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Selenoprotein P (encoded by SELENOP in humans, Selenop
in rat), a liver-derived secretory protein, induces resistance to
insulin and vascular endothelial growth factor (VEGF) in type 2
diabetes. Suppression of selenoprotein P may provide a novel
therapeutic approach to treating type 2 diabetes; however, few
drugs inhibiting SELENOP expression in hepatocytes have been
identified. The present findings demonstrate that eicosapen-
taenoic acid (EPA) suppresses SELENOP expression by inacti-
vating sterol regulatory element-binding protein-1c (SREBP-1c,
encoded by Srebf1 in rat) in H4IIEC3 hepatocytes. Treatment
with EPA caused concentration- and time-dependent reduction
in SELENOP promoter activity. EPA activated AMP-activated
protein kinase (AMPK); however, the inhibitory effect of EPA on
SELENOP promoter activity was not canceled with an AMPK
inhibitor compound C and dominant-negative AMPK transfec-
tion. Deletion mutant promoter assays and computational anal-
ysis of transcription factor-binding sites conserved among the
species resulted in identification of a sterol regulatory ele-
ment (SRE)-like site in the SELENOP promoter. A chroma-
tin immunoprecipitation (ChIP) assay revealed that EPA
decreases binding of SREBP-1c to the SELENOP promoter.
Knockdown of Srebf1 resulted in a significant down-regula-
tion of Selenop expression. Conversely, SREBP-1c overex-
pression inhibited the suppressive effect of EPA. These data
provide a novel mechanism of action for EPA involving
improvement of systemic insulin sensitivity through the reg-
ulation of selenoprotein P production independently of the

AMPK pathway and suggest an additional approach to devel-
oping anti-diabetic drugs.

Selenoprotein P is a secretory protein produced primarily by
the liver (1, 2); it functions as a selenium transport protein (3).
Selenoprotein P contains 10 selenocysteine residues and is
reportedly known to transport selenium, an essential trace ele-
ment, from the liver to the rest of the body (4, 5). Through
comprehensive gene expression analyses in humans, we previ-
ously found that hepatic gene expression levels of SELENOP are
positively correlated with the severity of insulin resistance and
post-glucose-challenge glucose levels in patients with type 2
diabetes (6). According to recent reports, blood levels of seleno-
protein P are elevated under conditions of prediabetes (7) and
non-alcoholic steatohepatitis (8). Treatment with purified sel-
enoprotein P protein impairs insulin signal transduction in
both cell culture and animal models. Conversely, the RNA
interference-mediated knockdown of selenoprotein P improves
insulin resistance and hyperglycemia in a mouse model of type
2 diabetes, suggesting that the suppression of selenoprotein P
production in the liver may be a novel therapeutic target for
reducing insulin resistance in type 2 diabetes (6). In addition,
physiological concentrations of selenoprotein P inhibits VEGF-
stimulated cell proliferation, tubule formation, and migration
in human umbilical vein endothelial cells, leading to impaired
angiogenesis and delay in wound closure in selenoprotein
P-overxpressing mice, suggesting that selenoprotein P causes
VEGF resistance (9). More recently, we have demonstrated that
selenoprotein P causes exercise resistance by inhibiting reactive
species-induced activation of AMPK in the skeletal muscle (10).
These findings suggest that selenoprotein P contributes to resis-
tance to insulin, VEGF, and AMP-activated protein kinase
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(AMPK),2 which are often observed in people with type 2 dia-
betes, and therefore may be a therapeutic target for type 2 dia-
betes. However, few drugs have been identified that can inhibit
the production of selenoprotein P in hepatocytes. Our previous
data showed that the anti-diabetic drug metformin reduces
SELENOP gene expression via an AMPK/Forkhead box protein
O3a (FoxO3a) pathway in the cultured hepatocytes (11).

