphoma. Radiother Oncol. 1998; 
49:233–243. [PubMed: 10075256] 

21. Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. 
Bioinformatics. 2007; 23:2507–2517. [PubMed: 17720704] 

22. Klement RJ, Allgauer M, Appold S, Dieckmann K, Ernst I, Ganswindt U, Holy R, Nestle U, 
Nevinny-Stickel M, Semrau S, Sterzing F, Wittig A, Andratschke N, Guckenberger M. Support 
vector machine-based prediction of local tumor control after stereotactic body radiation therapy for 
early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014; 88:732–738. [PubMed: 
24411630] 

23. Chen S, Zhou S, Yin FF, Marks LB, Das SK. Investigation of the support vector machine algorithm 
to predict lung radiation-induced pneumonitis. Med Phys. 2007; 34:3808–3814. [PubMed: 
17985626] 

24. Lee S, Ybarra N, Jeyaseelan K, Faria S, Kopek N, Brisebois P, Bradley JD, Robinson C, Seuntjens 
J, El Naqa I. Bayesian network ensemble as a multivariate strategy to predict radiation 
pneumonitis risk. Med Phys. 2015; 42:2421–2430. [PubMed: 25979036] 

25. El Naqa I, Bradley JD, Lindsay PE, Hope AJ, Deasy JO. Predicting radiotherapy outcomes using 
statistical learning techniques. Phys Med Biol. 2009; 54:S9–S30. [PubMed: 19687564] 

26. El Naqa I, Bradley J, Blanco AI, Lindsay PE, Vicic M, Hope A, Deasy JO. Multivariable modeling 
of radiotherapy outcomes, including dose-volume and clinical factors. Int J Radiat Oncol Biol 
Phys. 2006; 64:1275–1286. [PubMed: 16504765] 

Valdes et al. Page 12

Phys Med Biol. Author manuscript; available in PMC 2017 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Kang J, Schwartz R, Flickinger J, Beriwal S. Machine Learning Approaches for Predicting 
Radiation Therapy Outcomes: A Clinician’s Perspective. Int J Radiat Oncol Biol Phys. 2015; 
93:1127–1135. [PubMed: 26581149] 

28. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. RUSBoost: A Hybrid Approach to 
Alleviating Class Imbalance. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE 
Transactions on. 2010; 40:185–197.

29. Breiman L. Random forests. Machine Learning. 2001; 45(27)

30. Breiman, L. Technical Report 670. UC Berkeley; 2004. Consistency For a Simple Model of 
Random Forests. 

31. Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction. Second. Springer; 2009. 

32. Rijsbergen, CJv. Information Retrieval (2nd). 1979

33. Dang J, Li G, Zang S, Zhang S, Yao L. Comparison of risk and predictors for early radiation 
pneumonitis in patients with locally advanced non-small cell lung cancer treated with radiotherapy 
with or without surgery. Lung Cancer. 2014; 86:329–333. [PubMed: 25454199] 

34. Cunliffe A, Armato SG 3rd, Castillo R, Pham N, Guerrero T, Al-Hallaq HA. Lung texture in serial 
thoracic computed tomography scans: correlation of radiomics-based features with radiation 
therapy dose and radiation pneumonitis development. Int J Radiat Oncol Biol Phys. 2015; 
91:1048–1056. [PubMed: 25670540] 

35. Lambin P, Roelofs E, Reymen B, Velazquez ER, Buijsen J, Zegers CM, Carvalho S, Leijenaar RT, 
Nalbantov G, Oberije C, Scott Marshall M, Hoebers F, Troost EG, van Stiphout RG, van Elmpt W, 
van der Weijden T, Boersma L, Valentini V, Dekker A. ‘Rapid Learning health care in oncology’ - 
an approach towards decision support systems enabling customised radiotherapy’. Radiother 
Oncol. 2013; 109:159–164. [PubMed: 23993399] 

Valdes et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2017 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
A) Schematic representation of a univariate decision stumps. The threshold that maximizes 

the gini’s index is found for every feature automatically. B) Correlation heat map between 

best dosimetric features, V20, PTV volume and prescribed dose.
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Figure 2. 
A). Features selected by the SFFS algorithm at least 10% of the time. Figure 2 B) and C) 

Examples of Decision tree grown using features from A).
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Figure 3. 
Comparison of the performance of Deep Trees, Stump trees, Optimum Trees, Random 

Forest and RUSBoost for different regularization factors (Learning Rate) and different 

number of features sampled in the case of Random Forests.

