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AREG = amphiregulin; E2 = estrogen; ER = estrogen receptor protein; ESR1 = estrogen receptor message; PGR = progesterone receptor
message.
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Gene expression profiling has refined the classification of
human breast cancers into distinct subtypes that can be
recognized in separate patient cohorts even when
different microarray platforms are used [1–5]. Although
the estrogen receptor (ER) and the HER-2 gene (ERBB2)
remain central classifiers, the contribution of cell type has
emerged as a dominant feature in gene expression profiles
that segregate primary human breast cancers (Fig. 1). The
biological relevance of this classification scheme is
validated by clinical observations. For example, ER-
negative tumors expressing basal markers exhibit a poor
clinical outcome whereas ER-positive, luminal cancers are
associated with a favorable prognosis [2,4–6].

A logical next step is to delineate the dominant signaling
pathways that drive the pathogenesis of the different
breast cancer subtypes. Will expression profiling of breast
cancers help achieve this goal? Can this approach
facilitate the identification of new drug targets and
improve the efficacy of existing targeted therapies? We
believe the answer is yes, but we recognize that there are
many significant challenges to be met. One of the most
critical challenges, in our view, is the integration of
expression data from primary human breast cancers with

data obtained from the experimental manipulation of model
systems.

The response of human breast cancer cells to estrogen
(E2) and anti-estrogens is thoroughly examined by gene
expression profiling in two recent reports [7,8]. These new
studies provide an opportunity to assess whether data
generated in cell line models can be used to recognize the
gene activity linked to important signaling pathways in
primary tumors.

In the present commentary, we examine the feasibility of
integrating microarray data generated from primary breast
cancers with pathway-specific expression profiles
generated experimentally. We critically explore several
issues related to data quality, gene coverage and platform
compatibility, as well as the confounding effect of cell type
origin on the identification of the ER signaling pathway in
gene expression profiles of human breast cancers.

How good are the data?
A fundamental variable to consider is the quality of the
data that can be obtained from microarray expression
profiling of complex, heterogeneous epithelial tumors.
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Abstract

Genomic expression profiling has greatly improved our ability to subclassify human breast cancers
according to shared molecular characteristics and clinical behavior. The logical next question is
whether this technology will be similarly useful for identifying the dominant signaling pathways that
drive tumor initiation and progression within each breast cancer subtype. A major challenge will be to
integrate data generated from the experimental manipulation of model systems with expression profiles
obtained from primary tumors. We highlight some recent progress and discuss several obstacles in the
use of expression profiling to identify pathway signatures in human breast cancer.
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Specifically, are the data sufficiently quantitative to allow
for the recognition of coordinated patterns of gene
expression indicative of a particular signaling pathway? To
determine what we might expect under the best
circumstance, we examine selected genes whose
expression should be particularly well coordinated in
breast cancer cells.

ERBB2 is amplified and pathologically overexpressed in
about 25–30% of breast cancers [9] along with the
neighboring gene GRB7 [10]. The log ratios or intensity
values have been downloaded for these two probes from
each of four publicly available primary breast cancer
microarray data sets [3–5,11]. High positive correlation
coefficients for ERBB2 and GRB7 co-expression ranging
from 0.633 to 0.910 (Table 1 and Fig. 2) were found in all
four data sets. For each study, the corresponding graph in
Fig. 2 provides a good indication of which tumors are
amplified at the ERBB2 locus.

We also looked for co-expression of cytokeratins as
another measure of data quality. Cytokeratins are
abundant proteins that form the intermediate filaments of
epithelial cells. The basic units of the fibers are
heterodimers of one type I cytokeratin and one type II
cytokeratin subfamily member [12], and distinct
‘expression pairs’ have been identified including
KRT5/KRT14 and KRT8/ KRT18 [13]. Thus, these genes

should show a high degree of co-expression. In every
case, when the probes were present, the correlation
coefficients were high for the co-expression of KRT8 with
KRT18 and for the co-expression of KRT5 with KRT14
(Table 1). These correlation coefficients were in the similar
range of high significance that was observed for genes
co-amplified with ERBB2 (GRB7 and STARD3).

These and other examples confirm that microarray
platforms have, in fact, generated high-quality gene
expression data with a strong quantitative character for
RNA isolated from human tumor samples. In general, the
correlations and gene coverage were highest in the data
of van’t Veer and colleagues [11], which used a 60-mer
oligonucleotide array platform representing approximately
25,000 genes. Also, these data had the fewest missing
values. The reference in this study was a pool of RNA
extracted from all 78 sporadic tumors. Interpreting the
data intensity values in this case is simplified since it is
intuitive to think of zero as the average expression of a
particular gene in this breast cancer cohort [11]. We have
focused on the van’t Veer and colleagues data for tumor
comparisons in the remaining discussions.