Eicosapentaenoic acid (EPA) is a major component of �-3
polyunsaturated fatty acids (PUFAs) contained in fish oil and is
a well known reagent for improving lipid metabolism (12); it is
clinically used as a single-agent treatment for hypertriglyceri-
demia. In addition, �-3 PUFAs reportedly have beneficial
effects in a wide range of health conditions, such as inflamma-
tion (13), obesity (14), hepatic steatosis (15), non-alcoholic ste-
atohepatitis (16), insulin resistance, and type 2 diabetes (17–
20). �-3 PUFAs is beneficial against type 2 diabetes as it exerts
insulin-sensitizing effects via increased production and secretion
of adipocytokines (19, 21) and prevents insulin resistance via anti-
inflammatory effects (22). Through modulation of some transcrip-
tion factors, �-3 PUFAs can enhance fatty acid oxidation and
reduce de novo lipogenesis and consequently reduce hepatic fat
accumulation and hepatic insulin resistance (14, 23–25).

Sterol regulatory element-binding proteins (SREBPs) are
transcriptional factors of the basic helix-loop-helix leucine zip-
per family and are considered to be profoundly involved in the
transcriptional regulation of cholesterogenic and lipogenic
enzymes (26, 27). SREBP-1c, one of three SREBP isoforms and a
key transcription factor, is responsible in fatty acid synthesis
(28). The PUFAs specific suppression of lipogenic enzymes is
reportedly mediated by reduction of nuclear SREBP-1c protein
without affecting SREBP-2 in the liver (29 –32). In addition, the
primary mechanism behind PUFAs suppression of SREBP-1
reportedly functions at the proteolytic processing level and this
suppression in turn decreases mRNA transcription through an
autoloop regulatory circuit (33).

It has been suggested that AMPK, a member of the serine/
threonine kinase family, is a key enzyme in regulating hepatic
metabolism of glucose and lipids. Its activation could be
involved in EPA-induced improvements in insulin sensitivity
(34) by inhibiting SREBP-1 (35, 36). In contrast, another study
has suggested that dietary fish oils do not activate AMPK in
mouse tissues (37). The role of the AMPK/SREBP-1c pathway
in hepatocytes, an important target of EPA, still remains unknown.
Herein, we demonstrate that EPA suppresses SELENOP gene
expression by inactivating SREBP-1c independently of the AMPK
pathway in H4IIEC3 hepatocytes, indicating a possible beneficial
effect on the pathology of type 2 diabetes.

Results

EPA suppresses SELENOP expression at the promoter level

EPA caused concentration- and time-dependent suppres-
sion in Selenop mRNA expression, similarly to the suppression
of Srebf1 and fatty acid synthase (encoded by Fasn in rat), a

central enzyme in de novo lipogenesis and an established target
of the SREBP-1 pathway, mRNAs (Fig. 1, A and B, respectively).
Next, we examined the effects of EPA on SELENOP promoter
activity. The human SELENOP promoter region was cloned to a
luciferase reporter vector, as previously reported (11). Similar
to the results of mRNAs, EPA suppressed SELENOP promoter
activity in a concentration- and time-dependent manner (Fig. 1,
C and D).

EPA suppresses SELENOP expression via SREBP-1c inactivation

Because previous reports indicated that PUFAs down-regu-
late SREBP-1 via inhibition of nuclear translocation of SREBP-1
(33, 34), we confirmed the mechanism through which EPA
inactivates SREBP-1c by examining the intracellular localiza-
tion of SREBP-1c in EPA-treated H4IIEC3 hepatocytes. To
determine the intracellular localization of SREBP-1c, the cyto-
solic and nuclear components of the SREBP-1c protein were
fractionated (Fig. 1E). EPA treatment reduced SREBP-1c pro-
tein levels in the nuclear fraction in a concentration-dependent
manner (Fig. 1E). Considering previous reports (31, 34), these
results are suggestive of EPA inactivating SREBP-1c by inhibit-
ing its nuclear translocation in H4IIEC3 hepatocytes.

