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Abstract The aim of the present work was to develop a

model that supplies accurate predictions of the yields of

delta-endotoxins and proteases produced by B.

thuringiensis var. kurstaki HD-1. Using available medium

ingredients as variables, a mathematical method, based on

Plackett–Burman design (PB), was employed to analyze

and compare data generated by the Bootstrap method and

processed by multiple linear regressions (MLR) and arti-

ficial neural networks (ANN) including multilayer per-

ceptron (MLP) and radial basis function (RBF) models.

The predictive ability of these models was evaluated by

comparison of output data through the determination of

coefficient (R2) and mean square error (MSE) values. The

results demonstrate that the prediction of the yields of

delta-endotoxin and protease was more accurate by ANN

technique (87 and 89% for delta-endotoxin and protease

determination coefficients, respectively) when compared

with MLR method (73.1 and 77.2% for delta-endotoxin and

protease determination coefficients, respectively), sug-

gesting that the proposed ANNs, especially MLP, is a

suitable new approach for determining yields of bacterial

products that allow us to make more appropriate predic-

tions in a shorter time and with less engineering effort.

Keywords Delta-endotoxins � Proteases � Bacillus
thuringiensis � Bootstrap method � Multiple linear

regression � Artificial neural networks

Introduction

Bacillus thuringiensis is a Gram-positive bacterium used as

a biopesticide in agriculture. Compared to chemical pesti-

cides, its benefits are a particular toxicity against specific

insects and safety to non-target organisms. The insecticidal

characteristics of B. thuringiensis are due to ento-

mopathogenic proteins produced through sporulation and

proteolytic enzymes considered as primary metabolites.

Bacillus genus bacteria are considered as the most ento-

mopathogenic microorganisms used as biocontrollers. Thanks

to spore-forming and toxin secretion, Bacillus is appropriate to

scale-up production and field use. Toxins are proteins synthe-

sized during the sporulation stage (Charles et al. 1997) and are

efficient against insects such as lepidoprans, coleopterans and

dipterans (Van Frankenhuyzen 2013). Thus, the Bacillus

thuringiensis var. kurstaki HD-1 strain is successfully com-

mercialized as an agrochemical pesticide (Navon 2000).

Insecticidal activity ofBacillus thuringiensis strains is based

on the production of a crystalline parasporal inclusion (named

delta-endotoxin) during sporulation. The protoxin proteins, also

called Cry proteins, are classified according to their toxicity

level and the types of insects which are specifically sensitive to

each of them. Moreover, suitable selection of medium ingre-

dients and culture conditions are decisive to the commercial

production success achieved through high toxic activity per

fermentation broth volume. After exhaustion of one or more
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nutrients, B. thuringiensis produces spores and parasporal

crystal proteins (also called delta-endotoxins) exhibiting

insecticidal activity with high specificity to insect larvae. The

harvested mixture of spores and crystals after the completion of

sporulation are formulated as bioinsecticides, and quality is

related to its potency and stability (Ghribi et al. 2007). The most

important components of culture medium are carbon and

nitrogen sources, as well as trace elements. Added to the pro-

duction of insecticidal proteins, B. thuringiensis has also been

considered as an excellent producer of protease enzymes. In

fact, B. thuringiensis var. israelensis, B. thuringiensis var.

kurstaki and B. thuringiensis var. tenebrionis are the major

proficient strains of B. thuringiensis in producing proteases

(Hotha and Banik 1997; Tyagi et al. 2002). Microbial proteases

catalyze the hydrolysis of proteins (Haq et al. 2006). There are

two main protease types: intracellular and extracellular.

Extracellular proteases hydrolyze proteins in the medium and

allow the assimilation of the degraded products by the cell,

whereas, intracellular proteases are required to support cellular

and metabolic pathways, such as sporulation and cell differ-

entiation, protein turnover and also the transformation of pro-

toxins into mature endotoxins (Hartley 1960). In general,

Bacillus proteases are extracellular and could be accumulated

in the fermentation medium. The production of extracellular

proteases by microorganisms is influenced by medium com-

ponents, essentially carbon and nitrogen sources (McKellar and

Cholette 1984), and metal ions (Adinarayana et al. 2003). In

addition, some studies had shown that B. thuringiensis bioin-

secticides production is achieved by important levels of

enzymes in the growth media (Zouari and Jaoua 1999; Chen

et al. 2004). The production of enzymes by microorganisms is

induced by medium components (Singh et al. 2004). Proteolytic

activities are necessary to assimilate proteins as nitrogen

source, but they are involved in the stability of proteins pro-

duced by the micro-organism as metabolites. Some microor-

ganisms produce low amounts of these enzymes, thus limiting

their biotechnological application. Nevertheless, by rather

simple manipulations, the use of a definite and optimized

medium could enhance the yield productions. The protease

production in Bacillus species are affected by various complex

mechanisms especially during the transition state between

exponential growth, when the production is difficult (Frankena

et al. 1985), and the stationary phase (Strauch and Hoch 1993).

