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Abstract

The role of sphingolipids as bioactive signaling molecules that can regulate cell fate decisions puts 

them at center stage for cancer treatment and prevention. While ceramide and sphingosine have 

been established as antigrowth molecules, sphingosine-1-phosphate (S1P) offers a progrowth 

message to cells. The enzymes responsible for maintaining the balance between these “stop” or 

“go” signals are the sphingosine kinases (SK), SK1 and SK2. While the relative contribution of 

SK2 is still being elucidated and may involve an intranuclear role, a substantial amount of 

evidence suggests that regulation of sphingolipid levels by SK1 is an important component of 

carcinogenesis. Here, we review the literature regarding the role of SK1 as an oncogene that can 

function to enhance cancer cell viability and promote tumor growth and metastasis; highlighting 

the importance of developing specific SK1 inhibitors to supplement current cancer therapies.

1. INTRODUCTION

While sphingolipids, along with cholesterol and other phospholipids, serve as critical 

structural components of cell membranes, their most interesting functions involve their roles 

as bioactive signaling molecules. Although there is still much to be elucidated about specific 

mechanisms involved in sphingolipid signal transduction, some themes have emerged. 

Ceramide is known to be involved in apoptosis, cell senescence, differentiation, and cell 

stress (Hannun and Luberto, 2000; Mathias et al., 1998; Perry and Hannun, 1998). 

Sphingosine has also been revealed as an antigrowth signaling molecule (Taha et al., 2006b). 

In contrast, however, sphingosine-1-phosphate (S1P) is known to promote proliferation, 

survival, and inhibition of apoptosis (Spiegel and Milstien, 2003) as well as having roles in 

cell migration, vascular development, and inflammation (Hla, 2004). Sphingosine kinase 

(SK) is a key enzyme in the sphingolipid pathway, as it regulates the levels of all three of the 

aforementioned lipids to influence cell fate. Furthermore, its activity is necessary for the 

clearance of sphingolipids, as once it produces S1P, the latter is hydrolyzed by S1P lyase in 

an irreversible reaction to produce hexadecenal and ethanolamine phosphate which marks 

the only exit point for the sphingolipid metabolic pathway.
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1.1. S1P signaling

Unlike the antiproliferative effects of ceramide and sphingosine, S1P has been shown to play 

a significant role in proliferation, migration, survival, angiogenesis, inflammation, and 

lymphocyte egress (Spiegel and Milstien, 2003). S1P can exert its various effects by binding 

five distinct and differentially expressed cell surface S1P receptors; these G-protein-coupled 

receptors were formerly referred to as endothelial differentiation gene (Edg) receptors (Taha 

et al., 2004), further highlighting S1P’s important prosurvival role.

S1P is capable of increasing cell survival and inhibiting the apoptotic process in a number of 

different cell types, including T cells (Goetzl et al., 1999; Kwon et al., 2001), and it has been 

also shown to induce a proliferative response in endothelial cells (Kimura et al., 2000) and 

vascular smooth muscle cells (Tamama et al., 2001). S1P, like potent angiogenic peptide 

growth factors such as VEGF and FGF-2, is now also considered one of the key regulators in 

angiogenesis. S1P acts on vascular endothelial cells via S1PR1 and S1PR3 receptors to 

stimulate migration and capillary-like tube formation in vitro (Kimura et al., 2000; Lee et 

al., 1999; Wang et al., 1999). This stimulatory activity of S1P on angiogenesis has recently 

been demonstrated in vivo in ischemic hindlimbs of mice (Oyama et al., 2008). Furthermore, 

siRNA-induced S1P receptor knockdown (Theilmeier et al., 2006) or FTY720-induced 

receptor downregulation has been shown to suppress tumor angiogenesis and tumor growth 

(LaMontagne et al., 2006; Nagaoka et al., 2008; Permpongkosol et al., 2002) as well as 

inhibit lymphocyte trafficking (Graler and Goetzl, 2004; Morris et al., 2005).

As S1P has been shown to be involved in cell survival, proliferation, and angiogenesis, it is 

easy to see how these S1P-mediated activities may contribute to the etiology of cancer 

(Olivera and Spiegel, 1993; Zhang et al., 1991). Interestingly, parenteral administration of 

S1P-specific antibodies has been shown to markedly slow human cancer xenograft 

progression and angiogenesis (Visentin et al., 2006). It is also important to note that S1P 

signaling has been implicated in the development of the drug resistant phenotype in cancer 

cells (Akao et al., 2006). Taken together, these findings implicate S1P as a very important 

signaling molecule in cancer biology that requires further study, and its manipulation may 

play a role in future anticancer therapies.

1.2. Sphingosine kinase

SK1 and SK2 are the enzymes responsible for catalyzing the conversion of sphingosine to 

S1P using adenosine triphosphate. Despite differences in structure (Okada et al., 2005) and 

cellular localization (Johnson et al., 2002) in vivo studies suggest that SK1 and SK2 may 

have some overlapping physiologic functions. For instance, although SK1 knockout (KO) 

mice and SK2 KO mice appear to develop normally, SK1/SK2 double KO mice suffer 

embryonic lethality due to inadequate angiogenesis and neurogenesis coupled with neuronal 

apoptosis (Mizugishi et al., 2005). SK1 and SK2 may in fact have some overlapping 

functions; however, a review of the current literature describes SK1 as being activated by 

several extracellular agonists and effecting extracellular S1P levels, whereas SK2 is 

considered to play more of a housekeeping role, and its function may be localized to the 

nucleus. Interestingly, it was recently shown that S1P produced by SK2 in the nucleus may 

regulate histone acetylation of the p21 promoter (Hait et al., 2009).
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Further insights into the relative roles of SK1 and SK2 in S1P production have been 

complicated by the development of SK KO mice. Both the SK1 KO and SK2 KO mice show 

no abnormal gross or histological phenotypes and no compensation in message levels of the 

other SK isoform. However, SK1 KO mice show decreased S1P levels in their serum, while 

this was not detected in the sera of SK2 KO mice. To further investigate this, SK1 +/− mice 

were crossed with SK2 +/− mice. Interestingly, offspring lacking one to three SK alleles in 

any combination were indistinguishable from the wild type, but no animals lacking all four 

alleles were born, indicating that the SK1 KO SK2 KO genotype was embryonic lethal. 

These embryos had no detectable S1P and suffered hemorrhage and exencephaly due to 

vascular and neural tube defects (Mizugishi et al., 2005). It was also shown that SK1 KO 

SK2 +/− female mice were infertile due to defective decidualization with decreased cell 

mitosis, increased cell death, and defective decidual blood vessel formation (Mizugishi et 

al., 2007).