EPA-response element in the SELENOP promoter includes the
SREBP-1c-binding site

To determine the nature of the EPA-response element in the
SELENOP promoter region, we constructed several deletion
mutants of the SELENOP promoter (Fig. 2A). Promoter activity
of Mutant (Mut)-A, -B, -C, -D, and Normal, but not Mut-E, was
suppressed by EPA treatment (Fig. 2A), indicating the existence
of EPA-response element of the SELENOP promoter in Mut-D.
Additional deletion mutants of Mut-D were constructed and
named Mut-D�1 to D�3. Promoter activity of Mut-D�1 and
D�2 but not Mut-D�3 was suppressed by EPA treatment (Fig.
2B), indicating the existence of EPA-response element of the
SELENOP promoter in Mut-D�2. Using computational analy-
sis to identify conserved transcription factor-binding sites
(TFBSs) among the species as previously reported (11), several
putative TFBSs were identified in the Mut-D�2 sequence. We
focused on the putative SREBP-1c-binding sites (Fig. 2C).
Indeed, SREBP-1c is reportedly a key regulator of lipid synthesis
and PUFA-specific suppression of nuclear SREBP-1c protein in
the liver (29 –32).

Next, we examined whether Selenop expression is affected by
the specific knockdown of endogenous SREBP-1 in H4IIEC3
hepatocytes. Transfection with Srebf1-specific siRNA reduced
Srebf1 mRNA levels by �50% (Fig. 3A). This Srebf1 knockdown
also significantly down-regulated Selenop expression to a sim-
ilar extent (Fig. 3A). Conversely, we investigated if SREBP-1c
overexpression influences SELENOP promoter activity. The
SREBP-1 protein was overexpressed in cells transfected with
the precursor SREBP-1a, precursor SREBP-1c, and mature
SREBP-1c expression vectors (Fig. 3B). The mature SREBP-1c
overexpression especially inhibited the suppressive effect of
EPA on SELENOP promoter activity (Fig. 3C); however,
SREBP-1a overexpression had no effect (data not shown).
These results suggest an association of SREBP-1c activity with
the EPA-induced suppression of SELENOP expression.

2 The abbreviations used are: AMPK, AMP-activated protein kinase; EPA, eico-
sapentaenoic acid; SREBP, sterol regulatory element-binding protein; TFBS,
transcription factor-binding site; ACC, acetyl-CoA carboxylase; DHA, docosa-
hexaenoic acid; NAFLD, non-alcoholic fatty liver disease; Mut, mutant.
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EPA suppressed SELENOP promoter activity through an AMPK-
independent pathway

We previously found that metformin suppressed SELENOP
expression via the AMPK/FoxO3a pathway (11). Furthermore,
previous reports indicated the possible involvement of AMPK
activation in EPA-induced improvements in insulin sensitivity
(34) and also that AMPK phosphorylation inhibits SREBP-1

(35, 36). Thus, to determine whether AMPK pathways are
involved in the EPA-induced suppression of SELENOP pro-
moter activity, we treated H4IIEC3 hepatocytes with com-
pound C, a representative AMPK inhibitor. Consequently, the
findings confirmed that the EPA-induced phosphorylation of
AMPK and acetyl-CoA carboxylase (ACC) was canceled by the
administration of compound C in H4IIEC3 hepatocytes (Fig.
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Figure 1. EPA suppressed Selenop gene expression in H4IIEC3 hepatocytes. A, Selenop, Srebf1, and Fasn gene expression was down-regulated in the low
concentration EPA-treated H4IIEC3 hepatocytes. Expression values were normalized to Actb mRNA. Data represent mean � S.D. (error bars) (n � 4–5). Extreme
outliners were excluded. *, p � 0.05; **, p � 0.01; ***, p � 0.001 versus vehicle-treated cells. B, EPA suppressed Selenop mRNA expression in a time-dependent manner.
H4IIEC3 cells were treated with the indicated concentrations of EPA for the indicated times. Expression values were normalized to 18SrRNA mRNA. Data represent
mean � S.D. (error bars) (n � 3). *, p � 0.05; **, p � 0.01; ***, p � 0.001 versus vehicle-treated cells. C and D, SELENOP promoter activity was suppressed in a
concentration- and time-dependent manner. H4IIEC3 cells were transfected with the SELENOP promoter reporter vector and control reporter vector. Forty-eight hours
later, the cells were treated with the indicated concentrations of EPA for the indicated times. Values were normalized to the activity of the control luciferase vector. Data
represent mean � S.D. (error bars) (n � 4). ***, p � 0.001 versus vehicle-treated cells. E, left, intracellular localization of SREBP-1c in H4IIEC3 hepatocytes upon treatment
with the indicated concentrations of EPA. Proteins were extracted after the indicated times of EPA treatment. Right, quantitation of precursor SREBP-1 and mature
SREBP-1 is normalized to �-actin and Lamin A/C, respectively. Data represent mean � S.D. (error bars) (n � 3). ***, p � 0.001 versus vehicle-treated cells.
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4A); these findings corroborate those of a previous study (34).
However, co-administration of compound C and EPA suppressed
somewhat the Selenop mRNA expression and SELENOP pro-
moter activity (Fig. 4, B and C). Furthermore, we tested the effects
of the dominant-negative form of AMPK on EPA-mediated sup-
pression of Selenop mRNA expression. As shown in Fig. 4D,
AMPK dominant-negative had no effect on Selenop mRNA
expression. These results suggest that EPA suppressed SELENOP
promoter activity independently of the AMPK pathway.

