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SUMMARY

Our motor outputs are constantly re-calibrated to adapt to systematic perturbations. This motor 

adaptation is thought to depend on the ability to form a memory of a systematic perturbation, often 

called an internal model. However, the mechanisms underlying the formation, storage, and 

expression of such models remain unknown. Here, we developed a mouse model to study forelimb 

adaptation to force field perturbations. We found that temporally precise photoinhibition of 

somatosensory cortex (S1) applied concurrently with the force field abolished the ability to update 

subsequent motor commands needed to reduce motor errors. This S1 photoinhibition did not 

impair basic motor patterns, post-perturbation completion of the action, or their performance in a 

reward-based learning task. Moreover, S1 photoinhibition after partial adaptation blocked further 

adaptation, but did not affect the expression of already-adapted motor commands. Thus, S1 is 

critically involved in updating the memory about perturbation that is essential for forelimb motor 

adaptations.

In Brief

Mathis et al. developed a force field-based motor adaptation task for mice. They found that 

photoinhibition of forelimb S1 abolished motor adaptation while sparing basic kinematics and 

their ability to learn a new reward location that required similar motor outputs.

INTRODUCTION

Humans can adapt their motor commands to a plethora of sensory perturbations, like 

wearing prism glasses, adjusting to external loads, or moving in artificially applied force 

fields (von Helmholtz, 1867; Shadmehr and Mussa-Ivaldi, 1994; Wolpert et al., 2011; 

Shadmehr et al., 2010; Herzfeld et al., 2014). It is thought that adaptation critically depends 
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on the animal’s ability to detect the difference between the intended and actual movement. 

Increasing evidence suggests that motor adaptation is driven by sensory prediction errors, 

the difference between the predicted and the actual sensory experiences about a movement 

(Wolpert et al., 1995; Wolpert and Miall, 1996; Hwang and Shadmehr, 2005; Tseng et al., 

2007). However, other mechanisms have also been proposed. According to feedback error 

learning (Albert and Shadmehr, 2016; Ito, 2013; Kawato and Gomi, 1992), the act of making 

a corrective motor action during the pull generates an error signal. This feedback control 

signal serves as a “template,” or an error signal, to update future actions. Additionally, it has 

been observed that reward prediction errors, the difference between predicted and actual 

reward, may drive motor adaptation in certain conditions (Galea et al., 2015; Huang et al., 

2011; Izawa and Shadmehr, 2011), such as when visual feedback is fully or partially absent 

(Izawa and Shadmehr, 2011).

Studies in humans have provided insights into mechanisms underlying motor adaptation. For 

example, force field-based and visual rotation-based perturbations have yielded theories 

about the nature of feedback control (Todorov and Jordan, 2002; Wolpert et al., 2011), the 

learning rates (Gonzalez Castro et al., 2014), and the underlying anatomy and neural 

computations (Wolpert et al., 1995; Smith and Shadmehr, 2005; Shadmehr et al., 2010; 

Shadmehr and Krakauer, 2008). Studies using patients have been instrumental in identifying 

brain regions implicated in the ability to successfully adapt (Shadmehr and Krakauer, 2008; 

Smith and Shadmehr, 2005; Tseng et al., 2007). Yet, the exact neural mechanisms remain 

elusive as many patients have long-standing deficits often spanning multiple domains, such 

as control and learning (Shadmehr and Krakauer, 2008; Smith and Shadmehr, 2005; Tseng 

et al., 2007). Furthermore, the different types of error signals are often difficult to dissociate. 

Thus, the question of which error signals and neural systems contribute to motor adaptation 

remains debated (Adams et al., 2013; Shadmehr and Krakauer, 2008).

While much attention has been paid to the cerebellum in motor adaptation (Diedrichsen et 

al., 2005; Gao et al., 1996; Proville et al., 2014; Smith and Shadmehr, 2005; Tseng et al., 

2007; Wolpert et al., 1998), there has been less focus on cortical contributions, despite 

evidence that cortex responds rapidly after the onset of perturbations (Krebs et al., 1998; 

Omrani et al., 2016). Interestingly, several studies have suggested that primary 

somatosensory cortex (S1) may have a role in motor learning (Krebs et al., 1998; Pavlides et 

al., 1993; Vidoni et al., 2010), yet a causal role of S1 in motor adaptation has not been 

demonstrated.

To address these questions, we developed a mouse model to study motor adaptation by 

applying force fields to alter paw trajectories. We first show that mice can learn to counteract 

this force field in this task. We subsequently show that S1 photoinhibition during 

perturbation abolished motor adaptation. This deficit in motor adaptation occurred with high 

specificity: S1 photoinhibition did not perturb basic motor patterns, post-force field 

completion of actions, or the ability of mice to learn from reward feedback. These results 

provide insights into neural circuits involved in motor adaptation and the type of error signal 

that drives motor adaptation.
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RESULTS

Development of a Forelimb Motor Adaptation Task for Mice

We developed a joystick-based perturbation system for mice inspired by robotic 

manipulandum-based force field paradigms in humans (Shadmehr and Mussa-Ivaldi, 1994). 

Mice were trained to reach for, grab, and pull a joystick into a virtual target box (Figure 1A, 

Movie S1). The task was performed in the dark, therefore the joystick was invisible and their 

sensory feedback was limited to somatosensation from the forelimb. After the mice mastered 

the joystick-pulling behavior in an unperturbed environment, we introduced a brief lateral 

force perturbation using an electromagnet (Figure 1A). In perturbed trials, the force field 

was activated for the duration of 100 ms immediately after the joystick passed a fixed spatial 

threshold (Figure 1A) (Fine and Thoroughman, 2006; Sing et al., 2013). In each session 

(day), mice performed 75 trials without a force field (baseline), 100 trials with a force field 

(perturbation), and 75 trials without a force field (washout) (Figure 1A). During baseline, the 

mice had straight trajectories, producing only small perpendicular (i.e., lateral) paw 

displacements from the vertical pulling direction across the first 75 trials (0.01 ± 0.19 mm, 

mean ± SD, n = 7 mice, 27 sessions; Figures S1A–S1C). During initial trials of the 

perturbation phase, the unpredicted force field resulted in leftward perpendicular 

displacements by ~2 mm from the pull axis (these leftward displacements were denoted as 

negative values) (Figures 1B–1D, Figures S1A–S1C). After tens of trials, the mice 

compensated the force field, significantly reducing the perturbation-induced perpendicular 

displacement by 31.8% ± 0.73% (repeated-measures ANOVA, F(9,13) = 9.79, p < 0.0001, 

Figures 1C–1D, Figures S1D and S1E, Figure S2).

In addition to reducing motor errors mid-way through the pull, closer inspection of the 

paw’s paths showed that the mice gradually changed their pull angle near the start of the 

pull, before the onset of the force field; the mice also shifted their starting position within 

the start box (position 1 versus start box location compared across the late perturbation 

trials, Mann-Whitney U test, p < 0.0001, and position 1 normalized for shift in start box 

location early versus late perturbation, Mann-Whitney U test, p < 0.0001, Figures 1E–1F, 

Figures S2A and S2E). This pre-emptive steering suggests that the mice learned to expect 

the force field during the subsequent trial, and expressed compensatory motor commands, 

which can be confirmed by unexpectedly removing the force field. Indeed, the mice had a 

significant “aftereffect” during washout, that is, their pulls were significantly deviated in the 

direction opposing the force field (baseline versus washout bins, repeated-measures 

ANOVA, F(7,9) = 11.70, p < 0.0001, Figures 1B–1F, Figure S2). Taken together, these results 

show that the mice adapted to the force field with predictive compensation. This is 

evidenced by: (1) an anticipatory change in perpendicular displacement before the force 

field onset, (2) reduced perpendicular displacement during the force field, and (3) the 

presence of reliable aftereffects when the force field was unpredictably removed.