The ER signaling pathway is obvious in
breast cancer expression profiles — or is it?
It has been often reported that the gene expression
patterns associated with ER status in breast cancer are

Figure 1

Cell-type origin model for the classification of human breast cancers. Illustration of the relationship between cell type and of the two main branches
of the tumor subclassification schema. ER, estrogen receptor.
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remarkably distinct and that the set of ER classifiers is
comprised of up to several hundred genes [3,11,14–17].
We believe that many or even most of these ‘ER
predictors’ primarily distinguish tumors according to cell-
type origin (i.e. those tumors with predominantly ‘luminal
features’ from those tumors with predominantly ‘basal
features’ [1]) rather than according to ER regulation. To
make this argument, the expression ratios of estrogen
receptor message (ESR1) and ERBB2 from the van’t Veer
and colleagues data [11] were used to divide the 78
sporadic tumors into five groups. The samples are
arranged from highest to lowest ESR1 level in Fig. 3a, with
the ERBB2 tumors grouped separately. The ERBB2
tumors were identified by positive values for both ERBB2
and GRB7 (Fig. 3b). A sixth group was defined based on
BRCA1/BRCA2 mutation status (Fig. 3).

Figure 3 highlights several important features of the data.
The first is that ESR1 is expressed as a continuous
variable whereas ERBB2 and GRB7 have essentially a
binary expression pattern due to gene amplification.
Second, none of the ERBB2 samples have above average
(positive log ratios) values for ESR1. This is consistent

with other larger data sets measuring ERBB2 and ER
protein levels as continuous variables, where it has been
suggested that low ER levels contribute to the reduced
anti-estrogen sensitivity of ERBB2 amplified tumors [18].
Another feature is that the assignment of –0.5 as the
cutoff for ‘true’ ER negativity results in 17/18 of the
BRCA1 tumors being classified as ER-negative, as has
been confirmed elsewhere [19]. Only the two BRCA2
(Fig. 3a) samples and a single BRCA1 tumor appear to
express any ESR1.

We also classified the tumors from the breast cancer data
sets [3–5] based on the level of ESR1 alone and
compared these results with the subgroups generated by
the various clustering methods (see Additional file 1). All
of the tumors defined as basal using clustering methods
were in the lowest ESR1 category, and nearly all luminal A
or luminal 1 tumors were found in the highest ESR1
groups. It is clear that the tumor groups defined by the
extremes of ESR1 expression are the most easily
recognized and consistently observed subtypes of breast
cancer. Tumors with mid-range ESR1 expression (luminal
B/C, luminal 2) will require further analysis with larger

Table 1

Correlation coefficients for selected gene pairs in breast cancer microarray data

Data

van’t Veer and Sørlie and Sotiriou and West and 
Genes compareda colleaguesb (n = 98) colleaguesc (n = 122) colleaguesd (n = 99) colleaguese (n = 49)

ERBB2 and GRB7 0.910 0.745 0.633 0.887

ERBB2 and STARD3 0.791 0.705 0.828 0.895

KRT5 and KRT14 0.745 N/Af 0.546 N/A

KRT5 and KRT17 0.837 0.784 N/A N/A

KRT8 and KRT18 0.886 N/A 0.712 0.770

ESR1 and LIV-1 0.728 0.670 0.674 N/A

ESR1 and TFF1 0.624 N/A N/A 0.077

ESR1 and PGR 0.493g N/A N/A N/Ah

ESR1 and AREG 0.500 N/A N/A N/A

ESR1 and TGFβ2 –0.212i N/A –0.160 –0.091

ESR1 and NDRG1 –0.669 N/A –0.015 –0.329

a If more than one probe was present for a gene, the one with the highest correlation and the fewest missing data values was used.
b Correlation coefficients calculated from log10 intensity ratios from van’t Veer and colleagues [11]. The 78 sporadic tumors and 
20 BRCA1/BRCA2 tumors were used to compute the correlations.
c Correlation coefficients calculated from log2 intensity ratios from Sørlie and colleagues [4].
d Correlation coefficients calculated from log2 intensity ratios from Sotiriou and colleagues [5].
e Correlation coefficients calculated from intensity values from West and colleagues [3]. The R2 value for the plot of ERBB2 and GRB7 in Fig. 2a is
based on log10(intensity).
f N/A, data for one or both the two genes not included in the publicly distributed data set.
g The strength of the positive correlation is reduced by the wide range of values for the progesterone receptor (PGR) in the strong estrogen
receptor message (ESR1) subgroup (Fig. 5c).
h PGR values for 39 of 49 samples were negative.
i The strength of the negative correlation is reduced by the wide range of values for TGFβ2 in the weak ESR1 subgroup (Fig. 5e).
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numbers of tumors to define the dominant molecular
signals driving their pathogenesis.

