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Abstract
Neural elements of the intrinsic cardiac nervous system 
transduce sensory inputs from the heart, blood vessels 
and other organs to ensure adequate cardiac function 
on a beat-to-beat basis. This inter-organ crosstalk is 
critical for normal function of the heart and other organs; 
derangements within the nervous system hierarchy 
contribute to pathogenesis of organ dysfunction. The 
role of intact cardiac nerves in development of, as well as 
protection against, ischemic injury is of current interest 
since it may involve recruitment of intrinsic cardiac 
ganglia. For instance, ischemic conditioning, a novel 
protection strategy against organ injury, and in particular 
remote conditioning, is likely mediated by activation of 
neural pathways or by endogenous cytoprotective blood-
borne substances that stimulate different signalling 
pathways. This discovery reinforces the concept that 
inter-organ communication, and maintenance thereof, 
is key. As such, greater understanding of mechanisms 
and elucidation of treatment strategies is imperative 
to improve clinical outcomes particularly in patients 
with comorbidities. For instance, autonomic imbalance 
between sympathetic and parasympathetic nervous 
system regulation can initiate cardiovascular autonomic 
neuropathy that compromises cardiac stability and 
function. Neuromodulation therapies that directly target 
the intrinsic cardiac nervous system or other elements 
of the nervous system hierarchy are currently being 
investigated for treatment of different maladies in animal 
and human studies. 
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Core tip: Neural elements within the intrinsic cardiac 
nervous system are known to transduce sensory inputs 
from the heart, blood vessels and surrounding organs 
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to ensure beat-to-beat regulation of cardiac function. 
Development of autonomic neurophathies in patients 
with comorbidities compromises clinical outcomes. 
Myocardial ischemia also significantly affects cardiocytes 
as well as cardiac neurons; post-ischemic remodelling 
might affect neuronal function and thereby contribute 
to cardiac instability. Different protection strategies 
including ischemic conditioning and neuromodulation 
interventions that limit neural injury and help main-
tain cardiovascular function are the subject of ongoing 
investigations.
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INTRODUCTION
A dense network of parasympathetic, sympathetic and 
sensory neurons innervates the heart and cardiac con
duction system; each population of neurons is distinct 
with respect to functional requirements of the heart. 
Increased attention is being focused on the complex 
anatomy and function of the cardiac neuroaxis and 
questions abound regarding the manner in which different 
neuronal populations communicate with each other and 
between different organ systems. Ardell et al[1] recently 
made the case that the cardiac neural hierarchy functions 
as a distributive processor with multiple nested feedback 
control loops that involve peripheral and central aspects of 
the autonomic nervous system. Remodeling of the cardiac 
nervous system at morphological and phenotypic levels 
during disease development is also under scrutiny[25]; 
neural remodeling can cause electrical instability that 
increases the incidence of arrhythmogenesis. Neuromo
dulationbased treatments for cardiovascular disease 
are being investigated as evidenced by the increasing 
use of diverse cardiac sympathetic decentralization and 
bioelectric interventions[6]. Herein, we briefly discuss 
experimental and clinical findings that highlight a role for 
the intrinsic cardiac nervous system on cardiodynamics. 
We also discuss mechanisms relevant to diverse pro
tection stratagems. Finally, we focus on autonomic 
neurophathies that accompany comorbidities (Figure 
1). For this review, clinical and basic science reports 
were searched using MEDLINE, PubMed and Google 
Scholar with the keywords intrinsic cardiac nervous 
system, myocardial ischemiareperfusion injury, heart and 
kidney disease, cardioprotection, preconditioning and 
combinations thereof. Findings from our own studies on 
this, and related subjects were also consulted.

Developmental aspects
Development of the nervous and cardiovascular systems 
is synchronized during embryogenesis; neural crest cells 
in the dorsal neural tube form the parasympathetic and 

sympathetic nervous systems that are important for 
cardiovascular function. Sympathetic interactions play 
a part in postnatal regulation of cardiocyte maturation; 
during life, cardiocytes remain quiescent and heart size 
increases by cellular hypertrophy[7]. 