Learning from Sensory and Reward Prediction Errors

In some circumstances (Huang et al., 2011; Izawa and Shadmehr, 2011), it has been shown 

that motor adaptation occurs by increasing the frequency of previously rewarded motor 

actions, that is, the result of reinforcement learning. We found that within a trial, following 
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the offset of the perturbation, all the mice consistently corrected the joystick position by 

making an “L”-shape turn, as observed in humans (Shadmehr and Mussa-Ivaldi, 1994). 

Because of the spatial arrangement of the target and perturbed paw trajectories, these post-

perturbation L-turns were enough to hit the target and mice were typically able to obtain 

reward even in the first perturbation trial they ever experienced (Figure S3A, 6/7 mice). As a 

result, reward rate remained high during the perturbation block but dropped slightly across 

the perturbation block in an anti-correlated manner with the reduction in perpendicular 

displacement (first ten versus last ten perturbation block, Wilcoxon signed rank test, p = 

0.010; Spearman’s correlation coefficient: −0.39, p = 7.4 × 10−5; Figure 2A, Figure S3B). 

These errors are due to either not pulling far enough toward the reward box (50.3%), or 

aiming too laterally and/or not stopping long enough in the target box to collect a reward 

(49.7%; Figures S3B and S3C). The anti-correlation between the adaptation and the reward 

rate suggests that reward feedback did not positively instruct forelimb movements 

(adaptation). Consistent with this idea, a standard reinforcement-learning model failed to fit 

the behavioral data, suggesting that there is no consistent relationship between trial-to-trial 

changes in motor output to the trial-by-trial pattern of reward feedback (Figure 2B; STAR 

Methods). These observations suggest that the motor adaptation in our task is not primarily 

driven by reward prediction errors.

Another class of models posit that motor adaptation relies on sensory prediction errors 

(Berniker and Kording, 2008; Izawa and Shadmehr, 2011; Shadmehr and Mussa-Ivaldi, 

1994; Todorov and Jordan, 2002; Wolpert et al., 1995). In these models, a mismatch between 

the predicted sensory feedback (based on the efference copy) and the actual sensory 

feedback indicates the presence of a perturbation to the motor system (Figure 2C). The 

vector of this error signal can be used as a “teaching signal” to learn the magnitude of the 

perturbation, and to update a memory (i.e., internal model) of the perturbation. Once this 

internal model is learned, the agent executes a motor command to counter the estimated 

perturbation. We found that, indeed, such a state estimator model was able to explain the 

observed pattern of motor adaptation (Figure 2D). To contrast reward-based and sensory 

prediction error-based learning, we further studied a hybrid model that could learn from both 

sensory and reward prediction errors (Todorov and Jordan, 2002; Izawa and Shadmehr, 

2011) (Figure 2E, STAR Methods). Consistent with the individual models, we found a 

dominating role for sensory over reward prediction errors (Figure 2F).

Somatosensory Cortex Is Required to Adapt to a Forelimb Perturbation

The above results suggest that the integration of sensory feedback (either L-turns, or in the 

form of sensory prediction errors) from the forelimb, but not reward, plays an important role 

in the motor adaptation we studied. Somatosensory feedback is conveyed from the limb to 

the central nervous system (CNS) by multiple pathways including the direct projections 

from the spinal cord to the cerebellum (spino-cerebellar and cuneo-cerebellar pathways) as 

well as the thalamocortical pathways (Bostan and Strick, 2010; Caligiore et al., 2017). It is, 

therefore, unclear whether one particular pathway plays a predominant role in motor 

adaptation. S1 receives feedback from the limb during reaching movements (Hikosaka et al., 

1985; Omrani et al., 2016) and projects to important motor control centers such as motor 

cortex (Petrof et al., 2015) and via brainstem to cerebellum (Bower et al., 1981)—both areas 
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that display rapid responses to S1 stimulation (Brown and Bower, 2002; Petrof et al., 2015). 

To test the role of S1 during adaptation, we transiently photoinhibited the forelimb area of 

S1 during movements.

We employed transgenic mice expressing channelrhodopsin-2 (ChR2) in GABAergic 

neurons, implanted with an optical fiber in forelimb area of S1 contralateral to the forelimb 

they used during the task (Guo et al., 2014; Zhao et al., 2011, Figure S4, STAR Methods). 

We then optogenetically activated GABAergic interneurons during the period when the force 

field was applied to partially inactivate forelimb S1 (n = 3 mice, 17 sessions, Figure 3A). 

During control sessions (n = 12), the mice significantly adapted to the force field, 

demonstrated pre-emptive steering, and displayed a significant aftereffect (Figures 3B, 3D, 

and 3E, Figure S5A; compare to Figures 1C and 1D). In contrast, with S1 photoinhibition 

the same mice did not exhibit motor adaption as indicated by (1) the lack of reduction in 

perpendicular deviations (Figures 3C–3D and 3F, Figures S5B–S5D), (2) the lack of 

predictive steering before force field onset (Figure S5D), and (3) the lack of aftereffect 

during the washout block (Figures 3C–3D and 3F, Figures S5A and S5B). Specifically, the 

perpendicular displacement in early trials between control and photoinhibition session were 

not significantly different (Mann-Whitney U test, p = 0.33). With photoinhibition, there was 

no difference in perpendicular displacement between the early and late trials during the 

perturbation block (Mann-Whitney U test, p = 0.50), yet the last ten trials of the perturbation 

block during photoinhibition and control sessions were significantly different (Mann-

Whitney U test, p = 0.001 Figure 3D). The lack of adaptation and aftereffect was not due to 

general performance deficits (Movies S2 and S3, Figures S5E–S5G). They were still able to 

perform L-shaped turns and hit the target box, resulting in similar reward rates as in control 

sessions (62% ± 10% during photoinhibition; 64% ± 13% without; t test, t(27), = 0.12, p = 

0.90, Figures 3B and 3C). During photoinhibition sessions, the extent they moved after the 

termination of the force was slightly longer (~0.15 mm) rather than shorter (Figure S5E). We 

also obtained no signatures of adaptation when we repeated the same photoinhibition 

experiments with a lower laser power (Figure S5H). Furthermore, the velocity profile of 

pulls with or without photoinhibition was comparable between the baseline and early 

perturbation trials (Figure S6A).