In our previous work, we showed that a significant relationship

exists between the accumulation of delta-endotoxins of B.

thuringiensis and the available proteolytic activities in the

medium (Ennouri et al. 2013c).

The selection of an appropriate fermentation medium to

develop an industrial fermentation is a decisive assignment

since its product concentration and total yield are signifi-

cantly influenced by the fermentation medium composi-

tion. This design can be arduous, costly, and often time

consuming, involving many trials (Chen et al. 2010). To

specify the optimal conditions for product formation in

fermentation process optimization, it is crucial to evaluate

the medium component concentrations and to choose the

best process condition combination (Stanbury et al. 1997).

In our study, it is essential to establish a balanced system in

which the synthesis and accumulation of delta-endotoxins

in the fermentation broth is not counteracted by proteolytic

activities of B. thuringiensis. It is still complicated to

predict simultaneously yields of several bioproducts using

a given set of cultivation factors.

In this regard, several regression models could be built

from yield analyses, and then be used for yield predictions.

Multivariate linear regression (MLR) techniques are suit-

able statistical tools to approximate complex relationships

of the prediction variables (Baffi et al. 1999). MLR is a

statistical method used to investigate the relationship

between one response variable (dependent variable) with

two or more variables (independent variables). If the

relation between the dependent and other independent

variables could be found using multiple regressions, a

better control approach could be sought. Usually, the

modelling used in bioprocesses is based on equation

equilibrium combined with substrate consumption and

product formations. However, these methods have been

proven to be inefficient to reveal the nonlinear relationships

between influenced variables and responses (Lee and Park

1999). An alternative approach based on artificial neural

networks (ANN) has been utilized in modelling industrial

fermentation processes (Khaouane et al. 2013). Such

approaches are able to solve specific problems through

learning, by typical inputs and corresponding desired

responses, unlike usually employed methods that consist of

the construction of an algorithm and its execution as a

computer program (Tadeusiewicz 1993).

The aim of the present work was to identify the most

important medium ingredients for the improvement of

delta-endotoxin and protease yields produced by B.

thuringiensis var. kurstaki HD-1. Moreover, mathematical

models are constructed by means of two different artificial

intelligence techniques, namely MLR and ANN. The

obtained predictions of delta-endotoxin and protease yields

are compared in terms of accuracy to decide upon the most

efficient technique.

Materials and methods

Microorganisms

Microbial strain HD-1, identified as B. thuringiensis var.

kurstaki strain (ATCC39756), was provided kindly by
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Dr. Daniel R. Zeigler (Bacillus Genetic Stock Center,

Columbus, OH, USA). The strain was maintained by streak

inoculation Luria Broth (LB) nutrient plates containing

(g l-1): yeast extract 5, peptone 10, NaCl 5 and agar 15.

Plates were incubated at 30 �C for 24 h and stored at 4 �C
for future use.

Inocula preparation method

Inocula preparation had previously been optimised based

on delta-endotoxin production yields (Ghribi et al. 2004).

One isolated colony was dispensed in 3 ml of LB medium

and incubated overnight at 30 �C. Aliquots of 0.5 ml were

used to inoculate 250-ml shake flasks containing 50 ml of

LB medium. After 6 h of incubation at 30 �C in a rotary

shaker set (New Brunswick ScientificTM, Edison, NJ, USA)

at 200 rpm, the O.D.600 was estimated using a Smart-

SpecTM 3000 UV–visible spectrophotometer (Bio-Rad

Laboratories, Hercules, CA, USA). The obtained broth

should correspond to mid-log period culture (Ghribi et al.

2004). 1 O.D.600 Unit in B. thuringiensis inoculum has

been estimated to approximately 2 9 108 CFU ml-1. The

culture broth was used to inoculate the studied culture to

start with an initial O.D.600 of 0.15 corresponding to

3 9 107 CFU ml-1 and 0.05 g l-1 dry biomass, which is

required to start growth of B. thuringiensis cultures for

delta-endotoxin production (Zouari et al. 1998; Ghribi et al.

2004).

Cultural conditions

For delta-endotoxin production, trials were carried out on

the basis of a complex medium (Ghribi et al. 2007). Runs

are shown in Table 2 to provide information for the

determination of the settings of variables in the experi-

mental design. The pH was adjusted to 7.0 and CaCO3

(20 g l-1) was added to maintain pH stability. All flasks

were sterilised at 121 �C for 20 min. The 250 ml flat-bot-

tom flasks, containing 20 ml of culture medium, were

incubated for 72 h at 30 �C in a rotary shaker at 200 rpm.