Cardiac neural crest cells furnish mesenchymal cells to 
the heart and great arteries that are involved in vascular 
remodeling and development of the cardiac conduction 
system[810]. The sympathetic component of the auto
nomic nervous system promotes cardiac conduction while 
the parasympathetic selectively exerts an inhibitory 
influence[11,12]. The integration of information for neuro
cardiac regulation involves the neuraxis that comprises 
the cortex, amygdala and various subcortical structures 
with an ability to modulate lowerlevel neurons within 
the hierarchy (for a detailed explanation see ref.[12]). 
Principal contacts between preganglionic neurons and 
the heart occur via the vagus nerves[2,13]. Neurons of 
the autonomic nervous system are: (1) characterized 
by chemical phenotyping (cholinergic, adrenergic, etc.); 
(2) located within intrathoracic extracardiac ganglia 
and intrinsic cardiac ganglia[14,15]; and (3) found within 
atrial epicardium and ganglionated plexi along major 
vessels and in the ventricular wall[16,17] depending on 
species[18]. Sensory neurons, interneurons and sensory 
fibers that originate from the nucleus ambiguus are 
also located therein[19,20]. Sensory information from all 
of these peripheral structures is integrated with higher 
central nervous system centers to coordinate regulation 
of cardiovascular responses. For example, descending 
signals from higher brain centers as well as afferent 
sensory signals from systemic arteries, cardiopulmonary 
regions and viscera have their first synapse in the nucleus 
tractus solarius (NTS) found in the dorsomedial region 
of the medulla[21]. Transmission of afferent inputs from 
other sources such as skin and skeletal muscle to me
dullary vasomotor centers occur via the spinal cord. 
Vagal outflow to the heart is mediated by NTS neurons 
that synapse to preganglionic parasympathetic neurons 
located in the dorsal motor nucleus. All of these neural 
inputs to medullary vasomotor centers are involved 
in autonomic control of the cardiovascular system, for 
example, the arterial baroreceptor reflex plays a major 
role in blood pressure homeostasis on a beattobeat 
basis and involves stretch receptors that can be found 
in the carotid sinus and aortic arch. Accordingly, afferent 
baroreceptor discharge is relayed from the carotid sinus 
(via glossopharyngeal nerve) and aorta (via vagus 
nerve) to the NTS that stimulates afferent baroreceptor 
discharge and promotes efferent sympathetic and para
sympathetic outflow to the heart and blood vessels, 
this enables adjustments of cardiac output and vessel 
resistance and ultimately facilitates return of blood 
pressure to steady state levels. 

CORONARY BLOOD FLOW REGULATION 
AND MYOCARDIAL PERFUSION
Nonneural mechanisms (humoral, metabolic, mechanical, 
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etc.) that contribute to control of vascular regulation 
act independently from autonomic neural mechanisms. 
For example, under normal physiological conditions 
myocardial perfusion across the ventricles is uniform as 
long as coronary artery pressure is maintained within the 
range of autoregulation[22]. Shifts in the lower pressure 
limit are produced by changes in left ventricular pressure 
and volume as well as biochemical modifications by 
a host of endogenous compounds that exercise their 
effects on myocytes, conduction tissues, vascular smooth 
muscle, etc. The scientific literature that has examined 
coronary vasoregulation with a focus on cardiac nerve 
status is relatively sparse. Most studies have concentrated 
on control of regional cardiodynamics by the intrinsic 
cardiac nervous system in either normal or pathological 
conditions. 

In healthy individuals during exercise, activation of 
the sympathetic nervous system stimulates metabolic 
vasodilatation due to increases in heart rate, cardiac 
contractility and ventricular work. Direct sympathetic 
stimulation of coronary vessels induces either vasocon
striction or vasodilatation depending on activation of either 
α, or βadrenoreceptors, or vessel size. For example, 
large coronary vessels (> 100 µm) constrict when exposed 
to norepinephrine whereas small coronary vessels relax[23]; 
vasodilatation in arterioles permits coordination of oxygen 
delivery to myocardial oxygen demand[24]. On the 
other hand, simultaneous vasoconstriction in medium 
and large coronary arteries mediated by activation of 
αadrenoreceptors helps to preserve subendocardial blood 
flow when oxygen demand increases. In a canine study, 

we examined myocardial perfusion following injection 
of select neuropeptides into active loci of the intrinsic 
cardiac nervous system and documented significant 
coronary vasodilatation secondary to increased myocardial 
metabolism and oxygen demand[25]. We also examined 
whether intact cardiac nerves were critical for coronary 
blood flow autoregulation; results confirmed a role for 
intrinsic cardiac neurons in autoregulatory control and 
myocardial perfusion even after ablation of extracardiac 
nerves from central nervous system control[26]. Ablation 
of external neuronal inputs to the heart also results in 
reduced myocardial efficiency that is consistent with 
impaired glucose utilization and depletion of cardiac 
catecholamine levels[27,28]; the latter directly affect 
myocardial oxygen demand[2931]. Other animal studies 
reported that heterogeneity of myocardial perfusion is 
similar in innervated and denervated hearts[3234]; possible 
explanations include: (1) the fact that regional denervation 
has little effect on vascular αadrenergic receptors (in 
part due to circulating catecholamines); or (2) preserved 
neural modulation and autoregulation at different levels of 
the microcirculation across the ventricular wall[35,36]. 