L-Turns Are Intact with S1 Photoinhibition

According to feedback error learning theory (Kawato and Gomi, 1992; Shadmehr et al., 

2010), the act of making L-turns (or the more active act of making motor corrections) guides 

adaptation. The above results indicate that the ability to counteract the force field by means 

of online motor control as well as basic kinematic variables was not impaired by S1 

photoinhibition. To further test whether S1 photoinhibition affects reflexive motor reactions 

(i.e., the L-turns), we sought to specifically examine motor control. During the adaptation 

task, the L-shape turns occurred immediately after the force field was terminated, suggesting 

that the feedback responses underlying the lateral movement began even before the 100-ms 

perturbation was complete (allowing the L-shaped movement to take place as soon as the 

perturbing force was removed). To determine the onset latency of these feedback responses, 

mice were tested in separate sessions in which force field perturbations of varying durations 

(drawn from a uniform distribution, range: 10–100 ms) were applied randomly in 50% of 
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trials. We found that during shorter applications of the force field (i.e., 30 ms), the mice 

made L-turns quickly (Figure S6B). This suggests that the mice are capable of reacting by 

the end of the force field when it is applied for 100 ms, as in the main adaptation task. They 

also appeared to correct with a similar magnitude independent of the duration the force field, 

suggesting that the compensation is not specific to the state of the limb (Fine and 

Thoroughman, 2006). These results furthermore suggested that the capacity for online 

correction was not affected by S1 photoinhibition. To test this further, we examined mice in 

sessions where the force field of varying durations (30, 60, or 90 ms) was applied in a 

smaller (10%) fraction of randomly chosen trials in order to reduce the effect of adaptation. 

We again photoinhibited for a fixed duration (100 ms) during 50% of these perturbation 

trials (i.e., the force field could be active for 30 ms, but photoinhibition was always 100 ms). 

Consistent with the earlier experiment, mice made the L-shape turns during photoinhibition 

and the “time to turn” was not significantly different with or without photoinhibition (two-

way ANOVA, F(2, 189) = 0.67, p = 0.53 interaction; F(1, 189) = 0.02, p = 0.88, condition; 

F(2, 189) = 1.4, p = 0.25 force on time; Figure S6C) and had almost identical velocity profiles 

(Figure S6D). Taken together, these results show that the ability to make an L-turn within 

100 ms was not impaired by photoinhibition, demonstrating that motor adaptation can be 

dissociated from corrective motor control, and suggest that L-turns are not sufficient to drive 

adaptation in our task.

Learning to Move the Paw to a New Reward Location Is Not Dependent on S1

We next sought to test whether photoinhibition impaired the ability to learn a new reward 

location. The same mice were tested in a task requiring similar forelimb movements but the 

location of the reward box was shifted laterally (by 80% of the box width) during the 100 

trial “perturbation” block (n = 3 mice: n = 12 control and 13 photoinhibition sessions, Figure 

3G). The mice gradually changed their pull direction toward the novel reward location in 

control sessions (Figure 3G). This behavior was well fit by the actor-critic reinforcement-

learning model, but not by the model that learns from sensory prediction errors (Figures S7A 

and S7B), in stark contrast to the adaptation task. We then applied the same spatiotemporal 

photoinhibition schedule during this “target-shift task.” We found that their ability to learn in 

this task with and without photoinhibition was comparable (Figures 3G–3I, Figure S7C, 

two-way ANOVA F(1, 115) = 0.83, p = 0.37). The reward rate was not different between 

control and photoinhibition conditions (44% ± 12% reward rate during photoinhibition, 56% 

± 12% without; t test, t(23), = 0.71, p = 0.49). These results demonstrate that the same S1 

photoinhibition that impaired motor adaptation did not impair their ability to learn in motor 

learning task based on reward feedback that involves very similar motor patterns as the 

motor adaptation task. This result further supports the idea that the deficit in motor 

adaptation during photoinhibition is not due to impairment in reward-based learning.

The Role of S1 in Updating an Internal Model of the Environment

How could S1 be involved in motor adaptation? The above results suggested that sensory 

prediction errors, and not a motor correction-based error signal or reward prediction errors, 

drove the adaptation in our task. We reasoned that S1 could be housing a memory of the 

perturbation (i.e., the internal model of the perturbation), or updating the memory of the 

perturbation (e.g., computing sensory prediction errors). The former possibility indicates 
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that S1 photoinhibition eliminated the internal model of the force field. The latter possibility 

indicates that S1 photoinhibition impaired the updating of a motor command that counters 

the expected perturbations, for example, because sensory prediction errors were eliminated. 

The above experiments do not allow us to distinguish these possibilities. We reasoned that 

once the mice partially adapted, these two hypotheses make different predictions. To 

dissociate these two alternatives, we used a task variant in which, after 75 baseline trials, the 

mice were presented with 50 perturbation trials, followed by 50 perturbation trials paired 

with photoinhibition (n = 17 sessions, Figure 4A). The former possibility predicts that S1 

photoinhibition should cause a sudden drop back to the full perpendicular deviation 

measured during initial perturbation trials (Figure 4B). Alternatively, the latter possibility 

predicts that S1 photoinhibition should only halt updating of a motor command, which 

would not result in a sudden change in motor command at the transition from un-inhibited to 

the photoinhibited trials (Figure 4B). The mice exhibited adaptation within 50 trials (Mann-

Whitney test, early versus mid-perturbation, p = 0.01, Figure 4C). We found that S1 

photoinhibition following this adaptation did not cause an immediate drop in perpendicular 

displacements (average trial 120–125 versus 126–131, Mann-Whitney test, p = 0.24, Figures 

4C and 4D, and trial 125 versus 126 each session, paired t test, t(16), = 0.23, p = 0.82, Figure 

4D), which was also true of the predictive steering (Figures 4E and 4F). Over the course of 

the next few trials with S1 photoinhibition, however, the perpendicular displacement 

gradually decayed (Figures 4C and 4E, Figure S7D). This result suggests that the S1 

photoinhibition impaired updating of the memory of perturbations, but not the expression of 

already-adapted motor commands based on this memory, which is presumably stored 

elsewhere in a labile way.

DISCUSSION

Our results demonstrate that mice exhibit motor adaptations in forelimb movement that 

bears similarities to motor adaptations observed in humans (Fine and Thoroughman, 2006; 

Shadmehr and Mussa-Ivaldi, 1994; Sing et al., 2013) and non-human primates (Li et al., 

2001). We used this behavioral paradigm to explore two long-standing questions: which 

error signals guide motor adaptation, and which neural circuits are required to adapt? Our 

results demonstrate that S1 photoinhibition impaired updating motor commands but not the 

execution of already-adapted motor commands. These results indicate that direct projections 

from the spinal cord to the cerebellum are not sufficient to support motor adaptations in our 

forelimb motor adaptation task. Instead, the result shows that cortical processing of 

somatosensory feedback plays a predominant role. Our S1 photoinhibition impaired motor 

adaptation but the L-turns remained intact. This suggests that the act of making the L-turn 

(which is thought to produce a “template” [Albert and Shadmehr, 2016]) is not sufficient to 

drive motor adaptation in this task. Moreover, a model that learns from sensory prediction 

errors, but not one that learns only from reward prediction errors, was able to explain the 

learning dynamics of motor adaptation. Furthermore, reward-based learning of a novel target 

location was not impaired by the S1 photoinhibition. Together, these results suggest that 

processing of sensory feedback via S1 plays an important role in detecting the discrepancy 

between predicted and actual sensory experiences, which plays an important part in driving 

motor adaptation.