Despite the unclear consequences of SK1 KO on sphingolipid homeostasis, these mice have 

been useful for studying the oncogenic role of SK1. KO of SK1 was able to decrease the size 

but not the incidence of adenomas in Apc Min/+ mice by attenuating epithelial cell 

proliferation in the polyps. SK1 KOled to an elevation of sphingosine content and decreased 

expression of the G1/S cell cycle regulator CDK4 and c-myc in these adenomas, whereas 

S1P levels were not altered. Furthermore, this protection was not observed when Apc Min/+ 

mice were crossed with S1P receptor KOs. This highlights that the intracellular function of 

SK1, independent of the extracellular signaling of its product, S1P, is critical for the growth 

of intestinal adenomas (Kohno et al., 2006). Other studies have also shown that KO of SK1 

can offer protection from chemically induced colon carcinogenesis (Kawamori et al., 2009; 

Snider et al., 2009).

The cancer preventative affects of SK1 KO are not confined to colon carcinogenesis but also 

apply to other chemically and genetically induced cancers. While 4-nitroquinoline-1-oxide 

(NQO) induced head and neck squamous cell carcinoma (HNSCC) in wild-type mice, 

genetic loss of SK1 prevented 4-NQO-induced HNSCC carcinogenesis with decreased 

tumor incidence, multiplicity, and volume. The SK1 KO mice showed decreased cell 

proliferation, increased caspase 3 activation, and decreased activation of AKT when 

compared with wild-type controls (Shirai et al., 2011). Work from our lab has shown that 

SK1 KO can protect p53 KO mice from developing their characteristic thymic lymphomas 

and increase their survival ~30%. Importantly, while KO of SK1 also protects p53 

heterozygote mice from the development of lymphomas, it also protected them from the 

development of other tumor types including osteosarcoma and decreased tumor incidence 

while prolonging their survival (Heffernan-Stroud et al., 2012). Thus, studies with the SK1 

KO mouse have confirmed the oncogenic character of SK1 in vivo.

2. SK1 IS AN ONCOGENE

Given its prime position in sphingolipid metabolism, SK1 expression affects the balance 

between prodeath and prosurvival sphingolipids to determine cell fate, a prime regulatory 

position for a potential oncogene. Likewise, screening of normal/tumor patient-matched 

thyroid and non-small-cell-lung cancer tissue, including carcinoid, squamous, and 
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adenocarcinoma, exhibited over-whelmingly positive immunostaining for SK1 as compared 

with patient-matched normal tissue (Guan et al., 2011a). Moreover, a twofold elevation of 

SK1 mRNA expression was observed in cancer versus normal tissue for several types of 

solid tumors including breast, uterus, ovary, colon, small intestine, and rectum in addition to 

lung (Johnson et al., 2005). Increased SK1 and S1P were also found in a mouse model of 

colon cancer, and remarkably SK1 KO mice were resistant to the azoxymethane induced 

colon cancer observed in mice expressing SK1 (Kawamori et al., 2009).

2.1. Increased expression of SK1 in cancer

The potent oncogene, Bcr/Abl, was shown to upregulate SK1 through various pathways 

leading to myeloid cell leukemia-1 (Mcl-1) expression in chronic myelogenous leukemia (Li 

et al., 2007a). In multiple myeloma cells, prokineticin-1, an endocrine gland-derived 

vascular endothelial growth factor, upregulates SK1 and Mcl-1 in addition to its activation of 

the MAPK, PI3K-AKT, and Jak-STAT3 pathways in order to protect cells from starvation-

induced apoptosis (Li et al., 2010). Transcriptional upregulation of SK1 has also been 

associated with the tumorigenic phenotype of transgenic proerythroblasts in a mouse model 

of erythroleukemia (Le Scolan et al., 2005). It has also been shown in MKN1 gastric cancer 

cells that lysophosphatidic acid signaling through ERK-1 activation upregulates SK1 to exert 

its proliferative effects (Ramachandran et al., 2010). Increased SK1 expression has been 

shown to correlate with carcinogenicity in several other cancers including acute leukemia 

(Sobue et al., 2008), endometrial cancer (Knapp et al., 2010), prostate cancer (Malavaud et 

al., 2010), HNSCC (Facchinetti et al., 2010; Shirai et al., 2011; Sinha et al., 2011), and 

thyroid cancer (Guan et al., 2011a).

As for the possible mechanisms for this transcriptional upregulation of SK1 in cancer, in 

human glioblastoma cells, upregulation of SK1 transcription is induced by IL-1 and is 

mediated by a novel AP-1 element located within the first intron of the SK1 gene, and this 

upregulation of SK1 can be blocked by inhibition of JNK (Paugh et al., 2009). Rapidly 

growing tumors often undergo hypoxia, and this results in HIF-1α and HIF-2α production 

which has been shown to stimulate two putative hypoxia-inducible factor-responsive-

elements in the SK1 promoter region (Anelli et al., 2008; Schwalm et al., 2008). Another 

pathway of SK1 upregulation has been found in rat pheochromocytoma cells in which nerve 

growth factor is able to upregulate SK1 expression in a pathway involving transcription 

factor specificity protein 1 (Sobue et al., 2005). Therefore, it seems that various transcription 

factors can promote SK1 expression for it to enact its oncogenic effects (Table 7.1).

2.2. SK1 as a prognostic indicator

The elevation of SK1 in various cancers implies that it could be a molecule of prognostic 

value. In fact, SK1 expression is higher in estrogen receptor (ER) negative breast tumors and 

its high expression correlates with worse survival and a higher chance of metastasis in 

patients, with carcinoma cells being the major source of SK1 expression in the tumors 

(Ruckhaberle et al., 2008). Furthermore, expression of SK1, but not SK2, in glioblastoma 

multiforme tissue correlated with short patient survival. Patients with low SK1 survived a 

median of 357 days, whereas those with high levels of SK1 survived a median of 102 days 

(Van Brocklyn et al., 2005). Also in glioblastoma multiforme, it was found that SK is 
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necessary for basal activity of the urokinase plasminogen activator system and glioma cell 

invasion (Young et al., 2009). High expression of SK1 in non-Hodgkin lymphomas (Bayerl 

et al., 2008), astrocytomas (Li et al., 2008), gastric cancer (Li et al., 2009), salivary gland 

carcinoma (Liu et al., 2010a), esophageal carcinoma (Pan et al., 2011), non-small-cell-lung 

cancer (Song et al., 2011), and head and neck squamous cell carcinoma (Facchinetti et al., 

2010) also correlates with grade and shorter survival time. Thus not only is SK1 over-

expressed in cancer, but it can also enhance tumor invasiveness and serve as a prognostic 

indicator.