Diverse central and peripheral elements within the 
cardiac nervous system act in sync to regulate cardiac 
function[20,37]; direct stimulation of intracardiac neurons 
occurs through central efferent neuronal inputs from the 
vagi or stellate ganglia[38]. Gprotein coupled receptors 
are known to regulate cardiac function (see recent review 
by Capote et al[39] on structure, function and signalling 
pathways solicited by Gproteincoupled receptors 
in the heart). Control of heart rate requires intricate 

Efferent autonomic pathways

Afferent autonomic pathwaysSensory pathways

Ischemic injury (arrhythmogenesis)
Pharmacologic/non-pharmacologic 
Rx (drugs, IC, rIC, VNS, etc. )

Ischemic injury
Pharmacologic/non-pharmacologic Rx 
(drugs, IC, rIC, RDN, etc. )

Heart failure
Renal insufficiency

Co-morbidities
(cardiorenal syndrome, neuropathies, etc. )

Figure 1  A schematic overview of efferent and afferent autonomic pathways on normal cardiac regulation, they also play a role in arrhythmogenesis 
caused by ischemic injury. Various pharmacologic/non-pharmacologic interventions that target autonomic pathways (IC: Ischemic conditioning; rIC: Remote IC; 
VNS: Vagus nerve stimulation) attenuate cardiac or renal symptoms. Sensory pathways are involved in renal regulation; injury (all cause) affects renal function that 
can be attenuated by different interventions (IC, rIC, RDN: Renal denervation). Inter-organ interactions also directly affect organ function; development of comorbidities 
is related to pathogenesis of disease in multiple organs (ex. heart-kidneys-brain, etc.). Pathology in one organ system can result in significant progression of disease 
in a distant organ; neuromodulation interventions may be beneficial to these patients.
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coordination between βadrenergic and muscarinic 
cholinergic receptors found throughout the cardiac 
conduction system. Cardiac contraction controlled by 
βadrenergic receptors are found in myocyte membranes 
while cardiac structure and morphology are coordinated 
by angiotensin Ⅱ type 1 receptors in fibroblast and both 
endothelial cell and myocyte membranes[40,41]. Highly 
distinct processing capabilities of intracardiac neurons 
allow this complex network to respond to multiple inputs 
from all cardiac regions and major vessels near the heart. 
Disruption of these control networks by diverse cardiac 
pathologies ultimately increases the potential for sudden 
cardiac death[4245]. 

MYOCARDIAL ISCHEMIA
Myocardial ischemia significantly influences cardiocytes 
as well as local and remote neurons that are involved in 
regulation of cardiac function[1,46]; the survival threshold 
of intra/extracardiac sympathetic/parasympathetic 
neurons during development of coronary artery disease 
is not well established. However, viable nerves that 
course over an infarcted region tend to remain so oxygen 
and energy needs are fulfilled by an independent blood 
supply from extracardiac sources[47]. Reorganization of 
cardiocytes and nerves during development of diverse 
cardiac pathologies could occur in response to shifts of 
cardiac demand and function[3,48]. Mechanisms involved in 
the pathogenesis of cardiac dysfunction are multifactorial; 
a short list of possible factors include cardiac substrates, 
neural/cardiocyte interface, hormonal influences, inflam
mation and reflex responses between intra and extra
cardiac nervous systems and their interactions with 
higher center neurons. Cardiocytes and cardiac neurons 
conceivably share common pathways for survival but this 
remains to be proven. 

In the setting of transient ischemia, intact cardiac 
nerves are believed to play a key role on postischemic 
restoration of cardiac function[49]. Direct ischemic effects 
include progressive neuronal dysfunction and regional 
nerve terminal sprouting which ultimately diminishes 
local sensory and motor neurite function[50,51]. Indirect 
effects that modulate local neurite function are caused 
by local release of a host of endogenous chemicals 
(purinergic agents, peptides, hydroxyl radicals, etc.) that 
also affect neuronal function. Postischemic remodeling 
of cardiac neural networks could promote conflicts 
between central and peripheral reflexes that increases 
the risk of autonomic imbalances, arrhythmogenesis and 
sudden cardiac death[3,15,37,52]. A recent position paper 
by Ardell et al[1] discussed the significance of remodeling 
of the cardiac neuronal hierarchy to cardiac arrhythmia 
induction. In addition, inotropic stimulation is deleterious 
to myocyte survival as it occasions an imbalance between 
oxygen demand and supply (i.e., increased oxygen 
demand with limited coronary vascular reserve)[49,53]. 