Mathis et al. Page 7

Neuron. Author manuscript; available in PMC 2018 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Motor Perturbations in Mice as a Tool to Study Sensory-Guided Adaptation

We set out to establish a mouse model to study a forelimb motor adaptation task that has 

played a pivotal role in motor adaptation studies in humans and non-human primates 

(Shadmehr and Mussa-Ivaldi, 1994; Fine and Thoroughman, 2006; Sing et al., 2013; 

Shadmehr et al., 2010). We showed that over the course of 100 trials, the mice began to 

counter the force field perturbation as measured by the appearance of predictively steering, 

reduced displacement, and an aftereffect. The predictive steering (and aftereffect) is 

particularly interesting because it indicates that the mice made a preparatory compensation 

to an upcoming perturbation, and therefore the mice learned from previous trials.

Although the mice exhibited adaptation similar to those seen in primates, they did not adapt 

fully back to a straight pull within 100 trials. In most human studies, velocity-dependent 

force fields are used. In these paradigms, based on the bell-shaped velocity profile of pulls, 

the force field is gradually increased and then decreased, which may have aided complete 

adaptations. Even in these conditions, it typically takes more than a hundred trials to fully 

adapt (Shadmehr and Mussa-Ivaldi, 1994; Wolpert et al., 2011). Nonetheless, incomplete 

adaptation was also commonly seen in humans (Fine and Thoroughman, 2006; Rabe et al., 

2009; Sing et al., 2013; Tseng et al., 2007), suggesting that whether complete adaptations 

occur depends on various task parameters. For example, when abrupt, pulsed forces were 

used, humans did not pull straight after more than 200 trials (Fine and Thoroughman, 2006; 

Sing et al., 2013). Furthermore, using pulsed perturbations, a previous study has suggested 

that the subject tends to adapt to the direction of perturbation, but not to the detailed limb 

states during perturbation (Fine and Thoroughman, 2006). How different task parameters 

affect motor adaptations in our task warrants further investigation.

The measured adaptation was accompanied by a slight decay in the reward rate. This anti-

correlation between motor adaptation and reward allowed us to dissociate motor adaptation 

from reward-based learning. Although the reduced perpendicular deviation is indicative of 

motor adaptation, the adaptation could be called “maladaptive” with respect to obtaining 

reward. Several studies have demonstrated that adaptation can occur independent of the 

“rate” of success in a given task condition (Mazzoni and Krakauer, 2006; Schaefer et al., 

2012). For instance, a previous study described a remarkable visuomotor learning task where 

implicit and explicit processes guiding adaptation were in conflict (Mazzoni and Krakauer, 

2006). When subjects “implicitly” adapted, this was accompanied by decay in performance 

(“drift” or systematic error in reaching a target). These observations suggest that sensory 

prediction error-driven adaptations can be implicit and can be dissociated from a given goal 

of a task such as reward or hitting a target.

The Role of Error-Based Learning during Adaptation

We observed L-shape turns in response to force field perturbations similar to those observed 

in primates (Fine and Thoroughman, 2006; Shadmehr and Mussa-Ivaldi, 1994). These 

observations suggest that mice quickly counteracted the perturbation. We do not believe that 

these L-turns reactions are pre-planned because they were observed even when the mice first 

encountered the perturbation and because similarly oriented trajectories were not observed 

in washout trials (Figure S1A). Moreover, the mice could be employing both a heuristic 
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strategy or co-contracting muscles (i.e., stiffing in response to the force), which aid both in 

reducing displacement, and could cause the sudden L-turn once the magnet releases the 

limb. Furthermore, mice exhibited similar reactions regardless of the duration of 

perturbations (Figure S6). The mechanism underlying these corrective L-turns remains to be 

clarified. Because of this reflex-like nature, they could be purely subcortical or spinal. 

However, we cannot exclude the possibility that the L-turns involve other cortical areas. 

Furthermore, more complete S1 inactivation might interfere with kinematics or the 

production of the L-turn.

It has been proposed that the act of making an L-turn (or a more active corrective response) 

serves as a teaching signal (or a “template”) that drives motor adaptation (Albert and 

Shadmehr, 2016; Inoue et al., 2016; Kawato, 1996; Thoroughman and Shadmehr, 1999). 

Consistent with this idea, patterns of muscle activation during corrective motor responses 

gradually shift to an earlier time point during future movements, providing some evidence 

supporting its role in motor adaptation (Albert and Shadmehr, 2016; Thoroughman and 

Shadmehr, 1999). Furthermore, electrical stimulation of the primary motor cortex (M1) that 

mimicked corrective reactions facilitated motor adaptation (Inoue et al., 2016). However, 

corrective motor reactions were shown to not aid saccade adaptations in certain conditions 

(Wallman and Fuchs, 1998), nor did they enhance reaching adaptation in patients with 

hereditary cerebellar ataxia (Tseng et al., 2007). The result that S1 photoinhibition abolished 

motor adaptation without compromising the act of making an L-turn indicates that the 

corrective reaction is not sufficient to drive motor adaptation. However, we cannot exclude 

the possibility that S1 contributes to error feedback learning, for instance, by relaying motor 

error signals to other brain regions for learning.

Additionally, it is possible that the mice employed some “cognitive” strategy to aid in 

compensating the force field. Previous studies have indicated the presence of multiple 

processes that guide adaptations (Smith et al., 2006; Shadmehr et al., 2010). Moreover, it has 

recently been proposed that in addition to the “implicit” error-based processes that may 

update a forward model, an “explicit” process can contribute to the measured adaptation in 

humans (Mazzoni and Krakauer, 2006; McDougle et al., 2015; Taylor and Ivry, 2012; Taylor 

et al., 2014). In our task, we characterized motor adaptation based on three metrics of 

adaptation: predictive steering, reduction in displacement, and aftereffect (Figure 1B, Figure 

S1A). In addition to these changes, mice also exhibited a small shift rightward in the start 

box before initiating a pull (Figure 1E). This appears to suggest that the mice employed 

more than sensory prediction error-guided adaptation. That is, explicit understanding of the 

force field perturbation might have instructed the animal to counter even before initiating a 

pull. The ability to apply a cognitive strategy may also have been aided by using 

perturbations whose profile is not dependent on limb kinematics, as is seen in human studies 

in which a similar pulsed field resulted in predictive steering (Fine and Thoroughman, 

2006). Thus, while our data suggests that S1 is crucial to adapt, it remains unclear how and 

which specific downstream “systems” S1 may influence.
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How Is S1 Involved in Regulating Motor Adaptation?

In total, our results favor that S1 is involved in sensory prediction error-driven motor 

adaptation. There are multiple possibilities of how our S1 photoinhibition abolished motor 

adaptation. First, the lack of adaptation can be explained if the photoinhibition eliminated 

representation and transmission of the sensory prediction errors that update an internal 

model, which then drives motor adaptation. Second, it is also possible that the CNS learned 

to ignore sensory feedback due to reduced fidelity in somatosensory feedback signals caused 

by S1 photoinhibition. Consistent with the former possibility, S1 neurons rapidly respond to 

unexpected perturbations to a forelimb movement (Fromm and Evarts, 1982; Omrani et al., 

2016) and respond differently to externally versus self-generated touching (Blakemore et al., 

1999). Although the question of whether these signals encode sensory prediction errors, and 

if they specifically drive motor adaptation remains to be examined. Another possibility is 

that S1 relays rather than computes sensory prediction errors to areas that may house the 

internal model, such as the motor cortex or cerebellum, which are proposed sites of inverse 

and forward models, respectively. Yet, the abolishment of adaptation by S1 photoinhibition, 

both at the start of the perturbation block and after partial adaptation (Figures 3 and 4), 

suggest that S1 is required because it may encode or compute sensory prediction errors.