Delta-endotoxin determination

Crystal proteins were solubilised before protein concen-

tration assay as described by Zouari et al. (1998). Crystal

spore pellets were washed twice with 1 M NaCl and twice

with bidistilled water. Then samples were incubated in

0.05 M NaOH (pH 12.5) for 2 h at 30 �C in a rotary shaker

(200 rpm). The soluble fractions were collected by cen-

trifugation at 13000 rpm, for 10 min. Protein concentration

in the supernatant containing the alkali-soluble insecticidal

crystal proteins was determined by the Bradford method

(Bradford 1976) using bovine serum albumin (BSA) as a

standard. The presented values are the averages (±SD) of

three determinations of two independent experiments.

Protease assay

Proteolytic activity was estimated with casein as a substrate

(Ennouri et al. 2013a). Casein was suspended in 0.1 M

Tris–HCl buffer (pH 7.0) at a concentration of 1%. The

assay mixture consisted of enzyme solution diluted with

0.1 M Tris–HCl buffer (pH 9.0). The reaction mixture was

incubated at 60 �C for 20 min and the reaction was ended

by the addition of 3 ml of 5% trichloroacetic acid (TCA),

and then centrifuged at 50009g for 10 min to eliminate the

resulting precipitate. Protease activity was calculated as

released tyrosine from the supernatants according to a

modified Lowry method. One unit of enzyme activity was

defined as the amount of the enzyme producing the release

of 1 lg of tyrosine per min at 60 �C. The calculated values

were the mean of three values of two independent

experiments.

Determination of sporulation

Viable spores were counted as colony forming unit (CFU).

Appropriately diluted samples were treated at 80 �C for

10 min then transferred to LB solid agar plates and incu-

bated at 30 �C for 24 h. The colonies counted on plates

were corrected for dilution factor and registered as spore

viable count (Lachhab 2001; Ennouri et al. 2013b). Values

are given as the mean of three values of two experiments.

Experimental designs and data analyses

Plackett–Burman design

The Plackett–Burman statistical experimental design is

helpful for screening the most important factors from a

number of parameters (Krishnan et al. 1998). This design is

used to screen the important variables affecting the pro-

duction of delta-endotoxins and proteolytic enzymes. The

design matrix was established according to Montgomery

(1997). Each variable is represented at two levels, a high

level expressed by (?) and a low level expressed by (-).

The high level of each variable is far enough from the low

level so that a significant effect, if it exists, is probably

going to be detected. The experimental design for the

screening of medium components in our work is shown in

Table 1. The horizontal rows in Table 1 represent the

twelve different experiments and each column represents a

different variable. For each experimental variable, high (?)

and low (-) levels were evaluated. All experiments were

performed in separate duplicates and the values of the
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yields of delta-endotoxins and proteases are the averages of

five measurements. The effect of each variable was deter-

mined with the following equation:

EðXiÞ ¼
X

Miþ �Mi�

� �.
N;

where EðXiÞ is the concentration effect of the medium

component variable,
P

Miþ �Mi� are the sum of the

obtained values at high and low levels, respectively, the

yields of delta-endotoxins or proteases in trials, in which

the variable (Xi) determined was present at the high or low

level, respectively, and N is the number of experiments.

Experimental error was calculated by estimating the

variance among the dummy variables as follows:

Veff ¼
X

ðEdÞ2=n;

where Veff is the variance of the concentration effect, Ed is

the concentration effect for the variable and n is the

number of the shown variables. The standard error of the

mean (S.E.M.) of the concentration effect is the square root

of the concentration and the p value (significance level) of

concentration effect was estimated by Student’s t test:

tðXiÞ ¼ EðXiÞ=S:E:M:

where EðXiÞ is the effect of variable Xi (Pujari and Chandra

2000).

Bootstrap method

Experimental data produced using Plackett–Burman are

small sample design. The application of ANN requires

large data sets for the learning and testing procedures, and

we, therefore, used the statistical method of bootstrap to

generate random samples with replacement from a data set

where each observation is selected separately at random

from the original data set. The number of elements (com-

ponents of the medium and the response) in each bootstrap

sample equals the number of elements in the original data

set. The procedure analyzes each sample the same way. To

compare the results of the regression analysis to those of

the ANN, we used the same sample of data generated by

the bootstrap method.

Multiple linear regression (MLR)

MLR techniques based on least-square procedures are

usually used for estimating the variable effects involved in

the model (Miller and Miller 2000). In this study, MLR

was carried out on the training data set, using yields of

delta-endotoxins or proteases as the response variable, and

the seven medium components as predictor variables. In all

cases, the response was expressed as a function of the

seven nutrient concentrations. The success of the MLR can

be measured by evaluating the magnitude of the determi-

nation coefficient R2, the residual standard error (RSE) for

the regression, and the results of the Student’s t test results

for the individual predictor variables.