Acute occlusion of a coronary artery produces distinct 
alterations of myocyte pathology that lead to cell death 
unless blood flow is restored to the affected myocardium, 

a transmural gradient of cell death occurs in relation to 
the duration of ischemia and degree of blood perfusion 
via coronary collateral vessels to the underperfused 
myocardium[54]. In animal models, necrosis is generally 
fully developed by 6 h after which tissue salvage is not 
possible (this time frame may not be the same for human 
myocardium) with currently available interventions. In 
addition, early restoration of blood flow to an infarct
related coronary vessel could cause “reperfusion injury” 
in already damaged or otherwise affected myocytes[55]. 
The physiopathology of ischemic, or reperfusion injury 
has been reviewed and discussed over the past several 
decades[5659]; however, less attention has focused on the 
ability of the cardiac nervous system to accommodate 
the stress of ischemic, or reperfusion injury. Postischemic 
changes in peptide expression due to release of inflam
matory cytokines combined with nerve damage could 
affect neuropeptide production in sympathetic cardiac 
neurons. In one study, Habecker et al[60] documented 
extensive axon damage after infarction; they also reported 
a significant increase of galanin (promotes regeneration 
of sensory neurons[61]) in cardiac sympathetic neurons 
in the left ventricle. These findings indicate that car
diac sympathetic neurons retain a certain capability to 
respond to nerve growth factor which is increased during 
ischemiareperfusion[62]. 

While sympathetic dysinnervation has been reported 
secondary to myocardial infarction, the injury threshold 
of sympathetic and parasympathetic cardiac neurons 
within the ischemic region has not been established[63,64]. 
Several studies have documented that sympathetic 
impairment could exceed the area of underperfusion 
and necrosis[65,66]. Ischemic stress stimulates release 
of autocoids such as adenosine and bradykinin, along 
with nitric oxide and reactive oxygen species that can 
trigger cellular signal transduction pathways. These 
compounds can initiate responses in somata and axons 
within the intrinsic cardiac nervous system[37]. Indeed, 
oxidative stress, changes in growth factor expression and 
inflammatory cytokines released within the heart and 
vasculature contribute to neuronal remodelling[2,3,5,67]. As 
mentioned earlier, the regenerative capacity of cardiocytes 
is limited[68]; cardiocytes withdraw from the cell cycle early 
after birth and subsequently remain quiescent. Transition 
from proliferative to hypertrophic growth corresponds to 
the period of sympathetic growth into the heart tissues; 
in vitro studies with neonatal cardiocytes cultivated in 
the presence of innervating sympathetic fibers showed 
significant cellular proliferation[69] thereby confirming that 
early sympathetic signalling plays a role. In earlier in vitro 
studies, Horackova et al[70] reported that adult ventricular 
myocytes cocultured with intrathoracic neurons retained 
similar structural properties to those observed in vivo; 
cardiocytes and intrinsic cardiac neurons that were cultured 
alone displayed a variety of morphologies (unipolar, bipolar, 
multipolar). 

Sympathetic regulation might also be involved in 
myocyte regeneration following ischemia, or reperfusion, 
injury; however, disruption of peripheral nerves inhibits 
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regeneration[71,72]. Chemical sympathectomy blocks early 
regeneration of damaged myocytes and increases tissue 
scarring[73]. Though additional studies are necessary, 
available data support the role of the intact cardiac nervous 
system on cardiocyte development and proliferation. 
On the other hand, postischemic regeneration and 
remodeling of the cardiac nervous system also merits 
further consideration and investigation. Rajendran et 
al[46] recently evaluated postischemic changes in neural 
signalling in a porcine model; they presented a “cardiac 
electroneurogram” between injured and adjacent non
injured myocardial tissue and reported: (1) that different 
intracardiac ganglia undergo morphological and phenotypic 
remodeling depending on the site of injury; (2) attenuation 
of afferent neural signals from the infarcted region to intra
cardiac neurons (activity in border and remote regions 
is apparently preserved); (3) maintenance of autonomic 
efferent inputs to the intrinsic cardiac nervous system; (4) 
augmented transduction capacity of convergent intrinsic 
cardiac local circuit neurons; and (5) reduced network 
connectivity within the intrinsic cardiac nervous system. 
The heterogeneity of afferent neural signals probably 
results from the presence of a “neural sensory border 
zone” (i.e., analogous to the socalled myocardial border 
zone) caused by scar formation during postischemic 
myocardial healing. This infarctinduced asymmetry of 
afferent inputs probably contributes to reflex activation 
of the autonomic nervous system; recent findings from 
Wang et al[74] using resiniferatoxin (a potent agonist of 
transient receptor potential vanilloid 1) showed reductions 
in cardiac afferent nociceptive signalling, and sympatho
excitation along with preserved cardiac function in rat 
hearts. 