Previous studies have shown that S1 participates in functional loops with the motor cortex, 

the basal ganglia, and the cerebellum (Blakemore et al., 1999; Kelly and Strick, 2003; 

Marini et al., 1982; Petrof et al., 2015), which are thought to be the sites that hold memories 

about perturbations (often referred to as inverse or forward internal models). When we 

photoinhibited S1 after partial adaptation (Figure 4), we found that the memory was not 

immediately (or fully) erased, suggesting that S1 does not exclusively hold the memory of 

the perturbation. These results are consistent with the idea that S1 is providing the updating 

signal (such as sensory prediction errors) to another region that houses the internal model. 

For example, recent work suggests that the cerebellum may contribute to the coordination 

and adaptation of limb movements (Hoogland et al., 2015; Vinueza Veloz et al., 2015), and 

thus may house an internal model that could be updated by S1.

The traditional view is that S1 holds multiple sensory representation of the body (i.e., 

homunculus) (Penfield and Boldrey, 1937; Kaas et al., 1979; Kaas, 1983). It is known that 

lesions during development alter the cytoarchitectural and functional realization of these 

bodily representations (Buonomano and Merzenich, 1998; Feldman and Brecht, 2005; 

Woolsey and Van der Loos, 1970). Furthermore, there is evidence that the representation of 

areas recently used in motor tasks can shift the map size and location (Braun et al., 2000) 

and is plastic on the order of minutes (Feldman and Brecht, 2005). Consistent with this view, 

it has been demonstrated that S1 is critically involved in the perception of object location 

(Guo et al., 2014) and, together with adjacent somatosensory areas, is involved in perception 

by active touch (Tomberg and Desmedt, 1999). Thus, it is interesting that in this forelimb-

reaching task, our S1 photoinhibition did not hamper motor performance and control 

(neither in the target-shift task nor in the motor adaptation task was the performance affected 

by inactivating S1). As the target-shift task involves learning a novel target location, this 

might seem paradoxical. Yet, in principle, the new location could be learned by reinforcing 

the actions that were rewarded rather than by associations with explicit sensory cues, which 
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is also supported by our model analysis (Figures 2 and S7). In the motor adaption task, the 

ability of mice to counteract the novel forces applied by the magnet was also not affected. 

The accurate perception of those forces, or the calculation of sensory prediction errors as 

indicated above, however, is crucial for guiding adaption. Thus, photoinhibition of the 

forelimb region of S1 during a skilled motor behavior suggests that S1 is involved in 

updating an internal model and that without the flow of information from S1 this memory 

can decay in a few trials (Figures 4 and S7D).

Conclusions

Although there have been extensive studies addressing the potential mechanisms underlying 

motor adaptation, the neural circuits and the error signal that regulate it remained elusive. 

Our behavioral paradigms in mice together with transient S1 photoinhibition allowed us to 

dissociate sensory prediction errors, template-based learning, and reward feedback. This 

experimental paradigm will be a powerful platform to probe the contributions of different 

error signals as well as neural circuits underlying motor adaptation.

STAR ★ METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to, and will 

be fulfilled by, the lead contact Mackenzie Weygandt Mathis 

(mackenzie@post.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The behavioral data were collected from 7 adult (P90-P365) male mice whose genotypes are 

either (1) C57BL/6J [n = 2], (2) Slc6a3tm1.1(cre)Bkmn/J [n = 2], or (3) B6.Cg-Tg(Slc32a1-

COP4*H134R/EYFP)8Gfng/J [n = 3; called vGAT-ChR2 in this report]. The same set of 

vGAT-ChR2 mice were used for photoinhibition experiments. These mice were obtained 

from the Jackson Laboratory (see Resources Table). For the photo-bleaching assay (Figure 

S4), we used B6.Cg-Tg(Thy1-YFP)HJrs/J mice (n = 3, Jackson Laboratory). For the 

electrophysiological confirmation of inhibition (Figure S4), we used 5 additional vGAT-

ChR2 mice. All mice were housed on a 12h dark/12h light cycle (dark from 06:00–18:00) 

and each performed the behavioral task at the same time of day, between 07:00 and 19:00. 

After surgery they were individually housed. All mice were maintained above 90% of their 

initial weight, and no mouse was given less than 1.5 mL water per day. All surgical and 

experimental procedures were in accordance with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals and approved by the Harvard Institutional Animal 

Care and Use Committee. A subset of mice (n = 2) in this study was first tested in a similar 

adaptation task (unpublished data) prior to participating in this study (but in no more than 8 

sessions).

METHOD DETAILS

Surgery—Mice were surgically implanted with a custom head plate (Cohen et al., 2012). 

All surgery was performed under aseptic conditions with animals under isoflurane (1%–2% 
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at 1.0 L/min) anesthesia. Analgesia (ketoprofen, 5 mg/kg, I.P.; buprenorphine, 0.1 mg/kg, 

I.P.), and an anti-inflammatory (dexamethasone, 5 mg/kg, S.Q.) were administered 

postoperatively for 48 hr. For the optogenetic experiments, mice were first outfitted with a 

head plate to determine their preferred paw then they underwent a second surgery to have a 

200 μm diameter optical fiber (Thorlabs, 0.39 NA) implanted at 200–400 μm below the dura. 

The coordinates of the forelimb somatosensory cortex were based on the intrinsic imaging 

mapping (Sachidhanandam et al., 2013; implant coordinates: −0.1 to +0.1 Bregma, +2 mm 

lateral (for every mouse), personal communication with Carl Petersen), and at least 1.5 mm 

away from the forelimb region of motor cortex.

Behavioral apparatus—The mice manipulated a joystick (thumb stick) to obtain reward. 

The system consists of a handle attached to a joystick base (679-2501-ND, Digi-Key, MN, 

USA). We modified the joystick base to reduce the force required to move the joystick (0.1–

0.2 N from 4N). The joystick had 2 dimensions of freedom, allowing for 360° movements 

(Figures S8A and S8B). The handle is made of a cylindrical wooden rod of 2 mm diameter 

at the grip point (and an aluminum base with a small steel ring to interact with the 

electromagnet). The joystick system was positioned on a separate platform below the main 

stage where the mouse sat, so it could be adjusted to accommodate each mouse’s reaching 

distance, if needed. Distance from the mouse with full limb extension to grasp the joystick 

was ~10.5 mm from the front edge of the platform to the resting, home location of the 

joystick (vertical). Custom aluminum holders were made to hold a tubular linear solenoid 

magnet orthogonal to the main pulling axis (74 oz Force, 69905K25, McMaster-Carr, USA). 