Artificial neural networks (ANN)

ANN are a type of artificial intelligence based on the

brain’s neural operations (Pachepsky et al. 1996). A neural

network is composed of simultaneously processing ele-

ments, i.e. neurons (Malinova and Guo 2004). The network

consists of a set of input units, hidden units, and output

units, which connect the inputs to the outputs. The selec-

tion of the input factors is the main aspect of neural net-

work modelling (Song et al. 1995). The number of the

hidden neurons depends on the character of the investi-

gated problem. The determination coefficient (R2) is used

to control the accuracy of the predictive capacity of the

constructed models. The training data set is applied to

teach the ANN to find the global comprehensive model

between its inputs and outputs. The test data are used to

verify and confirm the predictive quality of the extended

networks. The multilayer perceptron (MLP) and radial

basis function (RBF) neural network architectures are

possibly the most used ANNs (Nabney 2002). MLP and the

RBF neural network structures have been employed in

making predictions (Shafizadeh-Moghadem et al. 2015;

Zare et al. 2013). Due to the non-linear efficiencies of these

networks, they are considered good estimators providing

very accurate results.

In this study, the MLP network hidden layer consists of

non-linear activation functions: hyperbolic tangent and

exponential functions. The expanded RBF network inclu-

ded a Gaussian activation function in the hidden layer and a

linear activation function within the output layer. It has

been argued that a network with a single hidden layer, with

sufficient data, can be used to model any function (Beale

and Jackson 1990). Therefore, the used MLP and RBF

neural network structures consisted of only one hidden

layer. Thus, designing the ANN implies the selection of a

Table 1 Medium components (variables) and the respective high (?)

and low (-) concentration levels used in Plackett–Burman design

Variable Medium

components

Lower level

(-1) (g l-1)

Higher level

(?1) (g l-1)

X1 KH2PO4 0.5 1.5

X2 K2HPO4 0.5 1.5

X3 MgSO4 0.1 0.5

X4 MnSO4 0 0.002

X5 FeSO4 0 0.002

X6 Starch 25 35

X7 Soybean meal 20 30
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satisfactory number of hidden neurons and suitable net-

work organizations in concordance with type and nature of

inputs (discrete, continuous, categorical, quantitative, etc.).

The number of hidden neurons was optimized by reducing

an error function that mapped the number of hidden nodes

to the accuracy of the expanded networks. The neural

network module of STATISTICA 8.0 software was used in

modelling the ANN. Data were categorized into the two

parts: training (80%), and testing (20%). In the network,

there were seven inputs and one output, corresponding to

medium ingredients and cellular yield, respectively. The

hidden neurons were optimized by building various MLP

and RBF ANNs with hidden nodes of 7–70. Networks with

hidden nodes greater than 70 were not developed due to the

predictive capabilities decreasing as the number of inter-

mediate units. The determination coefficient and mean

square error (MSE) method were employed in selecting the

best model.

The mean square error (MSE) and the determination

coefficient (R2) can be considered standard criteria for the

estimation of statistical performance and used to control

the precision of the predictive capacity of the constructed

models. One hundred different combinations of activation

functions and neuron numbers were tried by considering

the fitted model MSE.

Results and discussion

Evaluation of the effect of cultivation conditions

on delta-endotoxin yields by Plackett and Burman

design

Fractional factorial design (FFD) is an experimental design

that enables the user to evaluate the most important factors

influencing a given process with the least number of trials.

Plackett–Burman design is an FFD which was used in our

case to study seven factors allowing a better understanding

of the effect of each culture medium component. The

evaluation of process variables was carried out according

to the experimental matrix presented in Table 2, in which

the delta-endotoxin yield was the measured response.

Variation in delta-endotoxin yields are also shown in

Table 2. The highest delta-endotoxin yield of 59.13 (lg/

107 cells) was obtained in combination 3, and the lowest,

of about 15 (lg/107 cells) in combination 4. Statistical

analyses of these data revealed that the determination

coefficient R2, an indicator of the goodness of the model

fitting, is close to 76%. In fact, this indicates that less than

25% of the total variations were not explained by the

model, which thus delivers a good approximation. The R2

describes the variance amount by calculating data

explained by the model. Indeed, R2 ranges from 0 to 1, with

higher values signifying less error variance and values

superior to 0.5 are considered suitable (Van Liew et al.

2003).

The analysis of regression coefficients and t value

(Table 3) reveals that mainly soybean meal, starch,

MgSO4, MnSO4, FeSO4, and KH2PO4 were found to be the

variables that improved delta-endotoxin production of B.

thuringiensis HD-1. In fact, the presence of some ions such

as Mg2?, Fe2? and Mn2? in the culture of B. thuringiensis

is fundamental (El-Bendary 2006). Potassium ion is

essential for toxin production by B. thuringiensis (El-

Bendary 1999). Moreover, starch and soybean meal are

considered, respectively, as adequate carbon and nitrogen

sources for increasing delta-endotoxin production (Avi-

gnone Rossa et al. 1990). Furthermore, soybean meal

appeared to be the most significant factor for delta-endo-

toxin yield as indicated by a p value \0.05. Whereas,

Table 2 Plackett–Burman experimental design for the evaluation of factors affecting delta-endotoxin and protease yields of Bacillus

thuringiensis HD-1

Run X1 X2 X3 X4 X5 X6 X7 Delta-endotoxin

(lg ml-1)