The role of intact cardiac nerves in modulating 
responses to ischemia and postischemic ventricular 
function has been studied in a variety of experimental 
models. In a cardiac decentralized porcine model subject 
to acute coronary artery stenosis Huang et al[49] reported 
significant ventricular dysfunction accompanied by 
patchy subendocardial necrosis; they proposed that the 
impaired recovery of left ventricular function is mediated 
by nitric oxide (NO) and reactive oxygen species (ROS). 
Cardiac nerves may help to attenuate production of 
ROS and/or prevent conversion of NO to peroxynitrite 
(via release of still unknown mediators/scavengers); 
neurotransmitters from cardiac nerves could stimulate or 
upregulate different isoforms of nitric oxide synthase (i.e., 
endothelial, neural)[75]. Myocardial perfusionfunction 
relations are not altered by cardiac denervation[49]; 
this can be partly explained by the similarity between 
intact innervated and denervated hearts with regard to 
determinants of myocardial oxygen demand. In a recent 
study, we reported no significant change in coronary 
vascular reserve (intact cardiac nerves vs acute decen
tralized) in a canine model of ischemiareperfusion 
injury[76]; these findings concur with most[77,78], but not 
all, earlier studies[79]. Of particular note is that protection 
against ischemic injury occurred even when affected 
myocardium was disconnected from central command; 

this suggests that local intrinsic cardiac neurons share 
common protection pathways to delay progression 
of cellular necrosis. Neurotransmitters that originate 
from cardiac nerves or intrinsic cardiac neurons might 
stimulate release of endogenous compounds that activate 
intracellular signalling pathways involved in cytoprotec
tion; they could also inhibit peroxynitrite formation by 
modulating activation of various nitric oxide synthase 
isoforms. Indeed, many questions remain regarding 
the role of intact cardiac nerves within the context of 
cardioprotection against ischemiareperfusion injury.

Myocardial ischemia also results in excessive activation 
of extracardiac cholinergic and adrenergic inputs of 
local circuit neurons within the intrinsic cardiac nervous 
system[38,80] that initiate cardiac arrhythmias[81]. A novel 
treatment for suppression of ventricular arrhythmias 
and treatment of refractory angina pectoris in current 
use in preclinical and clinical studies is spinal cord stimu
lation[80,8284]; this intervention alters peripheral ganglia 
neural processing along the neural endorgan interface[85,86] 
and transduces neural signals to higher centers via the 
spinal cord[1,87,88]. Spinal cord stimulation influences 
autonomic reflexes within the neuroaxis and stimulates 
discharge of neuromodulators that limit release of select 
neurotransmitters and alter basal activity of sympathetic 
preganglionic neurons[89,90]. Intermittent spinal cord 
stimulation is suggested to stimulate neural memory and 
may be used for management of cardiac control and 
angina[91]; this could be akin to “electrical conditioning” 
and may be useful to limit cellular injury caused by 
ischemia. Vagus nerve stimulation is also being used to 
protect against ischemic injury and its consequences[92]; 
vagus nerve stimulation activates a host of signalling 
pathways and inhibits release of proinflammatory cyto
kines (see Ardell et al[1] for an uptodate review). Vagus 
nerve stimulation might also affect myocardial energetics 
and maintain the equilibrium between energy supply 
and demand in the failing heart[93,94]. Interventions using 
vagus nerve stimulation favourably modulate cardiac 
disease as well as arrhythmogenesis; in several clinical 
studies this nonpharmacologic treatment is safe and well 
tolerated and is documented to improve cardiodynamics 
in patients with compromised ventricular function[95,96].