Patients with ER-positive breast tumors that expressed high levels of both cytoplasmic SK1 

and ERK-1/2 had significantly shorter recurrence times than those that expressed low levels 

of cytoplasmic SK1 and cytoplasmic ERK-1/2, with a difference in recurrence time of 10.5 

years (Watson et al., 2010). In contrast, for patients with ER-positive breast cancer, a low 

HER1–3/SK1 expression ratio is correlated with improved prognosis compared to patients 

that have a high HER1–3/SK1 expression ratio. This is thought to occur since although the 

HER2 oncogene increases SK1 expression in these tumors, then SK1 limits HER2 

expression in a negative-feedback manner, this phenomenon has been termed “oncogene 

tolerance” (Long et al., 2010).

Although treatment failure and Gleason score were found to correlate with tumor SK1 

activity in prostate cancer patients (Malavaud et al., 2010), patients with prostate cancer 

were shown to have lower circulating levels of S1P and decreased SK1 activity in their 

erythrocytes when compared to healthy subjects. They found that decreased circulating S1P 

was an early marker of prostate cancer progression to hormonal unresponsiveness and 

correlated with prostate-specific antigen levels and lymph node metastasis as well as 

mortality (Nunes et al., 2012). Thus, implying that tumor versus serum SK1/S1P levels may 

have opposite prognostic indications in certain cancer patients.

2.3. Elevated SK1 confers resistance to chemotherapy

With increased SK1 correlated to poor prognosis in several cancers, it seems likely that 

overexpression of SK1 may confer resistance to current chemotherapeutics. In fact, imatinib-

induced apoptosis in K562 human chronic myeloid leukemia (CML) cells involves an 

increase in C18-ceramide; however, imatinib-resistant cells have increased expression of 

SK1 which elevates their S1P to C18-ceramide ratio sixfold and prevents apoptosis (Baran et 

al., 2007). Furthermore, impaired SK1/S1P signaling enhanced the growth-inhibitory effects 

of nilotinib against 32D/T315I-Bcr–Abl1-derived mouse allografts, demonstrating SK1 

inhibition as a potential chemosensitizer in CML (Salas et al., 2011).

Likewise, it has been found that camptothecin-resistant prostate cancer PC3 cells show 

higher expression of SK1 and S1PR1 and -3 receptors when compared to camptothecin-

sensitive, LNCaP cells, and inhibition of SK1 or the S1P receptors can inhibit cell growth in 

PC3 cells (Akao et al., 2006). Increased SK1 also appears to be involved in cisplatin 

resistance in lung cancer cells (Min et al., 2005), daunorubicin resistance in leukemia cells 

(Sobue et al., 2008), N-(4-hydroxyphenyl) retinamide resistance in ovarian carcinoma cells 

(Illuzzi et al., 2010), oxaliplatin resistance in colon cancer cells (Nemoto et al., 2009), and 

doxorubicin, docetaxel, and tamoxifen resistance in breast cancer cells (Ling et al., 2009; 
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Nava et al., 2002; Sukocheva et al., 2009). Accordingly, inhibition or knockdown of SK1 has 

been found to increase drug efficacy in acute myeloid leukemia cells (Bonhoure et al., 

2006), chronic myelogenous leukemia cells (Li et al., 2007a; Salas et al., 2011), colon 

cancer cells (Nemoto et al., 2009), and ovarian carcinoma cells (Illuzzi et al., 2010).

2.4. SK1 functions to suppress apoptosis of cancer cells

In vivo cells undergo apoptosis, cell cycle arrest, or senescence when their survival and 

growth no longer benefit the organism. When aberrant signaling overrides this response, 

these cells can become tumorigenic. Bioactive sphingolipids have been shown to be 

important signaling molecules for such cell fate decisions and SK is at crucial point for 

contributing to this since its product, S1P, is a prosurvival signaling molecule. Here, we 

review cell studies that illustrate the prosurvival role of the SK1/S1P pathway, in order to 

show how their functions at the cellular level might contribute to tumor initiation at the 

organismal level. For instance, in an elegant study by Le Scolan et al., they showed that 

overexpression of SK1 in erythroleukemic cells increased proliferation, clonogenicity, and 

resistance to apoptosis in reduced serum by a mechanism involving ERK1/2 activation and 

the PI3K/Akt pathway leading to increased tumorigenicity when engrafted in vivo. However, 

expression of a dominant-negative mutant of SK1 or treatment with a pharmacological 

inhibitor was able to reduce both cell growth and apoptosis-resistance in the tumorigenic 

erythroleukemia cells (Le Scolan et al., 2005). Furthermore, a novel hepatic growth factor 

that protects hepatocarcinoma cells, hepatopoietin Cn, was recently found to work through 

SK1 signaling to upregulate Mcl-1 expression to induce its antiapoptotic effects (Chang et 

al., 2010).

Work from our lab has shown in breast cancer cells, knockdown of SK1 causes cell cycle 

arrest and induces apoptosis involving effector caspase activation, cytochrome c release, and 

Bax oligomerization in the mitochondrial membrane, thus placing SK1 knockdown 

upstream of the mitochondrial pathway of apoptosis (Taha et al., 2006a). Knockdown or 

downregulation of SK1 has also been shown to lead to ceramide accumulation, decreased 

S1P, and apoptosis in other cancer cell lines including prostate cancer (Pchejetski et al., 

2005), glioblastoma (Van Brocklyn et al., 2005), chronic myelogenous leukemia cell lines 

(Li et al., 2007a), and neuroblastoma cells (Gomez-Brouchet et al., 2007). (Table 7.2) 

Likewise, when SK1 is overexpressed in breast cancer cells, it results in enhanced 

proliferation and resistance to tamoxifen-induced growth arrest and apoptosis (Sukocheva et 

al., 2009) and it confers resistance to other anticancer drugs, sphingosine, and TNF-α (Nava 

et al., 2002). Interestingly, other studies in breast cancer cells have suggested that 

overexpression of SK1 stimulates autophagy. And it was shown that nutrient starvation 

stimulates SK1 activity and that SK1/S1P-induced autophagy can protect cells from 

apoptosis under nutrient-deplete conditions (Lavieu et al., 2006). Overexpression of SK1 

was also shown to upregulate the Mcl-1 protein in multiple myeloma cells, leading to 

increased cell proliferation and survival. Furthermore, activation of SK1 was shown to 

mediate the suppressive effects of IL-6 on multiple myeloma cell apoptosis (Li et al., 

2007b). Overexpression or activation of SK1 has been shown to suppress the apoptotic 

response in a variety of other cell lines including rat pheochromocytoma cells (Edsall et al., 
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2001; Misasi et al., 2001) and Jurkat, U937, and HL-60 leukemia cells (Cuvillier and 

Levade, 2001) (Table 7.3).

