Table 3.
P values of the non-parametric permutation tests to test statistical differences between classifiers based on a) mean area under the ROC curve (AUC) and b) mean accuracy
CBF vs. VBM-GM | FA vs. VBM-WM | GM combination vs. VBM-GM | WM combination vs. VBM-WM | Full combination vs. VBM-Brain | |
---|---|---|---|---|---|
a) Mean area under the ROC curve (AUC) | |||||
AD-CN | 0.810 | 0.834 | 0.798 | 0.452 | 0.552 |
FTD-CN | 0.388 | 0.466 | 0.818 | 0.816 | 0.818 |
AD-FTD | 0.752 | 0.668 | 0.472 | 0.322 | 0.052* |
AD-FTD-CN | 0.664 | 0.892 | 0.546 | 0.220 | 0.028* |
b) Mean accuracy | |||||
AD-CN | 0.476 | 0.688 | 0.118 | 0.222 | 0.540 |
FTD-CN | 0.210 | 0.324 | 0.624 | 0.462 | 0.998 |
AD-FTD | 0.476 | 0.980 | 0.224 | 0.898 | 0.122 |
AD-FTD-CN | 0.566 | 0.920 | 0.340 | 0.176 | 0.050* |
* Significant difference (p ≤ 0.05)
AD Alzheimer’s disease, AUC area under the receiver-operating characteristic curve, CBF cerebral blood flow, CN cognitively normal controls, FA fractional anisotropy, FTD frontotemporal dementia, GM grey matter, ROC receiver-operating characteristic, VBM voxel-based morphometry, WM white matter