As previously reported, the signatures of luminal cell types
versus basal cell types are dominant in the expression
profiles obtained from primary breast cancer [1–5]. One
explanation for these strikingly different patterns is that the
cell type in which the oncogenic transformation took place
is fundamentally different in these two tumor groups
(Fig. 1). The use of even a small number of markers
illustrates this distinction. We show the co-expression of
the prototypical luminal cytokeratins (KRT8/KRT18) and
the basal cytokeratins (KRT5/KRT14) from the van’t Veer
and colleagues study [11] in Fig. 4.

The samples clearly show coordinated expression of
KRT8 and KRT18 (Fig. 4a), and a striking pattern is
apparent. Four different groups comprise the majority of
the samples having positive values for KRT8/KRT18: the
ESR1 expressing groups (strong ESR1, moderate ESR1
and weak ESR1) and the ERBB2 amplified samples. It
should be noted, however, that within these four groups
the expression of these luminal cytokeratins does not

correlate with the level of ESR1 expressed. The ESR1-
negative tumors, including both the sporadic and BRCA1
mutant samples, stand out as having especially low levels
of KRT8/KRT18.

The reverse is true for the expression of KRT5 and KRT14
(Fig. 4b), as well as for KRT5 and KRT17 (data not
shown). It is the ‘truly’ ER-negative tumors that have high
basal cytokeratin expression, and the four groups of
luminal tumors cluster together in the negative region of
the plot. There are hundreds of genes that divide these
tumor samples into these two main groups (luminal and
basal), and these genes are often a major component of
the various ER discriminator gene sets [3,11,14–17].
However, the role of these genes in ER signaling and their
regulation by either E2 or the ER remain unconfirmed.

Functional identification of E2-responsive
genes
The ligand-dependent genomic action of the ER is
relatively well understood and the in vitro analysis of E2-
responsive genes in breast cancer cells has been actively
pursued for many years [20]. Part of the Cunliffe and

Available online http://breast-cancer-research.com/content/6/5/192

Figure 2

ERRB2 and GRB7 co-expression in microarray profiling data from primary breast cancers. The log ratios or log intensity values were downloaded
for the ERBB2 and GRB7 probes from each of four publicly available microarray profiling data sets of primary breast cancers. (a) Log10 ratios
generated using 60-mer oligonucleotide arrays for the 98 node-negative tumors (78 sporadic tumors and 20 BRCA1/BRCA2 mutant tumors)
versus a pooled reference of all 78 sporadic breast cancer RNA from the van’t Veer and colleagues data set [11]. (b) Log2 ratios generated using
cDNA microarrays for 115 breast cancers and seven nonmalignant breast samples versus a universal reference RNA (mixed human cell lines) from
the Sørlie and colleagues data set [4]. (c) Log2 ratios generated from cDNA microarrays for 99 unselected breast cancers versus a universal
reference (mixed human cell lines) from the Sotiriou and colleagues data set [5]. (d) Log10 intensity values generated using Affymetrix
oligonucleotide arrays for 49 breast cancers from the West and colleagues data set [3].
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colleagues study [7] was to characterize the dynamic
transcriptional response of two different breast cancer cell
lines (MCF-7, T47D) to 17β-estradiol and anti-estrogens

(ICI 182,780 and 4-hydroxy tamoxifen) using a custom-
made 10K cDNA array. This resulted in the identification
of 386 hormone-responsive genes.

The study by Frasor and colleagues [8] was undertaken to
better understand the transcriptional activities of selective
ER modulators in breast cancer cells. They report the
transcriptional changes induced in MCF-7 cells by E2, and
classify the genes according to their response to the pure
anti-estrogens (ICI 182,780) and trans-hydroxytamoxifen
and raloxifene using the Affymetrix Hu95A array. Their
analysis identified a highly focused E2-responsive gene
signature of 129 genes.