The magnet was hardware triggered for high temporal accuracy (2.2 V applied for 100 ms 

unless otherwise stated). The system was controlled in a fully closed-loop fashion in-house 

written software in LabView (National Instruments). We measured the relative force of the 

joystick during force trials by moving the joystick through a walled-channel, where one side 

was outfitted with a force sensor (FlexiForce System, Tekscan). We found that relative force 

on the side of the channel was ~1.5 times the typical pressure exerted on the sidewall. We 

also measured the effect on the joystick without a mouse by pushing the joystick along the 

pull axis until it interacted with the magnet. The return trajectories are shown in Figure S8C 

(with mouse-imposed trajectories overlaid). Additionally, the L-turns are not purely an effect 

of the joystick’s spring mechanics that exerts a force toward the resting position. This can be 

deduced from the existence of L-turns away from the magnet even on the positive 

perpendicular displacement side of the midline pull axis (half-plane), where the spring’s 

lateral force component aligns with the magnet’s force field direction (Figure S8D).

The mouse’s head plate fit to custom-made holders that reliably positioned the mouse across 

days. They stood on a solid platform covered in thin rubber for extra grip (8633K52, 

McMaster-Carr, USA) with no additional cover. Their front limbs could rest comfortably on 

a slightly elevated (~6 mm), rubber covered rest (Figure 1A). The analog voltage signal from 

the joystick was recorded in LabView from a National Instruments card (PCI-e6251). We 

measured the dynamics of the pull using the voltage readout from the joystick (sampled at 

10,000 Hz for accurate closed-loop control and down-sampled to 1,000 Hz for analysis).
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Behavioral training—After the mice had recovered for more than 7 days post surgery, 

they were water restricted in their home cage. On the first day, mice were head fixed briefly 

(as long as could be tolerated, but never longer than 15 min) and given random water reward 

to encourage licking behavior. The next 3 – 5 days, they were encouraged to grab the 

joystick, and instantly rewarded if they touched it or pulled it. After the mice had learned to 

reach for the joystick and move it for reward, a reward box was delineated; here, the mouse 

was required to allow the joystick to be in the virtual start box, wait > 1 s, then pull ~3mm to 

a virtual “reward training box” (2 mm width, 6 mm depth) toward the platform, and maintain 

joystick position for 100 ms inside the box. The behavioral performance was quantified as 

percentage of pulls to the reward zone per attempted pulls (i.e., reward given). Once a mouse 

performed with > 60% accuracy for > 2 days, they were shifted to the “Target Box Task” 

(which is the “baseline” in the main adaptation task), where they had to pull ~7 mm into an 

invisible box (2 mm in width, 3 mm depth). The mice continued to train (at least 2 weeks, 

but typically 4–5 weeks) until they were placed into the adaptation task, by which point their 

reward rate was > 80%. The adaptation task had the same rules as the Target Box Task 

except the wait time in the target box was 50 ms versus 100 ms, and the session consisted of 

75 baseline trials, 100 force field trials, and then 75 washout trials; see Figure 1. This 

criterion was also used for the Target Shift Task (Figure 3).

Additional motor tasks—For the data collected to determine reaction times to the force 

field, we tested the mice in separate sessions on a task where they performed 50 baseline 

trials, followed by a random sequence of perturbation trials (50% probability of occurrence), 

in which the force field time was drawn from a uniform distribution with range 10–100 ms. 

For testing L-turns in the optogenetic context, we allowed the mice to do 50 baseline trials 

followed by a random sequence of perturbation trials (with only a 10% probability of 

occurrence to limit any adaptation), in which the force was 30, 60 or 90 ms in duration. 

Then, in 50% of those 10% of perturbation trials, we applied the photoinhibition for 100 ms, 

starting concurrently with the force field onset. These experiments were performed with the 

room light on, and an additional blue LED placed close to the mouse’s face for masking.

Optogenetic photoinhibition—Mice were implanted with a optical fiber (as described 

above) to be sure we target the same region across sessions and to more evenly target the 

upper and deeper layers (Figure S4). Each mouse also had an aluminum and plastic cone 

that covered the optical fiber, limiting the light leakage from the laser when attached to the 

fiber (and protected the fiber from damage; Laser, Opto Engine LLC, 473 nm–100 mW). 

These experiments were performed with the room light on and an additional blue LED 

placed close to the mouse’s face for masking. There was no apparent distress or change in 

behavior caused by the light in any session. The laser power produced ~4 – 9 mW of 473 nm 

light, as measured through the tip of the optical fiber before implantation, and it was 

delivered in 5ms pulses at 50 Hz frequency time locked to the force field, or time-locked to 

the start of the force field (but with a constant duration of 100 ms) when testing various 

force on lengths (i.e., motor correction tasks). This was performed only during perturbation 

trials. For the “target shift task,” the light was triggered at the same spatial location and 

applied in the same manner (but no force was applied).
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Photo-bleaching assay—To measure the amount of light spread we performed a photo-

bleaching assay as described (Guo et al., 2014). Specifically, we implanted three Thy1-YFP 

(Line H) with an optical fiber and head plate in the same manner as described above. The 

mouse was habituated to being head-fixed in a behavior apparatus for > 5 days prior to the 

photo-bleaching assay. We applied 20 mW of light for 600 s to the area while the mouse 

quietly rested head-fixed not performing any task. We then immediately transcardially 

perfused the mice with cold 1x PBS followed by ice cold 4% PFA. Brains were post-fixed in 

4% PFA for 24 hr, and then cut into 100 μm sections for analysis. Images of each section 

were collected on an upright epifluorescent microscope (Zeiss). The extent of photo-

bleaching was computed as the mean of the maximum distance across the photo-bleached 

areas in both the anterior to posterior and medial to lateral axis (Figure S4). To compute the 

upper and lower layer bounds, we took the sections closest to the fiber tracts in each of the 

three mice and computed the maximum spread in the medial-lateral axis in 13 spatial bins 

(from layer 1 to 6).

We additionally measured the amount of inhibition by chronically implanting S1 in vGAT-

ChR2 mice (n = 4) with a customized optotetrode (four nichrome wires wound together, 

Sandvik Kanthal, Palm Coast, Florida); recordings were performed as previously described 

(Cohen et al., 2015) while the mice were awake but not performing a task. Additionally, we 

acutely implanted S1 in an anesthetized vGAT-ChR2 mouse with a NeuroNexus 8 shank 

probe (with tetrode configurations) as previously described (Guo et al., 2014, 2015; Li et al., 

2016; Zhao et al., 2011)). The fiber-optic was ~500 μm away from recorded neurons. In 

brief, optotetrode data was collected using a DigiLynx recording system (Neuralynx, 

Bozeman, Montana), and probe recording was collected using an OpenEphys system 

(Cambridge, MA). Signals from each wire were filtered between 0.1 and 9000 Hz and 

recorded at 32 kHz. To extract the timing of spikes, signals were band pass-filtered between 

300 and 6000 Hz. Sorting of individual units was performed offline using MClust 4.4 (D. 

Redish), and a PSTH (10 ms bins) was computed for each isolated unit, triggered on the first 

pulse of the 50 Hz laser application (Figure S4). Putative GABA neurons had a spike width 

less than <0.35 ms (time from peak to trough, as in (Guo et al., 2014, 2015).