Valdes et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2017 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Learning Curves. A) and B) the number of instances where the algorithm makes a 

classification mistake as a fraction of the total number of instance of each category is plotted 

vs the number of samples used for training. C) 1- F1 Score vs Log(Learning Rate) is plotted 

for RUSBoost. The Learning Rate controls the complexity of the algorithm through 

shrinkage. Despite RUSBoost classifying the training set on A) perfectly, is complexity has 

been controlled and the best complexity used.
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Table 1

Relevant Features. p <= 0.05 and Generalization Score > 0.75.

Categories Features Thresholds Percent of pneumonitis
(N=201)

Comorbidities 1.DLCO adj %* < 38.5 23.5% vs 1.6%

2. Referring Provider Pulmonology + Thoracic Surgery and 
Pulmonology

10.8% vs 2.4%

Dosimetric Indices 1. Chest Wall Dose to 30 cc >2498.8 cGy 8.9% vs 0.8%

2. Skin Dose to 10 cc >1387 cGy 11.8% vs 1.3%

3. Lung Dose 1 - 10% >701.2 cGy 7.8% vs 0%

4. Lung Mean Dose >264.6 cGy 7.6% vs 0%

5. Heart Dose to 15 cc >83.2 cGy 7.5 vs 0%

6. Heart Dmax >114.8 cGy 3.7% vs 0%

7. Trachea/Bronchus Dose to 4 cc >34.85 cGy 5.7% vs 0%

8. Rib Dmax >5423.85 cGy 7.1% vs 1.7%

9. Trachea/Bronchus Dose to 4 cc >25 cGy 6.6% vs 0%

10. Lung Dose 2–15% >316.7 6.6% vs 0%

Fractionation 1. Number of Fractions 3 or 5 vs. 4 6.9% vs 1.8%

2.Dose per Fraction 1000+2000 cGy 6.9% vs 1.8%

Risk Factors 1.Marial Status Married or Divorced 6.3% vs 0%

2. Race White 5.9% vs 0%

3. Weight >153 lbs 6.6% vs 0%

Staging 1. Tumor Size (cm) >3.45 25.0% vs 2.6%

2. PTV Volume (cc) >32.8 11.5% vs 0.7%

Tumor Location Tumor location.
R= right, L = left + Upper, Medium, Lower

LL+RLL+RUL 6.1% vs 0%

*
Feature with missing values. There is less than a 50% chance that the p values of the bolded features (p ≤ 0.011) happened randomly.
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Table 2

Confusion Matrixes for out of sample classification of the decision trees shown in Figure 4, pessimistic tree 

built using only 80% of the data, Random Forests classifier and RUSBoost algorithm. For the high-risk 

population on the tree in Figure 4 A), 15% (4/26) of patients developed pneumonitis. On the other hand, for 

the high risk population of the tree on Figure a B) 22.73% (5/22) developed pneumonitis. The true 

performance will be in between these values and the pessimistic estimation. At this stage, the performance of 

the random forest is equivalent to the decision trees nevertheless, RUSBoost performs better than all the 

algorithms. True Positive = TP, False Negative = FN, False Positive = FP, True Negative = TN.

Figure 4 A) tree

Pneumonitis 4 TP 4 FN

No pneumonitis 22 FP 171 TN

Figure 4 B) tree

Pneumonitis 5 TP 3 FN

No pneumonitis 17 FP 176 TN

Pessimistic tree

Pneumonitis 2 TP 6 FN

No pneumonitis 45 FP 148 TN

Random Forests

Pneumonitis 5 TP 3 FN

No pneumonitis 16 FP 177 TN

RUSBoost

Pneumonitis 6 TP 2 FN

No pneumonitis 28 FP 165 TN
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