EPA suppresses SELENOP gene expression by inhibiting SREBP-
1c binding to Selenop promoter DNA

To determine the critical SREBP-1c-binding site for EPA-in-
duced SELENOP suppression, we constructed luciferase vectors
that deleted the putative SRE, binding sites of SREBP-1c. It is called
Mut-D�2-�SRE-like (Fig. 5A). Luciferase assay using these vec-
tors revealed that the putative SREBP-1c-binding site was essential
for EPA-induced SELENOP suppression (Fig. 5A). Finally, using a
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ChIP assay, we examined the interaction of SREBP-1c proteins
with DNA sequences in the Selenop promoter. Consequently,
treatment with EPA was found to decrease the binding of
SREBP-1c to the Selenop promoter (Fig. 5B), indicating that EPA
decreases SELENOP promoter activity and gene expression via
SREBP-1c inactivation in H4IIEC3 hepatocytes (Fig. 5C).

Discussion

To our knowledge, this is the first study to show that a poly-
unsaturated fatty acid EPA down-regulates diabetes-associated
hepatokine SELENOP expression by inactivating SREBP-1c in
H4IIEC3 hepatocytes. Several lines of evidence have suggested
that �-3 PUFAs, such as EPA and docosahexaenoic acid (DHA)
protect against high-fat diet-induced insulin resistance (38).
Neschen et al. (24) demonstrated that EPA protects mice from
high-fat diet-induced hepatic insulin resistance by binding
directly to peroxisome proliferator-activated receptor � and
thus decreasing diacylglycerol levels in the liver of mice. Yahagi
et al. (32) found that EPA decreases lipid synthesis by inhibiting
nuclear translocation of SREBP-1. Similarly, in this study
implementing the use of H4IIEC3 hepatocytes, EPA decreased
gene expression of Srebf1 and Fasn (Fig. 1, A and B). In this
study we also examined whether some kinds of fatty acids affect
gene expression levels of Selenop, Srebf1, and Fasn. Selenop,
Srebf1, and Fasn gene expression was down-regulated in the
EPA-treated H4IIEC3 hepatocytes at a concentration of 0.01
mM. However, under these conditions, DHA, arachidonic acid,
and arachidic acid did not suppress the Selenop expression.
DHA and arachidonic acid only slightly suppressed the Selenop
expression at a concentration of 0.25 mM, whereas arachidic
acid did not. As previously reported (39, 40), EPA, DHA, and
arachidonic acid suppressed Srebf1 and Fasn expression. These
findings suggest that EPA is a very potent suppressor of seleno-
protein P, the hepatokine that causes insulin resistance (Fig.
1A). Recently, Kemuriyama et al. (41) reported that EPA had a
greater hepatic triacylglycerol-reducing effect than DHA. This
suggests that EPA has a greater suppressive effect on hepatic
triacylglycerol accumulation and insulin resistance via inhi-
bition of the Srebp1-Selenop pathway than other fatty acids.
This study proposes a novel mechanism underlying EPA-medi-
ated amelioration of systemic insulin resistance.