Protease (IU ml-1) CFU (107 ml-1) Yield delta-

endotoxins

Yield proteases

1 - - - ? ? ? - 2458.8 ± 80 113.6 ± 9 78 ± 6 31.52 1.46

2 ? ? ? - ? ? - 2032.7 ± 65 227.2 ± 8 70 ± 4 29.04 3.25

3 ? - - - ? ? ? 4139 ± 95 145.4 ± 5 70 ± 5 59.13 2.08

4 - - - - - - - 1898.7 ± 75 250 ± 8 128 ± 4 14.83 1.95

5 - ? - - - ? ? 3697.3 ± 90 159.1 ± 7 120 ± 7 30.81 1.33

6 - ? ? - ? - - 2096.7 ± 70 466 ± 10 91 ± 3 23.04 5.12

7 ? ? - ? - - - 2341.5 ± 60 109.1 ± 8 84 ± 4 27.88 1.30

8 - - ? ? ? - ? 3925.1 ± 65 263.6 ± 6 78 ± 2 50.32 3.38

9 ? - ? - - - ? 3775.3 ± 95 220.4 ± 9 77 ± 5 49.03 2.86

10 ? ? - ? ? - ? 3484 ± 80 803 ± 11 127 ± 2 27.43 6.32

11 - ? ? ? - ? ? 4800.5 ± 85 152.2 ± 8 86 ± 4 55.82 1.77

12 ? - ? ? - ? - 2790.6 ± 55 165.6 ± 9 93 ± 6 30.01 1.78
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K2HPO4 was the lowest variable that hinders delta-endo-

toxin production. This finding is in line with results

obtained by Ozkan et al. (2003) who found that an effective

synthesis of Cry4Ba by B. thuringiensis var. israelensis

HD-500 occurred only when inorganic phosphate was

available in high concentrations. The main effects of the

examined variables on delta-endotoxin yield are presented

in Fig. 1.

Evaluation of the effect of cultivation conditions

on protease yields by Plackett and Burman design

Generally, the production of bacterial extracellular

enzymes during fermentation is influenced by nutrients

such as carbon, nitrogen and minerals (Chao et al. 2010). In

this study, seven medium ingredients were selected as

variables and two concentrations of each variable were

assigned to 12 trials according to a Plackett–Burman

design. The protease yield of each trial is summarized in

Table 2. The highest yield of 6.32 (IU/107 cells) was

obtained with combination 10, while the lower yield of

1.30 (IU/107 cells) was obtained with combination number

7. The R2 value was close to 78%. The effects of variables

and their confidence levels are shown in Table 3. Soybean

meal, FeSO4, KH2PO4, K2HPO4 and MgSO4 affected

positively the protease production. This effect was also

observed for protease production by other Bacillus species

in which an improved supply of nitrogen, such as soybean

meal and phosphorus stimulated protease excretion (Moon

and Parulekar 1991; Chu 2007). Furthermore, supplemen-

tation of the culture medium with Mg2? and K? salts

allowed higher protease production (Ellaiah et al. 2002).

On the other hand, starch and MnSO4 had a negative effect

on proteolytic activity. In fact, the presence of carbon

Table 3 Estimated effects for delta-endotoxin and protease yields (coded units)

Delta-endotoxin Protease

Effect t p value Effect t p value

Constant 10.73 0.000 7.54 0.002

KH2PO4 2.694 0.40 0.707 0.4302 0.60 0.583

K2HPO4 -6.804 -1.02 0.365 0.9288 1.29 0.267

MgSO4 7.609 1.14 0.317 0.6213 0.86 0.437

MnSO4 2.849 0.43 0.691 -0.0964 -0.13 0.900

FeSO4 2.018 0.30 0.777 1.7687 2.45 0.070

Starch 7.299 1.10 0.335 -1.5465 -2.15 0.098

Soybean meal 19.371 2.91 0.044 0.4803 0.67 0.542

R2
Delta�endotoxin ¼ 75:69%

R2
Protease ¼ 77:59%

Fig. 1 Effects of different

medium components for delta-

endotoxin yield
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source, such as starch, had a retroactive effect on enzyme

production in some Bacillus species (Johnveshy and Naik

2001; Joo et al. 2002). Several studies also demonstrated

that the presence of Mn2? is necessary for enhanced pro-

tease activity of Bacillus subtilis PE-11 (Adinarayana et al.

2003). Indeed, present results were in disagreement with

these latter findings and this may be explained by the

possibly different nature of studied bacterial strain.