We compared the MCF-7 expression data in these two
recent studies in terms of the E2 and ICI treatment
responses (Table 2). The overlap consists of a surprisingly

Breast Cancer Research    Vol 6 No 5 Wilson and Dering

Figure 4

Cell-type-specific cytokeratin expression in breast cancer subgroups.
The log ratios for the cytokeratin probes for the van’t Veer and
colleagues tumor samples [11] are colored by group as in Fig. 3. 
(a) Co-expression of the luminal KRT8 and KRT18 is found in the
estrogen receptor (ER)-positive tumors (black, blue and yellow) and in
the ERRB2-positive tumors (purple). (b) Co-expression of the basal
KRT5 and KRT14 is found in the ER-negative tumors (red) and in the
BRCA1 mutant tumors (dark green).
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Figure 3

Breast cancer subgroups defined by estrogen receptor message (ESR1)
expression, ERRB2 amplification and BRCA1/BRCA2 mutation status.
(a) ESR1 values in the van’t Veer and colleagues tumor samples [11].
The expression ratios for ESR1, ERRB2 and GRB7 along with the
mutational status of BRCA1/BRCA2 were used to delineate the breast
cancers into six subgroups. The ERBB2-positive tumors (purple) are
grouped separately and arranged from highest to lowest ESR1 level. The
samples containing BRCA1 or BRCA2 mutations (dark green) are also
grouped separately and arranged from highest to lowest ESR1. The two
BRCA2 samples are marked with asterisks. The remaining tumors are
arranged by ESR1 level and colored as highly positive (black; ESR log
ratio >0.2), moderately positive (blue; ESR1 >0 and ESR1 <0.2),
weakly positive (yellow; ESR1 <0 and ESR1 >–0.5), and negative (red;
ESR1 <–0.5). The dotted line represents an estimation of true estrogen
receptor (ER) negativity by immunohistochemistry comparison. (b) High
ERBB2 expression levels are the result of gene amplification. The
samples are arranged in the same order and colored as in (a). Upper,
ERRB2 intensity ratios; lower, co-amplified GRB7 intensity ratios.
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small number of genes (n = 10) despite a very similar,
well-controlled experimental design. Potential genetic drift
in the MCF-7 cell line is a possible explanation for the
limited overlap; however, cross-platform consistency is the
primary suspect.

The issue of cross-platform consistency has been recently
explored in detail [21,22]. In one study, the correlation for
gene expression data from breast cancer cell lines
obtained using Affymetrix HG-U95v2 and a custom-made
cDNA array was found to be in the range 0.66–0.76 [21].
The differences between platforms appear to result from
errors in chip fabrication, ambiguities in gene annotation,
specificity differences inherent in the hybridization of
oligonucleotides versus cDNA clones and alternative
methods for data filtering and normalization [21]. The
authors found that the biological differences between the
cell lines (e.g. BT-474 versus MCF-7) were more
prominent than the variation between platforms. However,
it appears probable that platform variability actually
exceeds changes in expression induced by treating
MCF-7 cells with E2. In this light, the failure to find a
robust consensus gene signature for the E2 signaling
pathway is not surprising.

Despite the disappointing overlap, some of the genes
identified in these two studies are still likely to be valid
targets of ER signaling. In order to investigate the
feasibility of integrating experimentally generated pathway
responses with data from primary tumors, we focused on a
few specific genes identified in each of the in vitro studies.
The expression values for each gene were plotted against
the ESR1 level for the sporadic tumors (n = 78) in the
data of van’t Veer and colleagues (Fig. 5).

We compared LIV-1, AREG, TFF1 and PGR with the
ESR1 expression levels in the van't Veer and colleagues
data [11]. LIV-1 and AREG were identified as E2-induced
and ICI-repressed in the Frasor and colleagues study [8]
and TFF1 was found to be E2-induced and ICI-repressed

in the Cunliffe and colleagues study [7]. PGR, the best
known target of liganded ER, was not identified in either
study. Each experimentally identified target gene showed
a reasonably good correlation with ESR1 in the van’t Veer
and colleagues data (Table 1), and an interesting pattern
is evident when plotted using the color-coded groups
(Fig. 5a–d). There is a trend for higher expression of these
E2-stimulated genes in the samples that express more
ESR1: moderate ESR1 samples > weak ESR1 samples.
We also examined the expression of several of the genes
identified by Frasor and colleagues to be downregulated
by E2 and upon which ICI acted as an antagonist. Two of
these genes, TGFβ2 and NRDG1, have negative
correlations to ESR1 in the data of van’t Veer and
colleagues [11], consistent with being targets of
repression by ER signaling (Table 1 and Fig. 5e,f).