Then, we examined the mechanisms underlying the inhibi-
tory effect of EPA on SELENOP mRNA expression. The present
study has shown that: 1) EPA reduces the gene expression level
and the nuclear protein content of SREBP-1c (Fig. 1, A, B, and
E), 2) the deletion of the SRE-like element on the promoter
cancels the EPA-induced inhibition of SELENOP transcrip-
tional activity (Figs. 3 and 5A) and EPA attenuates the binding
of SREBP-1c to the SELENOP promoter (Fig. 5B). Therefore,
the inhibitory effect of EPA on SELENOP gene expression is
attributed to inactivation of SREBP-1c. SREBP-1c is a mem-
brane protein that binds to the rough endoplasmic reticulum,
and the basic helix-loop-helix in the amino-terminal is cut-out
and exerts transcriptional activity by migrating into the
nucleus. In addition, EPA reportedly exerts inhibitory effects on
SREBP-1c due to several mechanisms, such as a suppression of
cleavage activity and proteasomal degradation (32, 33). In this
study, Western blot analysis and quantitative densitometry
analysis clearly showed that EPA reduced SREBP-1c protein
levels in the nuclear fraction in a concentration-dependent
manner by �10 –20% (Fig. 1E). We also conducted time course
studies (0, 3, 6, 12, 18, and 24 h) to investigate whether EPA
inhibited SREBP-1c nuclear translocation in Western blotting.
EPA dramatically reduced the nuclear accumulation of mature
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SREBP-1c within 3 h after EPA treatment. But there was no
significant change of precursor SREBP-1c in the cytosolic frac-
tion. Meanwhile, after vehicle treatment, the nuclear accumu-
lation of mature SREBP-1c increased 18 h later, and precusor
SREBP-1c was gradually reduced 12 h later (data not shown).
These findings indicate that EPA strongly inhibited the nuclear
translocation of SREBP-1c and subsequently increased the

accumulation of cytosolic SREBP-1c. Therefore, it is estimated
that EPA inhibits cleavage and nuclear translocation of SREBP-
1c, thus down-regulating SREBP-1c and SELENOP.

Selenop mRNA expression was inhibited by knockdown of
Srebf1 mRNA using RNAi (Fig. 3A). Meanwhile, the effect of
suppressing the SELENOP promoter activity by EPA was lost
because of overexpression of a nuclear active SREBP-1c (Fig.
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3C). These results suggest that SREBP-1c positively controls
Selenop expression. Hepatic expression of SREBP-1c is associ-
ated with insulin resistance and pathology of non-alcoholic
fatty liver disease (NAFLD) (42). SREBP-1c may aggravate fatty
liver by activating the enzymes involved in fatty acid synthesis
and may exacerbate insulin resistance by down-regulating
expression of the gene for insulin receptor substrate-2 in the
liver (43). Choi et al. (8) reported that serum levels of seleno-
protein P are elevated in patients with NAFLD. The present
study shows that hepatic expression of SELENOP is positively
controlled by SREBP-1c, suggesting that the transcriptional
regulation of SELENOP by SREBP-1c exacerbates insulin resis-
tance and pathology of NAFLD.