SK1 status appears to be tightly linked with caspase-dependent apoptosis. KO of SK1, but 

not SK2, was shown to enhance caspase-3-mediated apoptosis induced by staurosporine 

(Hofmann et al., 2008). In several human leukemia cell lines (Jurkat, U937, and HL-60), 

S1P can inhibit caspase-3 activation by inhibiting translocation of cytochrome c and Smac/

DIABLO from mitochondria to cytosol (Cuvillier and Levade, 2001). In addition to its 

prosurvival product S1P, SK1 also regulates the level of its proapoptotic substrate, 

sphingosine. Recent studies have shown that binding of sphingosine to 14-3-3 proteins 

renders them phosphorylatable at the dimer interface, an event that abolishes their 

prosurvival signaling. Thus by reducing the availability of sphingosine for interaction with 

14-3-3, SK1 can inhibit cell death (Woodcock et al., 2010), underlining the important 

position of SK1 in balancing growth and death signaling sphingolipids.

2.5. SK1 affects apoptosis through controlling the cellular ceramide:S1P ratio

To illustrate this balancing act controlled by SK1, in noncancerous human endothelial cells, 

TNF activates sphingomyelinase and generates ceramide, but these cells are resistant to 

TNF-induced apoptosis since TNF also activates SK and increases S1P. However, in a 

transformed endothelial cell line (C11), TNF fails to activate SK and thus induces apoptosis, 

which treatment with S1P can prevent (Xia et al., 1999). Clearly, with its important role of 

regulating the balance between prodeath and prosurvival sphingolipids, modifications of 

SK1 could lead to aberrantly enhanced cell survival leading to tumorigenesis.

In fact, overexpression of SK1 in prostate cancer cells can increase resistance to 

chemotherapy by decreasing the ceramide:S1P ratio (Pchejetski et al., 2005). Furthermore, a 

significantly higher ceramide:S1P ratio was found in melanoma cells that are resistant to 

ceramide- and Fas-induced death than those sensitive to programmed cell death. 

Overexpression of SK1-reduced sensitivity of A-375 melanoma cells to Fas- and ceramide-

mediated apoptosis while siRNA of SK1 decreased resistance of Mel-2a cells to apoptosis. 

Interestingly, overexpression of prosurvival protein Bcl-2 in A-375 cells stimulated SK1 

expression and activity, and downregulation of Bcl-2-reduced SK1 expression (Bektas et al., 

2005). Furthermore, it has been shown that Dasatinib (Gencer et al., 2011) and resveratrol 

(Kartal et al., 2011) induce apoptosis through downregulating SK1 and upregulating 

ceramide synthase genes to increase the ceramide:S1P ratio in K562 CML cells (Gencer et 

al., 2011; Kartal et al., 2011). This opposing regulation of ceramide synthases and SK1 has 

also been observed in breast cancer samples (Erez-Roman et al., 2009). Moreover, our work 

has shown that through KO of SK1, an increased ceramide:S1P ratio is protective from 

thymic lymphoma development and may initiate tumor cell senescence in vivo (Heffernan-

Stroud et al., 2012) (Table 7.4).

2.6. SK1 inhibitors challenge cancer cell viability to enhance chemotherapy

Various studies have employed pharmacological inhibitors to show that inhibition of SK 

decreases cancer cell viability in neuroblastoma cells (Tavarini et al., 2000), glioblastoma 

cells (Bektas et al., 2009), and several types of leukemia cells (Cuvillier and Levade, 2001; 
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Paugh et al., 2008; Zhang et al., 2008) as well as in various solid tumor cell lines (French et 

al., 2003). SK inhibitors (outlined in Table 7.5). were found to be antiproliferative toward a 

panel of tumor cell lines, including lines with the multidrug resistance phenotype because of 

overexpression of either P-glycoprotein or multidrug resistance phenotype 1, and they could 

induce apoptosis (French et al., 2003). Furthermore, resistance to doxorubicin- or etoposide-

induced apoptosis in acute myeloid leukemia cells was attributed to sustained SK1 activity 

and reduced ceramide accumulation; likewise, apoptosis could be restored in these cells by 

treatment with an SK inhibitor, F-12509a (Bonhoure et al., 2006). Later results using the 

same inhibitor suggest that SK1 regulates imatinib-induced apoptosis in primary cells from 

CML patients, as inhibition of SK1 could kill both imatinib-sensitive and -resistant cells. 

This work places SK1 downstream of the Bcr–Abl/Ras/ERK pathway inhibited by imatinib 

and upstream of Bcl-2 family members (Bonhoure et al., 2008).

Inhibition of SK was also shown to reduce cell colony formation and activate caspase-3 in 

temozolomide-resistant glioblastoma multiforme cells (Bektas et al., 2009). And inhibition 

of SK1 or the S1P receptors can inhibit cell growth in camptothecin-resistant prostate cancer 

cells (Akao et al., 2006). Interestingly, treatment with SK inhibitors SK1-I or SK1-II, can 

selectively induce apoptosis in T cell large granular lymphocyte leukemia cells but not in 

normal peripheral blood mononuclear cells (Zhang et al., 2008). Likewise, treatment with 

SK1-I potently induced apoptosis in leukemic blasts isolated from patients with acute 

myelogenous leukemia but again was relatively sparing of normal peripheral blood 

mononuclear leukocytes (Paugh et al., 2008). In vivo, treatment with SK1-I induced 

apoptosis and reduced tumor vascularization leading to a markedly decreased tumor growth 

rate of glioblastoma xenografts and enhancing the survival of mice harboring LN229 

intracranial tumors (Kapitonov et al., 2009). Recently, production of an aspirinyl analog of 

SK1-I has been shown to increase its half-life for better in vivo delivery (Sharma et al., 

2010).

Moreover, combining SK1-I and the proteasome inhibitor, bortezomib, synergistically 

increases apoptosis, decreases colony formation, and induces downregulation of BCR/ABL 

and Mcl-1 in human leukemia cells and was even effective in imatinib-resistant cells (Li et 

al., 2011). Whereas, SK1-II on its own has been shown to induce proteasomal degradation of 

SK1 in human pulmonary artery smooth muscle cells, androgen-sensitive LNCaP prostate 

cancer cells, MCF-7 and MCF-7 HER2 breast cancer cells (Loveridge et al., 2010). 

Although FTY720 has been reported to be more proficient at inhibiting SK2, some studies 

claim that FTY720 and its analogue (S)-FTY720 vinylphosphonate behave as typical SK1 

inhibitors and induce proteasomal degradation of SK1 and apoptosis in breast and prostate 

cancer cells (Tonelli et al., 2010) as well as preventing S1P-stimulated rearrangement of 

actin in MCF-7 cells (Lim et al., 2011). Of note, it has also been reported that FTY720 

inhibits SK1 to increase radiation sensitivity of prostate cancer tumor xenografts to reduce 

tumor growth and metastasis in mice (Pchejetski et al., 2010).