Trajectory Analysis—Since general motivation of mice was important, sessions in which 

the reward rate during baseline was < 60% were aborted and excluded from further study 

(2/29 sessions were discarded). To analyze the perpendicular displacement within a session 

and while accounting for differences between the mice (across days), we baseline subtracted 

using the mean of trials 25–75 at 1 mm above position 2 (variance was verified to be similar 

across sessions). If a trial did not reach position 2, it was not included in this PD analysis. 

For perpendicular displacement position analysis, we aimed to analyze a point before the 

force field onset (position 1), and one within the force field (position 2). The latter bin was 

chosen to fall in an area where the trajectories are close to parallel to the idealized baseline 

pull axis to allow reliable estimates of the perpendicular deviation. The results are robust to 

the specific bin satisfying these conditions (Figure S1E), which can also be appreciated 

when considering the averaged trajectories (see Figures 1B and 3B–3C).

To determine a pull for post hoc analysis, we analyzed pulls from 150 ms before the crossing 

of the magnet onset bin (4 mm) to 500 ms post afterward (thus 650 ms in total). Because the 
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mouse had to wait inside the start box (>1 s) to initiate a trial, there was a clear period of 

little movement. Trajectory averages (Figures 1, 3, S2A, and S5A) are temporal averages 

computed by aligning the Savitzky-Golay (>20Hz cut-off) filtered pulls at the time when 

they cross the magnet onset bin (perpendicular line at 4 mm distance from center of start 

box) and spatially aligning the starting points with respect the perpendicular displacement 

(to remove any lateral drift of the starting position). The average was then taken over all 

sessions and the sets of trials as indicated in the respective figure caption (e.g., first ten 

perturbation trials). Excluding trials that do not reach beyond the upper spatial threshold of 

the reward box (7 mm vertical distance from the center of the start box) does not greatly 

alter the appearance of average trajectories (Figure S8E); this criterion excludes about ~10% 

of all trials. For distance versus time plots (Figures S2D and S2E, Figure S5A), we 

additionally performed a baseline correction (see Figure S5A). The average speed and 

acceleration plots (Figures S1B and S1C, Figure S6A) were similarly obtained by aligning 

the pulls to the magnet onset bin in a temporal fashion (this corresponds to 0 ms in the 

figures) and then averaging the individual speed and acceleration profiles obtained by taking 

the derivative of the Savtitzky-Golay filtered pulls. The reward rate was computed by first 

assigning a 0 or 1 based on reward delivery at the completion of each correctly initialized 

trial (1 = rewarded trial). Then, this was summed across sessions (for each trial), and divided 

by the number of sessions. A correctly initiated trial is defined by a pull after they waited 

long enough (>1 s) in the start box, and then exited the start box.

Generative Model Analysis—As elsewhere (Berniker and Kording, 2008; Izawa and 

Shadmehr, 2011; Shadmehr and Mussa-Ivaldi, 1994; Todorov and Jordan, 2002; Wolpert et 

al., 1998), we built a discrete dynamical system that models the scalar perpendicular 

deviation of the paw and how distinct reward and sensory prediction error driven signals act 

upon it. Like Izawa and Shadmehr (Izawa and Shadmehr, 2011), we assume that the 

measured perpendicular displacement of the joystick xk at a particular position bin and in 

trial k is the consequence of a motor command uk, the applied perturbation pk, and normally 

distributed motor noise , such that:

(1)

We further assume that the mouse senses the position of the joystick by proprioception, such 

that the estimate of its paw position, is given by yk = xk + ηs, which is also influenced by 

sensory noise . We assume that their internal estimate of the perturbation is 

given by a discrete dynamical system with retention factor r (less or equal to 1; fitted based 

on data) and memory noise :

(2)

Mice received water reward. How should mice pick the motor command uk, if we assume 

that they want to maximize reward and minimize motor cost? Given the internal estimate of 

the perturbation mice can predict their paw position  based on the efference copy of their 
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motor signal and their internal estimate of the perturbation  by: . This set of 

equations describes how motor commands give rise to movement and sensory feedback. 

Assuming that the mouse wants to minimize costs and maximize reward, the optimal 

behavior can be derived from the optimal state estimator and the optimal policy (Todorov 

and Jordan, 2002; Izawa and Shadmehr, 2011; Sutton and Barto, 1998).

Sensory prediction error driven learning—The optimal state estimator is given by the 

Kalman filter (Berniker and Kording, 2008; Izawa and Shadmehr, 2011; Kalman, 1960; 

Wolpert et al., 1998). The generative model can be compactly written as a state evolution 

model:

(3)

with state transition model , control input model , process noise η∈

(0, Q); with  and states . The observer model is given by: yk 

= H Xk + ηs with measurement matrix H = (0 1) and sensory noise ∈ (0, R) with . 

In this situation the classical results by Kalman imply that the optimal state estimation is 

given by recursively iterating (Berniker and Kording, 2008; Kalman, 1960):

(4)

The first equation describes the a-priori prediction of the paw position and perturbation. The 

subsequent state estimate is a combination of this a-priori estimate and the sensory 

prediction error (SPE)  gated by the Kalman gain matrix, Kk. The Kalman gain is 

updated according to

(5)

Given this state estimate, the optimal command to compensate for the perturbation is: . 

We refer to this command as the state estimation driven signal.

Reward prediction error driven learning—For reward-based learning, we employed a 

simple actor-critic reinforcement-learning algorithm(Sutton and Barto, 1998). The optimal 

policy’s action, ak, is based on the value function, which in turn is updated according to the 

reward prediction error (RPE) (Sutton and Barto, 1998; Izawa and Shadmehr, 2011):
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(6)

with reward/cost term rk, value function  and discounting factor γ. This RPE in turn is 

used to update the dynamics of the value function and the action based on the temporal 

difference (TD) rule:

(7)

Both learning rates αV and αa are positive. For TD, the reward value function is given by:

Thus, the effective reward value of a water drop is modulated by a cost term, which depends 

on the motor command and a free parameter β.

Motor actions of the learning models—Overall, the motor command (Izawa and 

Shadmehr, 2011) is given as a sum of the negative perturbation estimate  (SPE based) and 

the action ak (RPE based) and an exploratory noise term :

(8)

This model has several free parameters: four noise variances ( ), the retention 

factor r, the learning rates for the actor-critic model (αa, αV) as well as the discounting 

factor γ and the cost weight β. Given these parameters one can compute the predicted paw 

position and underlying motor commands. The (purely) actor-critic model refers to the 

model, where the action is given by uk = ak + ηe instead of Equation (8), while the (purely) 

state estimation based model has motor action , instead of Equation (8).

Model Fitting—For the adaptation task, we used a signal as induced perturbation pk that 

was 0 during baseline and washout and identical to the strongest perpendicular displacement 

in the first 5 perturbation trials (76–81, averaged over sessions). This estimated perturbation 

was clamped throughout the perturbation period. For the target-shift task, the induced 

perturbation pk was set to zero for all k. During baseline, all motor commands were clamped 

to zero. We initialized the internal model as zero with vanishing uncertainty, i.e., P = 0, and 

the value function  such that the RPE is on average zero during baseline. We assumed that 

reward are probabilistic following the average reward rate per task over trial k - i.e., for each 

simulation any trial was rewarded with the probability given by the average reward rate 

across sessions in that trial.
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We fit the data by minimizing the mean squared differences between the model’s paw 

position and the averaged measured paw position (xk) during the perturbation block. As the 

model is stochastic, we averaged this error over 50 random realizations for which the noise 

terms and reward were drawn independently. We used the Nelder-Mead simplex algorithm 

(Nelder and Mead, 1965) to minimize this error function and initialized the optimization at 

multiple (random) locations. In the main text, we show the motor commands ( ) and (ak) 

that underlie the best fits, as well as the paw position in the model and report their power 

ratio (SPE versus RPE command ratio): .