SELENOP is also known to be up-regulated through the acti-
vation of Forkhead box protein O1 (FoxO1) (44) and FoxO3a
(11). Insulin down-regulates SELENOP by inactivating FoxO1
(44). Conversely, we previously found that metformin, an anti-
diabetic agent, activates AMPK in hepatocytes and thereby
down-regulates SELENOP promoter activity and expression

(11). Chen et al. (45) showed that inhibition of the AMPK path-
way with compound C inhibits the nuclear translocation of
FoxO1. AMPK also phosphorylates the Ser372 site of SREBP-1c
and inhibits cleavage and nuclear translocation of SREBP-1c (35).
As EPA reportedly activates AMPK (46), we initially hypothesized
that EPA down-regulates SELENOP expression by activating
AMPK. Consistent with a previous report (46), phosphorylation of
AMPK and ACC was enhanced by EPA treatment. Moreover,
inhibition of the AMPK pathway, using either the AMPK inhibitor
compound C or adenovirus-mediated gene transfer of dominant-
negative AMPK, did not cancel the suppressive effect of EPA on
SELENOP promoter activity and SELENOP mRNA expression
(Fig. 4, C and D). These findings clearly indicate that EPA down-
regulates SELENOP by inactivating SREBP-1c independently of
the AMPK pathway in H4IIEC3 hepatocytes.

Selenoprotein P is a hepatokine that causes hepatic insulin
resistance by inactivating AMPK (6). Therefore, EPA may ame-
liorate hepatic insulin resistance both by inactivating SREBP-1c
and by down-regulating selenoprotein P. In addition, seleno-
protein P impairs angiogenesis by inducing VEGF resistance
(9). Clinically, EPA prevents coronary events in Japanese hyper-
cholesterolaemic patients as shown in the Japan EPA lipid
intervention study (JELIS) study (47). Together with the find-
ings of the present study, we can infer that EPA could reduce
coronary events, at least partly, by down-regulating the seleno-
protein P that causes VEGF resistance.

Experimental procedures

Materials

The antibodies against AMPK�, phospho-AMPK�, ACC,
phospho-ACC, fatty acid synthase, �-Actin, and Lamin A/C
were purchased from Cell Signaling Technology (Beverly, MA).
Antibodies against red fluorescent protein (RFP) were pur-
chased from Medical & Biological Laboratories Co., Ltd.
(Nagoya, Japan). Antibodies against SREBP-1, GAPDH, and
normal mouse IgG were purchased from Santa Cruz Biotech-
nology, Inc. (Santa Cruz, CA). Cis-5,8,11,14,17-EPA sodium
salt, cis-4,7,10,13,16,19-DHA, arachidonic acid, and arachidic
acid, albumin from bovine serum-lyophilized powder (essen-
tially fatty acid free; FFA-free BSA), and 6-[4-(2-piperidin-1-yl-
ethoxy)-phenyl)]3-pyridin-4-yl-pyrrazolo[1,5-a]-pyrimidine
(compound C) were purchased from Sigma. pCMV7 or
pCMV7-precusor or mature SREBP-1c vectors were kindly
provided by Dr. Hitoshi Shimano.

Cell culture and fatty acid treatment

Studies were performed using the rat hepatoma cell line
H4IIEC3 (American Type Culture Collection, Manassas, VA).
Cells were cultured in Dulbecco’s modified Eagle’s medium
(DMEM; Life Technologies Corp.) and supplemented with 10%
fetal bovine serum (Life Technologies), 2 mmol/liter of L-glu-
tamin (Wako Pure Chemical Industries, Ltd., Osaka, Japan),
100 units/ml of penicillin, and 0.1 mg/ml of streptomycin
(Wako). The cells were cultured at 37 °C in a humidified atmo-
sphere containing 5% CO2. All studies were conducted using
cells from 80 to 90% confluent cultures; these cells were treated
with the indicated concentrations of EPA and DHA, arachi-
donic acid was dissolved in 99.5% ethanol (final ethanol con-
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centration was 0.25%), arachidic acid was dissolved in 99.0%
chloroform (final chloroform concentration was 0.25%) in the
presence of 2% FFA-free BSA (Sigma).