The first putative-SK inhibitor to enter phase 1 clinical trials for advanced solid tumor 

therapy was Safingol, 1-threo-dihydrosphingosine, in 2011, which was found to decrease 

plasma levels of S1P and prolong stable disease/inhibit cancer progression when used in 

combination with cisplatin in a small cohort of patients (Dickson et al., 2011). However, new 
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SK1 inhibitors with increased specificity are being developed. As the upregulation of SK1 in 

HNSCC cells correlates with their radioresistance, a group developed gold nanorod-SK1 

siRNA nanocomplexes as a method of radiosensitization of head and neck cancer to achieve 

over 50% greater tumor regression as compared to controls (Masood et al., 2012).

Recently developed amidine-based SK1 nanomolar inhibitors were shown to significantly 

reduce S1P levels in human leukemia U937 cells (Kennedy et al., 2011). Two sphingo-

guanidine salts named LCL146 and LCL135 have been reported to be cytotoxic to cancer 

cells and decrease the migration rate of human prostate (DU145) cells through their 

inhibition of SK (Sharma, 2011). Interestingly, the anticancer agent resveratrol and its 

dimers, ampelopsin A and balanocarpol, have been shown to downregulate SK1 in MCF-7 

human breast cancer cells (Lim et al., 2012). The AKT inhibitor, BI-69A11, was shown to 

reduce NF-κB signaling through its inhibition of SK1 to inhibit melanoma growth (Feng et 

al., 2011). All of these results indicate that an SK1 inhibitor could be a beneficial addition to 

the chemotherapeutic strategies employed for treating various types of tumors, leading to 

extensive review of the subject (Cuvillier, 2007, 2008; Edmonds et al., 2011; Gault and 

Obeid, 2011; Pallis, 2002; Pitman and Pitson, 2010; Pyne et al., 2011; Shida et al., 2008b; 

Uddin and Platanias, 2008).

3. SK1/S1P SIGNALS FOR TUMOR GROWTH AND SPREAD

Not only does SK1 protect cell survival, it also plays an important role in signaling for cell 

proliferation. It appears that SK1-dependent Akt activation plays a significant role in cell 

proliferation induced by TNF-α in 1321N1 glioblastoma cells (Radeff-Huang et al., 2007) 

and by 11,12-epoxyeicosatrienoic acid in human umbilical vein endothelial cells (Yan et al., 

2008). SK1 has also been found to act as a proproliferative oncogenic kinase in thyroid 

cancer where it appears to activate the Akt/glycogen synthase kinase-3β/β-catenin pathway 

(Guan et al., 2011a). Moreover, various growth factors have been shown to function in part 

by upregulating SK1 expression and/or activity, these include PDGF (Francy et al., 2007), 

NGF (Edsall et al., 2001), IGF-BP3 (Martin et al., 2009), VEGF (Shu et al., 2002), and EGF 

(Doll et al., 2005). VEGF induces DNA synthesis in a pathway which sequentially involves 

protein kinase C, SK, Ras, Raf, and ERK1/2 (Shu et al., 2002). And epidermal growth factor 

both acutely and transcriptionally upregulates SK1 in a MAPK-, PKC-, and PI3K-dependent 

manner. Accordingly, when cells are depleted of SK1, but not SK2, by siRNA, EGF-induced 

proliferation and migration are drastically reduced (Doll et al., 2005). Also through the 

ERK1/2 and PI3K signaling pathways, glial cell line-derived neurotrophic factor induces 

transcription of SK1 which leads to neurite formation, GAP43 expression, and cell growth in 

TGW human neuroblastoma cells and growth and anchorage-independent colony formation 

in a model of multiple endocrine neoplasia type 2 tumor (Murakami et al., 2007).

3.1. Hormonal regulation of SK1

Hormones have also been shown to activate SK1. Progesterone induced SK1 expression (30-

fold) in the rat uterus during pregnancy in the glandular epithelium, vasculature, and 

myometrium. Overexpression of SK1 in a rat myometrial leiomyoma cell line (ELT3) 

resulted in increased levels of the cell cycle regulator cyclin D1 and increased myosin light-
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chain phosphorylation and increased proliferation rates (Jeng et al., 2007). Prolactin and 17-

β estradiol were also shown to activate SK1, but not SK2, in MCF-7 breast adenocarcinoma 

cells both within minutes and within hours after STAT5-, PKC-, and MAPK-dependent 

promoter activation. Either inhibition of SK1 activation with glucocorticoids or direct 

knockdown of SK1 with siRNA could abolish the hormone-induced cell proliferation and 

migration observed in the breast cancer cells (Doll et al., 2007).

Interestingly, the SK1-II inhibitor binds the ER directly in the antagonist ligand-binding 

domain. SK1-II was shown to dose-dependently decrease estrogen-stimulated estrogen 

response element transcriptional activity and diminish mRNA levels of the ER regulated 

genes progesterone receptor and steroid derived factor-1 to block breast cancer viability, 

clonogenic survival, and proliferation (Antoon et al., 2011). In addition to hormonal 

regulation of SK1 in breast cancer, dihydrotestosterone was shown to signal for proliferation 

through an androgen receptor/PI3K/Akt-dependent stimulation of SK1 in hormone-sensitive 

prostate cancer cells (Dayon et al., 2009). This hormonal regulation of SK1 has even been 

shown to be important in neuroblastoma cell lines in which 17β-estradiol upregulates SK1 to 

protect from Tau hyperphosphorylation and glutamate toxicity (Lopez-Tobon et al., 2009).

3.2. SK1 functions to enhance proliferation of cancer cells

SK1 can signal to a cell to proliferate through its product S1P. For instance, in the presence 

of retinoic acid receptor alpha, retinoic acid upregulates neutral sphingomyelinase and 

downregulates SK1 to inhibit cell growth, but in the absence of that receptor, retinoic acid 

activates SK1 and promotes cell growth through S1P (Somenzi et al., 2007). Addition of 

S1P increases proliferation in neuroblastoma cells (Tavarini et al., 2000) and extracellular 

S1P is required for basic fibroblast growth factor-induced growth stimulation of astrocytes 

(Bassi et al., 2006). In a glioma cell line, S1P induces expression of early growth response-1, 

an essential transcription factor for fibroblast growth factor 2 (Sato et al., 1999). This was 

the first report of S1P acting as a transcription factor, and its role as a molecule capable of 

epigenetic regulation was more recently elucidated when it was shown to regulate histone 

acetylation (Hait et al., 2009). Clearly, SK1 and its product S1P could employ their potent 

proliferative signaling to enhance tumor growth.