The main effects of medium component on proteolytic

activity of B. thuringiensis var. kurstaki HD-1 are pre-

sented in Fig. 2. This plot is useful in determining the

protease production at intermediate levels of different

combinations of independent variables. The statistical

design of experiments offers an efficient methodology to

select the decisive variable and to optimize the factors with

minimum experiment numbers for response estimation.

The most important advantage of the Plackett–Burman

design was the possibility to rank the different variable

effects on the measured response irrespective of its nature

or trend.

Because the dataset in our study was relatively small, it

was important to perform a bootstrap test for the entire

available data set to obtain an estimate of the generaliza-

tion power of the analysis that is better than that obtained

using only a separate test set.

Multiple linear regression for delta-endotoxin yields

Multiple regression analysis was carried out to get an

estimate of the predictive value of the considered model

composed by seven dependent variables. The standardized

coefficients (also named b coefficients), the standard error

of coefficients, the t values and their related p values are all

presented in Table 4. The large t value (t = 43.3) and

corresponding low p value (p\ 0.01) support the signifi-

cance of soybean meal. On the other hand, there was a

significant opposite relationship between K2HPO4 and

delta-endotoxin yield, with a negative t value (t = -16.87)

and corresponding low p value (p\ 0.01).

The results of the model fitting by analysis of variance

(ANOVA) are given in Table 5. The Fisher variance ratio,

(F value), is a statistically suitable measure of how well the

factors explain the variation in the data about its mean.

The better the F value, the more efficiently the factors

describe the variation in the data about its mean, and the

more valid calculated factor effects are. The ANOVA of

the regression model reveals that the model is well sig-

nificant, as is obvious from the Fisher’s F test

(Fmodel = 384.33) and low probability value

(p value = 0.000\ 0.05).

The goodness of the fit of the model was checked by the

determination coefficient (R2). The R2 value provides a

measure of how much variability in the observed response

values can be explained by the experimental variables. In

this case, the value of the determination coefficient

(R2 = 0.731) indicates that 73.1% of the variability in the

response could be explained by the model. In addition, the

value of the adjusted determination coefficient (adj

R2 = 0.729) is also high enough to advocate for a high

significance of the model. The adjusted coefficient of

determination (adj R2) is a statistical measure that shows

the proportion of variation explained by the estimated

regression line. The closer adjusted R2 is to 1, the better the

estimated regression equation fits or explains the relation-

ship between X and Y. Olori et al. (1999) stated that

R2[ 0.70 implies a very good fit of a model, while if

Fig. 2 Effects of different

medium components for

protease yield
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R2\ 0.40, such a model should not be used for prediction.

The Normal probability plot showed a satisfactory corre-

lation between the experimental and predicted values of

delta-endotoxin yields, wherein, the points cluster around

the diagonal line indicated the good fit of the model

because the deviation between the experimental and pre-

dicted values is low.

Multiple regression results for protease yield

Tables 4 and 5 present the results from the multiple

regressions carried out using the medium components as

the independent variables and protease yield as the

dependent variable. This was done to determine the best

linear combination of estimated models for predicting

delta-endotoxin and protease yield responses. From

Table 4, it can be seen that 77.2% of the variance in the

model can be predicted using the independent variables.

Table 4 shows the standardized Beta Coefficients that

present the contributions of each variable to the model. The

t and p values show the impact of the independent variables

on the dependent variable. All independent variables are

significant except for MnSO4 where p[ 0.05. The large

t value (t = 39.61) and corresponding low p value

(p\ 0.01) support the result for FeSO4 which had the

highest beta coefficient. On the other hand, there was a

significant negative relationship between starch and pro-

tease yield, with a negative t value (t = -32.11) and cor-

responding low p value (p\ 0.01). The value of the

determination coefficient (R2 = 0.772) indicates that

77.2% of the variability in the response could be explained

by the model. Besides, the value of the adjusted determi-

nation coefficient (adj R2 = 0.77) is also high enough to

suggest the high significance of the model.

Table 5 presents the ANOVA report on the general

significance of the model. As p value is less than 0.05, the

model is significant. Thus, the combination of the variables

Table 4 model coefficients estimated by multiple linear regression for delta-endotoxin and protease yields (significance of regression

coefficients)

Delta-endotoxin Protease

Coefficient t value p value Coefficient (910-3) t value p value

Constant -34.914 -18.80 0.000 3229.2 15.92 0.000

KH2PO4 0.002 4.99 0.000 0.4890 10.80 0.000

K2HPO4 -0.0068 -16.87 0.000 0.9144 20.55 0.000

MgSO4 0.0171 16.41 0.000 1.7069 15.01 0.000

MnSO4 0.1488 6.94 0.000 -4.223 -1.80 0.072

FeSO4 0.0656 3.14 0.002 90.489 39.61 0.000

Starch 0.0006 15.72 0.000 -0.1523 -32.11 0.000

Soybean meal 0.0019 43.30 0.000 0.0512 10.68 0.000

R2
Delta�endotoxin ¼ 73:1%; R2

Protease ¼ 77:2%

R2ðadjÞDelta�endotoxin ¼ 72:9%; R2ðadjÞProtease ¼ 77:0%

Table 5 ANOVA for the estimated models of delta-endotoxin and protease yield responses