The quantitative expression of ER has been shown to have
clear clinical implications both in the adjuvant and the
metastatic setting in terms of response to anti-estrogen
therapy [23–25]. This is certainly consistent with the
concentration-dependent occupancy of cis-regulatory
sites being a fundamental aspect of DNA-binding
transcription factors. It is interesting to note that about
one-half of the tumors with the highest ESR1 expression
do not show co-expression of PGR, AREG or TFF1
(Fig. 5b–d). The ER signaling pathway in these very highly
ESR1 expressing samples may thus be fundamentally
different. In a patient cohort very similar to this one (node-
negative patients, younger than 60 years old at diagnosis),
where ER protein was measured quantitatively, a
paradoxical reduction in overall survival was associated
with very high ER levels [26]. The clinical outcome data in
the van’t Veer and colleagues study also exhibits a trend
towards a worse prognosis in the highest ESR1 subgroup
(see Additional file 2).

Conclusions
The E2 response in breast cancer cells would seem to
provide a straightforward opportunity for microarrays to

Available online http://breast-cancer-research.com/content/6/5/192

Table 2

Estrogen-regulated genes in MCF-7 breast cancer cells

Number of genes Number of genes 
Estrogen-modulated and from Frasor and from Cunliffe and Number of 
antagonized by ICI colleaguesa colleaguesb genes shared Gene symbols

Upregulated 25 ≈ 164c 3 WISP2, CA12, TOP2A

Downregulated 61 ≈ 80 7 INHBB, CTSH, ERBB2, IFI30, 
LAMB2, SELENBP1, IL1R

a Data extracted from Frasor and colleagues, Tables 2 and 3 [8].
b Data extracted from Cunliffe and colleagues, Supplementary Figure 1 [7].
c Frasor and colleagues, Table 6 [8] identified 51 genes unaffected by E2 but downregulated by ICI. Of these genes, 22 (41%) are found in the set
of 164 genes upregulated by E2 and downregulated by ICI in the Cunliffe and colleagues experiments, indicating that the response to ICI for these
22 genes was the same in both studies although the E2 response differed.
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demonstrate their utility in identifying pathway signatures
based on gene expression profiles. ER is a transcription
factor with well-characterized cis-regulatory sites, and we
have an abundance of hormone receptor agonists and
antagonists at our disposal with which to modulate its
activity. Decades of clinical and laboratory research with
these compounds have validated the central importance of

E2 and ER in the pathogenesis of breast cancer. There is
also strong evidence indicating that the currently employed
microarray platforms can support the quantitative analysis
of cell and tumor transcriptional programs.

So why is the global ER gene expression signature for
E2-responsive breast cancer cells still unclear? There are

Breast Cancer Research    Vol 6 No 5 Wilson and Dering

Figure 5

Estrogen-modulated genes and their co-expression in estrogen receptor-positive primary breast cancers. The log ratios of the four experimentally
confirmed, estrogen-induced genes (a) LIV-1, (b) TFF1, (c) PGR and (d) AREG were plotted against ESR1 from the van’t Veer and colleagues
data [11]. Data for genes shown to be repressed by estrogen treatment in MCF-7 cells [8] are also plotted against ESR1: (e) TGFβ2 and (f)
NDRG1. The samples are colored by group, as in Figs 3 and 4. Only values for the five subgroups of sporadic tumors (n = 78) are plotted and
used for the R2 calculations. The data for the BRCA1/BRCA2 subgroup (dark green) are not shown.
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several factors in addition to the cross-platform
comparison issues already discussed. One longstanding
technical obstacle is the over-reliance on a single ER-
positive breast cancer cell line (MCF-7) or on only a few
ER-positive breast cancer cell lines (ZR-75-1, T47D) as
experimental models. We have suggested that the true ER
signature may be much smaller than originally proposed
due to a failure to appreciate the close association
between luminal cell differentiation and ER activity. The
data in Figure 4 suggest that this association may be
circumstantial. Alternatively, it is possible that breast
cancers arise from a transforming event in multipotent
progenitor cells and that acquired alterations (e.g. high
autocrine ER stimulation or ERBB2 amplification) drive the
differentiation of the malignant cells towards a luminal fate.

Global gene expression profiling has fundamentally
changed the way we look at cancer cells by providing
simultaneous measures of the activity of thousands of
genes. We are optimistic that the quantitative ER pathway
data generated by microarray experiments will better
predict patient prognosis and clinical response to anti-
estrogen therapy. Although many significant challenges
remain, these technologies will undoubtedly play an
important role as we identify new therapeutic targets and
improve the efficacy of current breast cancer treatments.
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