MYOCARDIAL PROTECTION
Sympathetic and parasympathetic nerves located near 
cardiocytes permit rapid crosstalk between cell types 
that may, or may not, activate cytoprotective pathways. 
Ischemic conditioning was first described by Murry et 
al[97] in 1986 in barbiturateanesthetized dogs subjected 
to repeated episodes of sublethal coronary occlusion/
reperfusion in advance of a prolonged period of acute 
ischemia. To date, ischemic conditioning has been reported 
to delay development of cellular necrosis in all organs 
examined in animals and in humans[98]; two distinct 
windows of cellular protection have been described but 
the causative mechanism(s) remain unanswered. The 
reader is referred to a recent review that summarizes 
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research into this cytoprotective intervention over the 
past 30 years[99]. Interestingly, Kudej et al[100] showed 
that intact cardiac nerves were not required for first 
window protection in a porcine ischemiareperfusion 
injury model; however, the presence of functional cardiac 
nerves was considered essential for development of 
second window protection. This delayed protection could 
occur through α1adrenergic receptor pathways mediated 
by iNOS and COX2[101]. 

A host of conditioning strategies have been described 
in animal and clinical studies; however, the potential to 
translate conditioningmediated protection in patients 
remains controversial[102,103]. Remote conditioning was 
first described in dogs subject to acute coronary occlusion 
and was referred to as “preconditioning at a distance”[104]. 
In that study, animals were subject to repetitive periods 
of nonlethal ischemia of the left circumflex artery 
vascular bed before exposure to a prolonged occlusion 
of the left anterior descending coronary artery; results 
demonstrated that a cytoprotective factor could be 
activated, produced, or transported from the heart or 
elsewhere to affected tissues to afford protection. Since 
the publication of these key findings numerous studies 
using remote conditioning either before, during or after 
coronary occlusion have been reported[105109] but the 
mechanisms involved have not been established. An 
important but unanswered question that persists is how 
the protective signals are transferred from distant tissues 
to the target organ. Various hypotheses (not mutually 
exclusive) including: (1) communication via blood or 
perfusate borne humoral factors; (2) communication 
by neuronal stimulation and transmission; and (3) com
munication by systemic alteration of circulating immune 
cells have been proposed[106,110,111]. Intrinsic neural 
loops in the heart process sensory information from the 
myocardium that modulate efferent autonomic output 
from the intrinsic cardiac ganglia even in the absence of in
put from the central nervous system[37,38,93,112]. Transmission 
of sensory messages within intrinsic cardiac ganglia is 
regulated by release of acetylcholine into the synaptic 
cleft; nerve impulses are initiated by acetylcholine that 
activates specific receptors in postganglionic nerves[112114]. 
The risk of injury or remodeling of these neural loops 
escalates during myocardial ischemia; studies with pharma
cologic ganglionic blockade document abolition of remote 
conditioningmediated cytoprotection and suggest that 
protective signals could transfer between organs via neural 
pathways[112,115117]. Early preclinical studies in different 
experimental models (including heart failure) reported 
positive results with vagal nerve stimulation (VNS) with 
respect to ventricular remodeling, ejection fraction and 
biomarker levels[118120]. In patients with advanced heart 
failure, VNS reportedly attenuates left ventricular contractile 
dysfunction[121] and may reduce ischemic injury[122124]. 
Clinical studies show that diminished heartrate responses 
and depressed sensitivity of vagal reflexes are associated 
with poor cardiovascular outcomes and cardiacrelated 
mortality[125127]. Smith et al[127] recently reviewed efficacy 
of VNS for hypertension and heart failure in several small, 