Source Degree of freedom Sum of square MS F p value

Delta-endotoxin

Regression 7 9595.2 1370.7 384.33 0.000

Residual error 992 3538.0 3.6

Total 999 13,133.2

Protease

Regression 7 142.557 20.365 478.67 0.000

Residual error 992 42.205 0.043

Total 999 184.762

187 Page 8 of 13 3 Biotech (2017) 7:187

123



significantly predicts the dependent variable (F = 478.67;

p\ 0.05).

Application of artificial neural network for delta-

endotoxin yields

To develop a model based on Neural Network performance

for delta-endotoxin prediction, several ANN networks in

MLP and RBF structure were constructed and tested to

determine the optimum number of neurons, hidden layers

and transfer functions. In fact, establishing an adequate

structure with the suitable number of hidden layers, and

neurons is important, since a larger number could result in

over-fitting, while a smaller number, may not process the

data sufficiently. Several MLP and RBF networks were

developed and trained using the learning data set of delta-

endotoxin concentration and then they were validated with

the test data set (Table 6). The optimal obtained network

model with maximum coefficient of determination (R2) and

minimum training and testing MSE was selected.

In this study, ANNs were used to forecast delta-endo-

toxin yields, In fact, after several model runs, the best

structure with the highest R2 and lowest MSE was depicted.

This structure constitutes the selected ANN model for the

delta-endotoxin prediction. It is an MLP with 3 layer per-

ceptron described as follows: 1 input layer with 7 input

variables, 1 hidden layer with 22 neurons and one output

layer with one output variable. This model explains the

variation of about 87% of delta-endotoxin production by

the medium strain composition with small training and test

errors (MSE were 4.546 9 10-3 and 5.004 9 10-3,

respectively). The predicted and observed production of

delta-endotoxins is shown in Fig. 3.

Application of artificial neural network

for proteases

To develop a model for protease production, the ANN was

composed of seven neurons in the input layer each one

corresponded to a medium component, and one neuron in

Table 6 Performance indices (R2 and MSE) for different models of delta-endotoxin prediction

Type of neural

network

Neuron number in hidden

layer

Training

performance

Test

performance

Hidden

function

Training MSE

(910-3)

Test MSE

(910-3)

MLP 25 0.882137 0.867755 Tanh 4.514 5.146

MLP 36 0.879237 0.867722 Tanh 4.622 5.144

MLP 49 0.884775 0.868974 Tanh 4.418 5.112

MLP 34 0.881570 0.868693 Exponential 4.538 5.100

MLP 23 0.881989 0.869266 Exponential 4.518 5.088

MLP 22 0.881273 0.871280 Exponential 4.546 5.004

RBF 29 0.835893 0.829874 Gaussian 6.128 6.502

RBF 35 0.847601 0.832053 Gaussian 5.728 6.438

RBF 43 0.859240 0.830132 Gaussian 5.324 6.496

RBF 50 0.866231 0.846248 Gaussian 5.078 5.908

RBF 58 0.850053 0.848736 Gaussian 5.644 5.836

RBF 69 0.863802 0.837950 Gaussian 5.164 6.234

Fig. 3 Observed and predicted

data of delta-endotoxin yields
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the output layer that stood for protease production. As the

modelling of delta-endotoxin production, a process of trial

and error in determining the number of hidden layer neu-

rons and the threshold is also used. In this study, the neural

network training function in MLP (exponential and tangent

hyperbolic functions) and RBF architectures were carried

out. To determine an optimal number of hidden layer

neurons that is required to obtain the most satisfactory

application performance, the results are compared based on

the determination coefficient R2 that shows the model

performances.

On the basis of results in the Table 7, it can be con-

cluded that the most suitable model is an MLP trained with

7 medium components for the input parameters (7–55–1)

including 7 input neurons, 55 hidden neurons and 1 output.

The results of the model trained with a threshold function

tangent hyperbolic created high determination coefficients

(R2 = 0.89) and small errors (MSE = 4.524 9 10-3 and

4.184 9 10-3 for training and test, respectively). The

predicted protease yields can be considered successful.

Figure 4 shows the observed and predicted results.

Table 8 showed the Paired samples t test between

observed and predicted data. The paired samples t test is

commonly used to test the Statistical difference between

two measurements. Mean represented the average differ-

ence between the two variables. The standard error (stan-

dard deviation divided by the square root of the sample

size) is generally used in computing both the test statistic

and the upper and lower bounds of the confidence interval.