3.3. SK1 can stimulate angiogenesis to increase blood supply to tumors

In order to maintain rapid growth, tumors require a sufficient vascular supply. As tumor cells 

rapidly proliferate, they undergo hypoxia which results in their signaling for new blood 

vessels to be formed. Hypoxia increases SK1 mRNA, protein, and activity in human glioma 

U87MG cells, followed by intracellular S1P production and S1P release and this could all be 

inhibited with knockdown of HIF-2α by siRNA (Anelli et al., 2008). Similar results were 

observed in endothelial cells themselves, where their production of HIF-1α and HIF-2α and 

their binding to two putative hypoxia-inducible factor and -responsive elements in the SK1 

promoter led to increases in SK1 (Schwalm et al., 2008). Furthermore, our lab showed that 

conditioned medium from hypoxia-treated tumor cells results in neoangiogenesis in human 

umbilical vein endothelial cells in an S1P receptor-dependent manner (Anelli et al., 2008). 

Interestingly, inhibition of SK1 activity can prevent the accumulation of HIF-1α and its 

transcriptional activity in several human cancer cell lineages including prostate, brain, 
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breast, kidney, and lung (Ader et al., 2008). Thus, SK1 signaling appears to play an 

important role in creating new vasculature in order for oxygen and nutrients to be delivered 

to oxygen-starved tumors.

In addition to angiogenesis, SK1 has recently been shown to play a role in 

lymphangiogenesis. SK1 overexpression in HEK cells or its downregulation in glioma or 

breast cancer cells modulated extracellular S1P levels accordingly, which in turn increased 

or decreased both migration and tube formation in cocultured vascular or lymphatic 

endothelial cells. Furthermore, S1P initiated endothelial cell sprouting in three-dimensional 

collagen matrices (Anelli et al., 2010). Activation of SK1 has been shown to be necessary 

for the angiogenic effects of 11,12-epoxyeicosatrienoic acid, a product of cytochrome p450 

epoxygenases (Yan et al., 2008), TNF-α (Xia et al., 1998), and VEGF (Kolmakova et al., 

2009). Likewise, inhibition of SK has been shown to be responsible for the antiangiogenic 

properties of phenoxodiol (2H-1-benzopyran-7-0, 1,3-[4-hydroxyphenyl]), an anticancer 

drug undergoing clinical trials for its apoptotic properties (Gamble et al., 2006), and 

alphastatin, the potent antiangiogenic molecule that has been shown to inhibit gastric cancer 

angiogenesis (Chen et al., 2006; Li and Chen, 2009). In NIH3T3 cells with dominant 

negative CBF1, SK1 is required for FGF1 export and acceleration of cell growth to produce 

highly angiogenic tumors in nude mice (Kacer et al., 2011). Therefore, the angiogenic 

signaling properties of SK1 appear to be important for vascularization, and hence expansion, 

of tumors.

3.4. SK1 may enhance tumor metastasis

In addition to its angiogenic and lymphangiogenic properties, other aspects of SK1 signaling 

that could potentially contribute to tumor metastasis have been elucidated. For instance, 

upregulation of SK1 led to a migratory response in endothelial cells (Schwalm et al., 2008) 

and promotes migration of thyroid follicular carcinoma cells (Bergelin et al., 2009). 

Whereas, depletion of SK1 can inhibit EGF-induced (Doll et al., 2005; Sarkar et al., 2005), 

as well as hormone-induced migration of breast cancer cells (Doll et al., 2007), and it can 

abrogate migration toward EGF in HEK293 cells (Hait et al., 2005). SK1 was also shown to 

be required for nucleotide-induced migration of renal mesangial cells (Meyer zu Heringdorf 

and Jakobs, 2007). Moreover, the antimetastasis molecule KAI1 has been shown to suppress 

migration of pancreatic carcinoma cells through downregulation of SK activity (Guo et al., 

2006), and it has been shown to downregulate hepatocyte growth factor induced activation of 

SK1 in order to impede migration of hepatoma cells (Mu et al., 2008). These results indicate 

that the regulation of SK1 is a crucial regulator of cell migration.

The ability to migrate as well as invasiveness and the aggressiveness of tumor cells is what 

distinguishes a benign mass from malignant cancer. Importantly, NIH3T3 fibroblasts 

overexpressing SK acquire a transformed phenotype, as determined by focus formation, 

colony growth in soft agar, and the ability to form tumors in NOD/SCID mice, and SK 

activity appears to be involved in transformation mediated by the potent oncogene, H-Ras 

(Xia et al., 2000). Furthermore, TGF-β’s activation of SK and formation of S1P contribute 

to non-Smad signaling that could be important for progression of esophageal cancer (Miller 

et al., 2008), and S1P is able to induce invasion of glioblastoma cells (Bryan et al., 2008). 
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Studies show that hepatocellular carcinoma cell migration and invasion may also be 

promoted by SK1/S1P signaling through S1PR1 (EDG1) (Bao et al., 2011). Moreover, S1P 

has been shown to signal through S1PR2 for apoptotic cell extrusion, which because live 

cells can also be extruded, it is postulated that this may serve as a mechanism for the 

invasion of cancer cells (Gu et al., 2011). Other studies have suggested that SK1 is a 

convergence point of multiple cell surface receptors for LPA, EGF, and S1P, which have all 

been implicated in the regulation of motility and invasiveness of cancer cells (Shida et al., 

2008a). Thus, it appears that SK1 signaling can contribute to the malignant transformation 

of tumors and their metastasis.

4. CONCLUSION

Through both regulating ceramide and sphingosine accumulation within the cell and 

producing S1P, increased expression of SK1 results in an oncogenic phenotype. Decreased 

ceramide and sphingosine levels can confer chemotherapeutic resistance to cancer cells and 

increased S1P can stimulate the proliferation, vascularization, and metastasis of tumors. 

Therefore, SK1 represents an important target for chemotherapy.
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Table 7.1

Consequences of upregulation of SK1 in cancer

Cancer type Inducer (reference) Result Cell line

Breast adenocarcinoma Prolactin or 17-β estradiol (Doll et 
al., 2007)

Proliferation and migration MCF-7

Estrogen (Sukocheva et al., 2006) Release of S1P activates S1P3 receptor 
resulting in transactivation of enhanced 
growth factor receptor in a MMP-
dependent manner

MCF-7

EGF (Doll et al., 2005) Proliferation and migration MCF-7

HER2 (Long et al., 2010) Limits p21-activated protein kinase 1 and 
ERK1/2 signaling and desensitizes the 
S1P-induced formation of a migratory 
phenotype through negative feedback

ER+MCF-7 HER2

Esophageal adenocarcinoma TGF-β (Miller et al., 2008) ERK1/2 activation and progression of 
cancer through non-Smad signaling

OE33

Glioma Hypoxia and HIF-2α (Anelli et al., 
2008)

Neoangiogenesis U87MG

EGF and EGFRvIII (Estrada-
Bernal et al., 2010)

Proliferation U-1242, U-251, and 
U-251-E18

Hepatocellular carcinoma Hepatopoietin Cn (Chang et al., 
2010)