randomized clinical trials (ANTHEMHF, NECTARHF, 
INOVATEHF, etc.) and concluded that further studies are 
required; VNS titration studies are also needed to validate 
potential clinical benefits of these interventions[128]. 
Stimulation of vagal nerves activate a host of signalling 
pathways via increased release of acetylcholine that 
activates downstream receptors (cholinergic, muscarinic, 
etc.) to impact cardiodynamics and could also promote 
myocyte resistance to stress by improving myocyte 
energetics[93]. Crosstalk between humoral mediators and 
neural pathways could also produce cytoprotection by 
stimulation of local afferent nerves[129,130]; but it remains 
unclear whether intact, functional nerves are required 
to assure conditioningmediated cytoprotection[131,132]. 
On the basis of data showing that intact sensory in
nervation of peripheral ischemic tissue is essential to 
remote conditioning protection, Mastitskaya et al[133] 
proposed a “remote preconditioning reflex” that requires 
sensory input from remote ischemic tissue; recruitment 
of vagal preganglionic neurons within the dorsal motor 
nucleus of the vagus nerve was considered to be critical 
for cytoprotection. While this data does not negate the 
concept that humoral factors are required for protection by 
remote conditioning, they strongly suggest that functional 
neurons within the parasympathetic nervous system are 
critical[134,135]. Bilateral vagotomy reportedly abolished 
protection afforded by remote conditioning[136]. On the 
other hand, findings from our laboratory (summarized 
in Figure 2) documented significant protection against 
ischemic injury independent of intact extrinsic cardiac 
nerves (note the similarity between groups with respect 
to reduction in infarct size) regardless of the conditioning 
protocol[76,137]. Briefly, in those studies isoflurane anes
thetized dogs underwent remote conditioning (4 × 
5min renal artery occlusion/reperfusion) combined with/
without treatment with the autonomic ganglionic blocker, 
hexamethonium (HEXA; 20 mg/kg, IV) or acute cardiac 
decentralization (DCN). Additional experiments were 
performed in dogs subject to classical preconditioning 
either before or after DCN. Based on these findings 
we suggested that neural pathways might not directly 
influence ischemic conditioning (either classical or remote) 
mediated cardioprotection. Moreover, others have brought 
forward the view that intact connections between the 
heart and central nervous system are not necessary for 
remote conditioningmediated cardioprotection as long 
as recruitable parasympathetic neurons within a target 
organ can be activated. Use of remote conditioning as a 
potential therapeutic intervention for organ protection in 
man continues to merit investigation because it is non
invasive, costeffective and easily applicable; however, 
the period for successful application of this intervention 
has yet to be determined and clinical strategies aimed at 
reducing myocardial damage by ischemic conditioning have 
been unsuccessful. While cellular protection by ischemic 
conditioning is possible in the presence of comorbidities, 
a stronger triggering stimulus appears necessary to 
assure cytoprotection[138]. 

Understanding bidirectional interactions between 
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elements of the nervous system and its remodeling during 
evolution of different comorbidities (senescence, kidney 
dysfunction, diabetes, etc.) is essential to help in the 
development of strategies to delay progression of disease 
not only in the heart but also in other organs. For instance, 
autonomic neuropathies defined by abnormalities of the 
sympathetic and parasympathetic nervous systems could 
be responsible for significant morbidity and mortality in 
patients; cardiovascular events are considered a primary 
risk factor for mortality. Cardiovascular autonomic dysfunc
tion is the result of complex interplay between vascular, 
neural, cardiac, paracrine and endocrine entities; the 
outcome is tissue injury that compromises integrity of 
cardiac reflexes. 

HEART FAILURE
Heart failure subsequent to cardiac injury or chronic stress 
causes significant loss of contractile efficacy. Investigations 
into the role of autonomic imbalance between sympathetic 
and parasympathetic nervous systems and its contribution 
to pathogenesis of heart failure is ongoing for more than 
25 years. Altered autonomic function also plays a role in 
other cardiac interrelated conditions such as hypertension, 
myocardial ischemia, cardiac arrhythmogenesis and 
sudden cardiac death[48], see recent review by Florea 
and Cohn[139]. Dynamic interactions between cardiocytes 
and compensatory neurohumoral mechanisms allow 
the heart to maintain cardiac output; stimulation of the 
adrenergic nervous and reninangiotensinaldosterone 
systems along with activation of cytokines play a critical 
role to prevent progressive worsening of cardiac function 
associated with heart failure[140,141]. Lymperopoulos et al[141] 
recently reviewed: (1) the actions of neurotransmitters 
on cell surface adrenergic and Gproteincoupled re
ceptors; and (2) adrenergic receptor polymorphisms 
in the physiopathology of heart failure. They concluded 
that activation of the autonomic nervous system plays 
a critical role in compensatory responses to progressive 
cardiac dysfunction; however, excessive activation of these 
compensatory pathways could accelerate development 

of heart failure. In addition, they examined various 
therapeutic approaches (i.e., sympathomimetic drugs, 
activation of cardiac parasympathetic nervous system, 
increasing βadrenergic receptor function using novel 
Gproteincoupled receptor blockade, etc.). 

CHRONIC KIDNEY DISEASE AND 
NEUROPATHY
Physiopathology of chronic kidney disease (CKD) is 
complex and results either from a primary renal disorder 
or from multisystem disorders related to various comor
bidities such as diabetes. Indeed, diabetes is considered 
to be the most common cause of CKD in patients. 
Neurological derangements are a common occurrence 
in CKD[142]. The spectrum of CKD ranges from mild 
kidney damage (largely asymptomatic) to endstage 
renal disease (potentially fatal); neurological complications 
that include cognitive dysfunction, stroke, as well as 
peripheral and autonomic neuropathy can markedly 
affect clinical outcomes[143]. Accumulation of urea, 
creatinine, parathyroid hormone in high concentrations 
provide a biochemical milieu that rapidly produces 
neurological dysfunction; however, most symptoms can 
be reversed with treatments such as hemodialysis[144]. 
Mechanisms responsible for increased cardiovascular 
risk in patients with CKD are multifactorial and include 
hypertension and diabetes[145], along with increased 
oxidative stress, decreased bioavailability of nitric oxide, 
inflammation, abnormal calcium and phosphorous meta
bolism, overstimulation of the sympathetic nervous 
system, etc.[146148]. Anemia is another major complication 
associated with both CKD and diabetes[149]; the latter 
may be present before overt evidence of symptoms of 
renal impairment[150].