Generation of plasmid constructs

The human SELENOP promoter region and several deletion
mutants of the SELENOP promoter termed “SELENOP-Pro-
moter-Luc,” “Mut-A,” “Mut-B,” “Mut-C,” “Mut-D,” “Mut-E,”
“Mut-D�1,” “Mut-D�2,” and “Mut-D�3” were cloned as pre-
viously described (11, 48). Putative SREBP-1c-binding site-de-
ficient vectors were generated using QuikChange Lightning
Site-directed Mutagenesis Kits (Agilent Technologies, Santa
Clara CA) and the primer pairs as follows: forward, 5	-CCGG-
GCTCGAGATCTATAACAGGGTTTGCTCT-3	 and reverse
5	-AGAGCAAACCCTGTTATAGATCTCGAGCCCGG-3	, ac-
cording to the manufacturer’s instructions. pcDNA3.1(�)
mCherry-mature SREBP-1c plasmid vectors were generated.
First, pcDNA3.1(�) mCherry was constructed. Plasmid Cherry
was purchased from Addgene ID 39319. pcDNA3.1(�) and
pBlueScriptII SK-Cherry were both digested by restrictive
endonucleases EcoRI and NotI, respectively; thereafter, Cherry
fragments were inserted into the pcDNA3.1(�) vector and
cloned in DH5� competent cells. Second, pcDNA3.1(�)-
mCherry-mature SREBP-1c was constructed. cDNA fragments
encoding mature SREBP-1c were generated by PCR from
pcDNA3.1(�)-mature SREBP-1c using the forward primer
NotI-SREBP1c (5	-TAGCGGCCGCATATGGATTGCACTT-
TCG-3	) and the reverse primer SREBP1c-XbaI (5	-CGGCTC-
TAGACTACTAGTCAGGCTCCGAG-3	). The PCR products
and pcDNA3.1(�)-fluorescent protein (mCherry) were both
digested by restrictive endonucleases NotI and XbaI, respec-
tively; thereafter, mature SREBP-1c fragments were inserted
into the pcDNA3.1(�)-mCherry and cloned in DH5� compe-
tent cells. All inserts were confirmed by DNA sequencing.

Adenovirus-mediated gene transfer in H4IIEC3 hepatocytes

Cells were transfected with adenoviruses as described previ-
ously (6). Briefly, H4IIEC3 hepatocytes were grown to 90% con-
fluence in 24-well multiplate and transfected with adenoviruses
encoding dominant-negative (DN) �1 and �2 AMPK or LacZ
for 4 h. The cells were incubated with DMEM for 24 h after
removing the adenoviruses; total RNA was then extracted.

Transfection and luciferase reporter gene assay

H4IIEC3 cells were grown in 24-well plates and transfected
with 0.4 �g of plasmid DNA per well together with 1.2 �l of
FuGENE6 (Promega). For the luciferase reporter gene assays,
0.4 �g of firefly luciferase promoter construct was co-trans-
fected with 0.01 �g of Renilla luciferase control plasmid (pRL-
SV40; Promega) and 0.05– 0.4 �g of plasmids expressing
SREBP-1c or empty control plasmids resulting in a total DNA
amount of 0.41– 0.81 �g/well. Twenty-four hours later, cells
were treated with the indicated reagents, such as EPA, in
DMEM, 10% FBS, 2% BSA for the indicated times. After 24 h,
luciferase activities were measured using the Dual Luciferase
Assay System (Promega), as described previously (49).

siRNA transfection in H4IIEC3 hepatocytes

H4IIEC3 hepatocytes were grown in 24-well plates and tran-
siently transfected with 50 nM small interfering RNA (siRNA)
duplex oligonucleotides using 1 �l of LipofectamineTM

RNAiMAX (Life Technologies) by the reverse-transfection
method according to the manufacturer’s instructions. Srebf1-
specific siRNAs containing the following sequences were
synthesized (Thermo Scientific): Srebf1 A, 5	-CAACAAGCU-
GACAUGGAU-3	 (sense); Srebf1 B, 5	-GAGCGAGCAUUGA-
ACUGUA-3	 (sense). Negative control siRNA was also utilized
(Thermo Scientific). Twenty-four hours after transfection, the
cells were followed by the extraction of total RNA.