Increases cell viability, decreases 
trichostatin A-induced apoptosis, and 
upregulates myeloid cell leukemia-1

SMMC7721 and HepG2

Leukemia and lymphoma PI3K/AKT2/mTOR (Marfe et al., 
2011)

Imatinib resistance K652

12-Ootetradecanoyl-phorbol-13-
acetate (Cuvillier and Levade, 
2001)

Inhibits cytochrome c and Smac/DIABLO 
release

Jurkat, U937, HL-60

BCR/ABL (Li et al., 2007a) Upregulation of Mcl-1 BaF3

Multiple myeloma IL-6 (Li et al., 2007b) Protection from apoptosis XG-7, SKo-007, U266

Neuroblastoma 17β-Estradiol (Lopez-Tobon et al., 
2009)

Protects from glutamate-induced Tau 
hyperphosphorylation

SH-5Y5Y

Pheochromocytoma Prosaposin Misasi et al., 2001 DNA synthesis and protection from 
apoptosis

PC12

Prostate adenocarcinoma Dihydrotestosterone (Dayon et al., 
2009)

Reestablishes cell proliferation of 
androgen-deprived cells

LNCaP
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Table 7.2

Consequences of downregulation of SK1 in cancer

Cancer type Inhibitor (reference) Result Cell line

Cervical adenocarcinoma NADH (De Luca et al., 
2010)

Antiproliferative HeLa

Hepatocellular carcinoma KAI1/CD82 overexpression, 
Sprouty2 (Mu et al., 2008)

Reduces migration induced by hepatocyte growth factor SMMC-7721

Leukemia Dasatinib (Gencer et al., 
2011)

Apoptosis K562 Meg-01

Spred2 (Liu et al., 2010b) Inhibits proliferation, induces apoptosis, and enhances 
imatinib-induced cytotoxicity

K652

AKT2 suppression (Marfe 
et al., 2011)

Increased sensitivity to imatinib-induced apoptosis K652

Leukemia and breast 
cancer

Resveratrol (Cakir et al., 
2011; Kartal et al., 2011) 
and its dimers Ampelopsin 
A and Balanocarpol (Lim et 
al., 2012)

Apoptosis PARP cleavage HL60, K562 MCF-7

Melanoma AKT inhibitor BI-69A11 
(Feng et al., 2011)

Antiproliferative UACC 903 SW1

Neuroblastoma Amyloid-β peptide (Gomez-
Brouchet et al., 2007)

Apoptosis SH-SY5Y

Pancreatic carcinoma KAI1 overexpression (Guo 
et al., 2006)

Inhibits migration PANC1

Prostate adenocarcinoma Inhibition of PI3K/Akt 
pathway (Dayon et al., 
2009)

Prevents neuroendocrine differentiation/transformation LNCaP

Docetaxel (Pchejetski et al., 
2005)

Decreased tumor volume, reduced occurrence and 
number of metastases in a mouse model

PC-3

Docetaxel (Sauer et al., 
2009)

Apoptosis PC-3 and DU145

Gamma irradiation (Nava et 
al., 2000)

Apoptosis TSU-Pr1

Dietary polyphenols 
(Brizuela et al., 2010)

Apoptosis and decreased tumor growth PC-3 and C4-2B

Adv Cancer Res. Author manuscript; available in PMC 2017 June 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heffernan-Stroud and Obeid Page 25

Table 7.3

Consequences of SK1 overexpression in cancer

Cancer type (reference) Result of SK1 overexpression Cell line

Breast adenocarcinoma (Sukocheva et al., 2003, 
2009)

Prevents cell death and enhances proliferation and resistance to 
tamoxifen-induced growth arrest and apoptosis

MCF-7

Esophageal adenocarcinoma (Pan et al., 2011) Increases the invasiveness of cells in vitro and cell growth and 
spontaneous metastasis in vivo

EC9706

Fibrosarcoma (Xia et al., 2000) Leads to transformation and tumor formation NIH3T3

Glioma (Guan et al., 2011b) Protects cells from UV- or adriamycin-induced apoptosis through 
PI3K-dependent activation of Akt, inactivation of FOXO3a, and 
downregulation of Bim

U87MG and LN-382

Leukemia (Marfe et al., 2011) Imatinib resistance K562

Multiple myeloma (Li et al., 2007b) Increases proliferation and survival, inhibits dexamethasone 
induced apoptosis, and upregulates Mcl-1

XG-7, SKo-007, U266

Non-small-cell-lung cancer (Song et al., 2011) Inhibits doxorubicin- or docetaxel-induced apoptosis through 
activation of the PI3K/Akt/NF-κB pathway

95D and A549

Ovarian carcinoma (Illuzzi et al., 2010a, 2010b) Induces N-(4-hydroxyphenyl) retinamide (HPR) resistance A2780

Pheochromocytoma (Edsall et al., 2001) Protects from apoptosis in response to trophic factor withdrawl or 
C2-ceramide treatment

PC12

Prostate adenocarcinoma (Pchejetski et al., 2005) Increases tumor volume and resistance to docetaxel in a mouse 
model

PC-3
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Table 7.4

Consequences of SK1 knockdown in cancer

Cancer type (reference) Result of SK1 knockdown Cell line

Bladder carcinoma (Shu et al., 2002) Blocks VEGF-induced DNA synthesis and Ras-GTP and p-
ERK accumulation

T24

Breast adenocarcinoma (Sukocheva et al., 2009; 
Sarkar et al., 2005)

Restores cell growth arrest and apoptosis in tamoxifen-
resistant MCF-7 cells

MCF-7

Reduced EGF and serum stimulated growth; enhanced 
sensitivity to doxorubicin

MCF-7

Colon adenocarcinoma (Nemoto et al., 2009) Restores chemosensitivity to oxaliplatin including increased 
C16-ceramide, decreased pAkt, increased p53 and p21 
protein levels and PARP cleavage

RKO

Gastric cancer (Fuereder et al., 2011) Increases apoptosis, inhibits growth by 50%, and increases 
sensitivity to doxorubicin treatment

MKN28 and N87

Glioma (Radeff-Huang et al., 2007; Van Brocklyn 
et al., 2005)

Decreases TNF-α-stimulated Akt phosphorylation, cyclin D 
expression, and DNA synthesis

1321N1

Decreases proliferation rate and prevents cells from exiting 
G1

U-1242 MG, U87MG

Glioma and breast adenocarcinoma (Anelli et al., 
2010)

Decreased migration and tube formation in cocultured 
vascular or lymphatic endothelial cells

U87MG, MDA-MB-231

Head and neck squamous cell carcinoma (Shirai et 
al., 2011; Sinha et al., 2011)

Prevents 4-nitroquinoline-1-oxide-induced head and neck 
squamous cell carcinoma (HNSCC)