The paired t test statistic was denoted (t) and the p value

corresponding to the given test statistic t. From the results,

we can say that observed and predicted endotoxin and

protease yields were highly and positively correlated

[(r = 0.879, p\ 0.05) and (r = 0.888, p\ 0.05), respec-

tively]. There was insignificant average difference between

observed and predicted delta-endotoxin yields

(t999 = -0.111, p = 0.911) and observed and predicted

protease yields (t999 = -0.647, p = 0.518). These results

Table 7 Performance indices (R2 and MSE) for different models for protease predictions

Type of neural

network

Neuron number in hidden

layer

Training

performance

Test

performance

Hidden

function

Training MSE

(910-3)

Test MSE

(910-3)

MLP 70 0.896712 0.888043 Tanh 4.456 4.292

MLP 64 0.899958 0.889069 Tanh 4.318 4.252

MLP 55 0.894867 0.891583 Tanh 4.524 4.184

MLP 53 0.903104 0.884769 Exponential 4.194 4.420

MLP 56 0.905071 0.885385 Exponential 4.108 4.400

MLP 60 0.903214 0.887035 Exponential 4.184 4.350

RBF 70 0.879007 0.856292 Gaussian 5.162 5.386

RBF 68 0.874135 0.846058 Gaussian 5.356 5.764

RBF 58 0.890203 0.848720 Gaussian 4.712 5.730

RBF 55 0.883876 0.859407 Gaussian 4.968 5.274

RBF 54 0.869819 0.851357 Gaussian 5.528 5.602

RBF 51 0.894291 0.863359 Gaussian 4.548 5.170

Fig. 4 Observed and predicted

data of protease yields
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confirmed the robustness of established ANN models with

insignificant difference with observed and predicted data.

On average, observed delta-endotoxin yields were similar

to predicted yields (95% CI [-0.113, 0.101]). Furthermore,

observed protease yields were similar to predicted yields

(95% CI [-0.016, 0.008]).

In this work, an attempt was made to analyze and

compare MLR and ANN including MLP and RBF models

to develop transfer function for predicting bacterial yields

using medium ingredients. The statistical prediction per-

formances of used models were measured in terms of

determination coefficient (R2) and MSE. Hence, the results

obtained from the MLR models indicated that the measured

determination coefficient between the observed and the

predicted data were acceptable with a determination coef-

ficient higher than 70% for both delta-endotoxin and pro-

tease yields. Furthermore, ANN models showed higher

accuracy (87 and 89% for delta-endotoxin and protease

determination coefficients, respectively) when compared

with MLR models (73.1 and 77.2% for delta-endotoxin and

protease determination coefficients, respectively). More-

over, the MLP models exposed more stable forecast when

compared with the RBF model, according to descriptive

performance indices (R2 and MSE) between forecasted and

experimental data. Subsequently, with the use of the pro-

posed process with statistical bootstrap that enlarged the

sample of data and MLP network learning, the B.

thuringiensis var. kurstaki yield prediction could be

determined by performing a limited number of experiments

and test operations, therefore, saving engineering effort and

time.

Conclusion

This work proposes a method to analyze simultaneously

multiple factors with a limited number of experiments

using the Plackett–Burman analysis. To enhance delta-en-

dotoxin production in B. thuringiensis var. kurstaki HD-1,

we used a statistical experimental design. Findings

demonstrate that medium components play a significant

role in the growth of B. thuringiensis var. kurstaki and

proteolytic enzyme production. In fact, KH2PO4, MgSO4,

MnSO4, FeSO4, starch and soybean meal increase delta-

endotoxin yield, whereas K2HPO4 decreases delta-endo-

toxin yield. Remarkably, the obtained results in this study

facilitate the large-scale, economically viable delta-endo-

toxin production using B. thuringiensis. Moreover, KH2-

PO4, MgSO4, K2HPO4, FeSO4 and soybean meal increase

protease yield, whereas starch and MnSO4 decrease pro-

tease yield.

Besides, we found that a neural network analysis is

potentially more successful than MLR in predicting

response. In fact, we developed an artificial neural network

that yielded a higher level of correct forecast for response

than the MLR method. Thus, the ANN analysis seems to be

a more efficient method for the prediction of studied

responses. This finding implies that the prediction of delta-

endotoxin and protease yields responses may involve a

complicated non-linear relationship. Furthermore, based on

the obtained results, MLP seems to be the most adequate

ANN model for B. thuringiensis yield predictions. How-

ever, the activation function and the number of hidden

neurons are specific for each type of forecasting responses

(delta-endotoxin or protease yields).

The objectives of the present study were initially to find

the adequate topology of the ANN and regression models

for prediction of delta-endotoxin and proteases yields.

Secondly, the current work aimed to select the best method

in prediction of microbial yields and thus selecting the

optimized topology. The obtained results showed that

ANNs are able to identify complex parameters in datasets

which may not be well explained by a simple mathematical

formula. In fact, this work demonstrated how modern

computational tools such as ANN can be successfully used

to address this type of problems.
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