Quantitative RT-PCR

Total RNA was extracted from cultured H4IIEC3 hepato-
cytes using a High Pure RNA Isolation Kit (Roche Diagnostics),
according to the manufacturer’s protocol. The reverse tran-
scription of 100 ng of total RNA was performed using a High-
Capacity cDNA Reverse Transcription Kit (Life Technologies),
according to the manufacturer’s instructions. Quantitative RT-
PCR was performed using TaqMan probes (Actb, 4352340E;
Selenop, Rn00569905_m1; Srebf1, Rn01495769_m1; Fasn,
Rn01463550_m1; phosphoenolpyruvate carboxykinase 1
(encoded by Pck1 in rat), Rn01529014_m1; glucose-6-phos-
phatase catalytic subunit (encoded by G6pc in rat),
Rn00565347_m1) and the 7900HT Fast Real-Time PCR System
(Life Technologies), as described previously (50).

Western blotting

Treated cells were collected and lysed as described previ-
ously (49). Nuclear extracts were achieved using the NE-PER
Nuclear and Cytoplasmic Extraction Reagents Kit according to
the manufacturer’s protocol (ThermoFisher). Protein samples
were subjected to SDS-PAGE and transferred to PVDF mem-
branes using the iBlot Gel Transfer System (Life Technologies).
The membranes were blocked in a buffer containing 5% nonfat
milk, 50 mM Tris (pH 7.6), 150 mM NaCl, and 0.1% Tween 20
(TBS-T) or PVDF Blocking Reagent for Can Get Signal (Toyobo
Co., Ltd., Osaka, Japan) for 1 h at room temperature. Thereaf-
ter, the membranes were incubated with specific primary anti-
bodies, washed, and incubated with the secondary, HRP-la-
beled antibodies. Bands were visualized with the ECL Prime
Western Blotting Detection System (GE Healthcare UK Ltd.;
Amersham Biosciences Place, Little Chalfont, UK) and LAS-
3000 (Fujifilm; Tokyo, Japan) and ChemiDoc Touch Imaging
System (Bio-Rad). A densitometric analysis of blotted mem-
branes was performed using ImageJ software.

Detection of the conserved transcription factor-binding sites
using multiple genome alignments

The Ensembl 12-way Enredo-Pecan-Ortheus (EPO) euthe-
rian multiple alignments (12-way EPO alignments) (51, 52)
were downloaded from ftp.ensembl.org/pub/release-65/emf/
ensembl-compara/epo_12_eutherian/.3 The 12-way EPO was
excised to obtain the alignment block corresponding to the

3 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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human genome coordinates from 10 kb upstream of the coding
sequence of SELENOP, including the start codon. To predict
the conserved TFBSs, the 10-kb upstream genome sequence for
each of the 12 species was searched using TRANSFAC (53)
MATCHTM program (54) (version 6.1) with varying thresholds.
Then, the predicted TFBSs were mapped on the alignments,
and the conserved TFBSs for SELENOP were identified.

Chromatin immunoprecipitation assay

A ChIP assay was performed using the ChIP IT Express Enzy-
matic Kit (Active Motif, Carlsbad, CA), according to the man-
ufacturer’s instructions. In brief, H4IIEC3 hepatocytes were
grown in 15-cm dishes and transfected with 30.4 �g of
pcDNA3.1(�) mCherry-mature SREBP-1c plasmid vectors per
dish together with 91.2 �l of FuGENE6 (Promega). Forty-eight
hours later, cells were treated with 0.25 mM EPA for 24 h before
being fixed and homogenized. Following centrifugation, the
supernatant was used for chromatin samples. Chromatin sam-
ples were incubated with protein G-coated magnetic beads and
RFP antibodies (Medical & Biological Laboratories Co., Ltd.,
Nagoya, Japan) overnight at 4 °C. Following washing and elu-
tion, a reaction solution was used as the template for PCR. PCR
primers were set for amplification of the Mut-D�2 region
of the SELENOP promoter, as follows: forward, 5	-
AACATTCTTCTCGTCGCGGCAACCA-3	; and reverse,
5	-AGATCCACAAAGCCACAGGCTGACA-3	.
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