Essential structures of the kidneys (renal vessels, 
tubules, juxtaglomerular apparatus, etc.) are richly 
innervated. Renal afferent nerves transmit sensory 
information via chemo and mechanoreceptors to 
higher centers within the brain[151,152], to maintain water 
retention, sodium reabsorption and blood flow. These 
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nerves might also play a role in renal inflammation 
and injury; suggested mechanisms include βadrenergic 
receptor activation, release of neuropeptides (neuropeptide 
Y, vasoactive intestinal polypeptide, substance P, etc.), 
renin release from juxtaglomerular cells (increases plasma 
angiotensin Ⅱ levels) and other proinflammatory cyto
kines (tumor necrosis factor, IL1β, etc.). 

Autonomic dysfunction is prevalent (> 60%) in CKD 
patients and is associated with vascular calcification, 
cardiac arrhythmias and sudden cardiac death[153]. Reduced 
sensitivity to baroreceptors in the vessel wall caused 
by autonomic dysfunction can modulate cardiac regula
tion and contribute to intradialytic hypotension (i.e., no 
increase in heart rate to compensate the decrease in 
arterial pressure)[154]; these symptoms can be corrected 
with pharmaceuticals or, if necessary, renal transplantation. 

DIABETIC AUTONOMIC NEUROPATHY 
Autonomic dysfunction is a recognized complication of 
diabetes mellitus; diverse contributory mechanisms 
to increased mortality includes medial hyperplasia at 
baroreceptor sites, impaired cardiac vagal function, left 
ventricular hypertrophy and endothelial dysfunction[155] 
due in part to oxidative stress and reduced availability of 
nitric oxide which can affect sympathetic nerve activity[156]. 
Endothelial nitric oxide synthesis is known to be defective 
in insulin resistant states and is a central factor to neuronal 
abnormalities during metabolic syndrome (increases 
cardiovascular risk to some extent due to sympathetic 
activation)[155]. Insulin also plays a key role in nitric 
oxide and autonomic nervous system interactions and 
is involved in regulation of peripheral vascular tone and 
arterial blood pressure. Significant evidence shows that 
nitric oxide is critical to the vasodilator actions of insulin[157]; 
sympathectomy and autonomic failure can severely limit 
insulininduced vasodilatation in patients[158]. Vulnerability 
to lethal arrhythmias in diabetic patients with autonomic 
dysfunction is also elevated[159]. Cardiac autonomic dys
function may occur more frequently when diabetes is 
coupled with micro albuminuria caused by microvascular 
damage and endothelial dysfunction[160162]; however, it was 
reported in the Hoorn Study that cardiovascular autonomic 
dysfunction and microalbuminuria were independently 
associated with mortality[163]. Additionally, in that study the 
presence of cardiovascular autonomic dysfunction doubled 
the 9year mortality risk[155,164]; the ACCORD study 
also confirmed a significantly higher rate of mortality in 
patients with autonomic dysfunction[165]. 

CONCLUSION
Impaired sympathetic and parasympathetic nervous 
system regulation contributes to organ dysfunction and 
leads to significant morbidity and mortality particularly 
in patients with comorbidities. Early detection and 
management of these patients could markedly reduce 
adverse effects and thereby affect clinical outcomes. 
Prospectively, autonomic dysfunction develops because of 

damage at multiple sites within organs but pathogenesis 
remains to be clarified. Cardiovascular autonomic dys
function, for instance, reflects compromised interactions 
between vascular, neural, cardiac, inflammatory, paracrine 
and endocrine mechanisms. Restoration of autonomic 
equilibrium in animal and clinical studies using either 
pharmacologic or nonpharmacologic interventions is 
currently possible. Further investigations in neurocardiology 
should continue to provide important findings apropos 
connections between cardiac and neurohumoral control 
systems and thereby allow continued development of 
clinically relevant opportunities for neurosciencebased 
treatments.
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