Mouse model

Reduces xenograft tumor proliferation and volume 
synergistically with radiation treatment

SCC-15 in Mouse model

Leukemia (Salas et al., 2011; Bonhoure et al., 
2008; Marfe et al., 2011; Li et al., 2007a; Sobue et 
al., 2008)

Reduces Bcr–Abl1 stability K562/IMA-3 MEFs

Apoptosis of imatinib-sensitive and resistant cells Primary CML

Increases sensitivity to imatinib-induced apoptosis in 
resistant cells and returns BCR–ABL to baseline levels

K562

Enhances STI571-induced apoptosis K562

Increases daunorubicin sensitivity K562

Non-small-cell-lung cancer (Song et al., 2011) Increases doxorubicin- or docetaxel-induced apoptosis 
through decreased activation of the PI3K/Akt/NF-κB 
pathway

95D and A549

Prostate cancer (Cho et al., 2011) Blocked expression of HIF-1α during hypoxia, decreased 
phospho-Akt and VEGF production

PC-3

Thyroid cancer (Guan et al., 2011a) Leads to dephosphorylation of protein kinase B and glycogen 
synthase kinase-3β and subsequent inactivation of β-catenin-
T-cell factor/lymphoid enhancing factor transcriptional 
activity and decreases cell proliferation

WRO, FRO, SW579

Various tumors (Heffernan-Stroud et al., 2012) Protects p53 KO mice from thymic lymphoma and p53 
heterozygote mice from sarcoma development to increase life 
span ~30%

Mouse model
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Table 7.5

Effects of SK1 inhibitors in cancer

Inhibitor Mechanism of action

SKI-I (French et al., 2003)

Induces apoptosis and suppresses tumor growth rate and vascularization of glioblastoma 
xenografts (Kapitonov et al., 2009)

Sensitizes pancreatic cancer cells to gemcitabine induced death (Guillermet-Guibert et al., 2009)

Decreases growth and survival while enhancing apoptosis and Bcl-2 cleavage in leukemia cells 
(Paugh et al., 2008)

Suppresses lysophosphatidic acid mediated proliferation in gastric cancer cells (Ramachandran et 
al., 2010)

Suppressed S1P levels, decreased hemangiogenesis and lymphangiogenesis, reduced metastases to 
lymph nodes and lungs, and decreased overall tumor burden in murine model of breast cancer 
(Nagahashi et al., 2012)

Blocked cell proliferation and induced apoptotic cell death in glioblastoma multiforme 
neurosphere cell line (Estrada-Bernal et al., 2010)

Increases oxaliplatin-induced cytotoxicity in colon cancer (Nemoto et al., 2009)

Increases sensitivity of non-small-cell-lung cancer cells to doxorubicin- or docetaxel-induced 
apoptosis (Song et al., 2011)

Rescues daunorubicin sensitivity in leukemia cells (Sobue et al., 2008)

Enhances ability of imatinib mesylate to inhibit cell growth, survival, and clonogenic potential in 
leukemia cells (Ricci et al., 2009)

Sensitizes prostate and breast cancer cells to docetaxel (Sauer et al., 2009) (as does B-5354c)

Reduces proliferation and sensitizes ovarian cancer cells to cytotoxic effect of N-(4-
hydroxyphenyl) retinamide (Illuzzi et al., 2010a, 2010b)

Impedes DHT-induced cell proliferation, DNA synthesis, and PSA secretion in prostate cancer 
cells (Dayon et al., 2009)

SKI-II (French et al., 2003)

Blocks expression of urokinase plasminogen activator and its receptor to inhibit glioma cell 
invasion (Young et al., 2009)

Prevents accumulation and transcriptional activity of HIF-1α in prostate, brain, breast, and lung 
cancer cells (Ader et al., 2008)

Reduces cell colony formation and activates of caspase-3 in glioblastoma cells (Bektas et al., 
2009)

Antimigratory and toxic effects on human glioma and glioma stem cells (Mora et al., 2010)

Blocks breast cancer viability, clonogenic survival, and proliferation and dose-dependently 
decreases estrogen-stimulated estrogen response element transcriptional activity (Antoon et al., 
2011)

Sensitizes HNSCC to radiation-induced cytotoxicity (Sinha et al., 2011)

Induces proteasomal degradation of SK1 and apoptosis in androgen-sensitive prostate cancer cells 
Loveridge et al., 2010

Triggers lysosomal degradation of SK1 rather than direct inhibition of SK1 in HEK293 cells and 
lung cancer cells (Ren et al., 2010)

Increases Tau hyperphosphylation by glutamate in neuroblastoma cells (Lopez-Tobon et al., 2009)

SKI-I and SKI-II Induce apoptosis of T-LGL leukemia PBMCs but not normal PBMCs (Zhang et al., 2008)

SKI-I, SKI-II, and SKI-V Reduce rate of solid tumor growth when JC mammary adenocarcinoma cells injected into BALB/c 
mice (French et al., 2006)

SKI-I, SKI-II, SKI-III, SKI-IV, and SKI-V Induce apoptosis of bladder cancer cells (French et al., 2003)

SKI-II and DMS Decreases TNF-α-stimulated DNA synthesis in glioma cells (Radeff-Huang et al., 2007)

DMS Sensitizes prostate cancer cells to gamma-irradiation (Nava et al., 2000)
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Inhibitor Mechanism of action

Enhances cytochrome c and Smac/DIABLO release in leukemia cells (Cuvillier and Levade, 
2001)

Inhibits proliferation of Gastric Carcinoma cells (Ren et al., 2002)

Increases sensitivity to imatinib-induced apoptosis in resistant chronic myeloid leukemia cells and 
returns BCR–ABL to baseline levels (Marfe et al., 2011)

DMS and DHS Enhance apoptosis of leiomyoma cells in response to serum starvation by antagonizing the effects 
of endothelin-1 (Raymond et al., 2006)

DHS Protects rhabdomyosarcoma cells from from TRAIL-induced apoptosis (Petak et al., 2003)

Phytosphingosine derivatives Methylphytosphingosine induces apoptosis, decreases phophorylation of ERK, and inhibits 
daunorubicin-induced ERK activation in leukemia cells (Pewzner-Jung et al., 2010)

Dimethylphytosphingosine suppresses cell growth and induces apoptosis in human leukemia cells; 
decreases phophorylation of ERK and inhibits daunorubicin-induced ERK activation to enhance 
its cytotoxicity in leukemia cells (Park et al., 2010)

F-12509a Enhances imatinib-induced apoptosis in leukemia cells (Bonhoure et al., 2008)

B-5354c Induces apoptosis and sensitizes prostate cancer cells to docetaxel and camptothecin to reduce 
tumor size in vivo (Pchejetski et al., 2005, 2008)
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