Model Predictions—For the separated model predictions, we selectively set either the 

estimate of the perturbation  (SPE-only) or the actor-critic action ak (RPE only) of the 

motor command in Equation (8) to zero (results see Figure 4).

For the role of S1, we considered two possibilities:

• Either photoinhibition affects sensory predictions errors, the gating by the 

Kalman gain or the fidelity of the sensory feedback. This ‘eliminates’ the term 

 in the updating equation of the Kalman filter (Equation (4)). In 

this case, the internal estimate evolves according to the a-priori estimate 

equation. This case suggests that the integration of the two terms in the Kalman 

filter would happen outside of S1.

• Alternatively, photoinhibition affects the integration of the a-priori estimate and 

the SPE-based adaptation (right hand side in Equation (4)). In this case the 

internal estimate immediately returns to the baseline condition upon stimulation. 

This suggests that S1 would be the locus of the sensory state estimation.

These predictions are presented in (Figure 4) and compared to the mouse behavior in the 

second half photoinhibition task.

QUANTIFICATION AND STATISTICAL ANALYSIS

The values reported in the text and error bars are the mean ± s.e.m. unless otherwise noted. 

Behavioral data was analyzed and modeled with MATLAB 2012b or 2014a (Mathworks) or 

Python. Statistical tests were performed in MATLAB, Python or Prism 5 (GraphPad). 

Nonparametric tests were used where appropriate and tests were 2-tailed. Alpha was pre-set 

to 0.05. The first author was not blinded to the experimental conditions, but analysis was 

blinded to animal and condition identity until complete. Sample size was not predetermined.

DATA AND SOFTWARE AVAILABILTY

The custom LabView code (for control of the behavioral apparatus) and the custom Python 

code (for the generative model analysis) will be made available upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mice exhibit motor adaptations to forelimb force field-based perturbations

• Optogenetic inhibition of forelimb somatosensory cortex (S1) abolished 

motor adaptation

• The same photoinhibition did not impair motor control or reward-based 

learning

• S1 plays an essential role in updating the memory about forelimb motor 

perturbations
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Figure 1. Force Field-Based Motor Adaptation Task for Mice
(A) Diagram of the joystick platform with electromagnet, top-down view with physical 

dimensions indicating position 1 and 2, start and reward box, and the adaptation task 

structure: 75 baseline trials, 100 perturbation trials, and 75 “washout” (i.e., null field) trials.

(B) Left: an example session of one mouse showing the average baseline trajectory (black), 

the first perturbation trial (sea green), average of first ten (green), and the last ten 

perturbation trials (purple), the first ten washout trials (orange) and the first washout trial 

(red). The numbers indicate trials. Right: average trajectories for all sessions (n = 27 

sessions, from n = 7 mice) with temporally aligned averaging (see STAR Methods). Dashed 

sea green line is the average first perturbation, and the dashed red line is the average of the 

first five washout trials. Solid lines are average paw path ± SEM in the direction of the 

perpendicular deviation, with the same color scheme as the left panel; solid green is the first 

25 trials during the perturbation epoch, solid purple is the last 25 trials of the perturbation 

epoch, and solid red line is the average of the first 25 washout trials.

(C) Average perpendicular displacement in position 2 displayed as mean ± SEM versus 

trials; n = 27 sessions, from n = 7 mice.

(D) Average perpendicular displacement within indicated trials. Adaptation was measured as 

a significant change from early to late perturbation trials, and as a significant after-effect 

during washout (compared to baseline, all washout bins are significant). RM ANOVA p < 

0.0001. Post hoc Dunnett’s Multiple Comparison, *p < 0.01. Mean ± SEM.

(E) As in (C) for position 1 (before force onset), showing predictive steering. Light gray 

shows change in perpendicular displacement inside the start box.

(F) As in (D) for position 1; RM ANOVA p < 0.0001. Post hoc Dunnett’s Multiple 

Comparison, *p < 0.01. Mean ± SEM.
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Figure 2. Model-Based Analysis Shows that the Adaptation Can Be Explained by Learning from 
Sensory Prediction Errors
(A) Left: average perpendicular displacement (black) and average reward rate (cyan) across 

the perturbation block (n = 27 sessions, from n = 7 mice). Right: reward rate during 

indicated trials, mean ± SEM. *p = 0.01 Wilcoxon signed rank test (first ten versus last ten 

perturbation block).

(B) Best model fit using an actor-critic reinforcement-learning model, demonstrating a poor 

fit. Data from perpendicular displacement (at position 2) is shown in black (as in Figure 1C). 

Average best model fit is shown in red. As this model has several sources of noise (see 

STAR Methods), ten realizations of the model with best parameters are shown in soft lines 

and the solid line shows the average. Only the perturbation trials are used for fitting.

(C) Schematic of the state estimator model: the efference copy of a motor command is used 

to generate predicted sensory feedback (internal model), which is contrasted with the actual 

feedback (SPE), then weighted by a Kalman gain, to then update the state estimate to drive 

future actions (see STAR Methods).

(D) As in (B) but for the optimal state estimator model.

(E) As in (B) but for hybrid model of an actor-critic reinforcement-learning model and a 

state estimator model.

(F) The hybrid model’s motor command consists of three components derived from the 

optimal state estimator (Kalman filter and SPE), the optimal policy estimated by 

reinforcement-learning (RPE), and exploratory search noise. Left: the magnitude of the first 

two components corresponding to command signal (orange, RPE-based; purple, SPE-based). 

Right: quantification of the relative power ratio of contribution of those control signals from 

the best model fit.
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Figure 3. Photoinhibition of Forelimb Somatosensory Cortex Abolishes Adaptation but Not 
Reward-Based Learning
(A) Task design: ChR2 was expressed in GABA neurons. The applied neuronal perturbation 

was achieved by photo-activating GABA neurons through an optical fiber. The adaptation 

task was performed in three vGAT-ChR2 mice. During perturbation trials, the laser was on 

concurrently with the force field (force field, 100 ms duration; laser at 50 Hz, 100 ms 

duration).

(B) Temporally averaged trajectories across all control sessions (n = 12 sessions from 3 

mice), coloring as in Figure 1B.

(C) Temporally averaged trajectories across all photoinhibition sessions (n = 17 sessions, 

across the same 3 mice), coloring as in Figure 1B.
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(D) Averaged perpendicular displacement at position 2 across sessions, with (blue) and 

without (black) photoinhibition (smoothed mean [5 trials] ± SEM shown for visualization), 

**p = 0.001, (difference in the last ten perturbation trials, t test), ***p < 0.0001, (difference 

in the first ten washout trials, t test).

(E) Quantification of all the control sessions, *p < 0.05, **p < 0.01, (t test). Mean ± SEM.

(F) Quantification of all the photoinhibition sessions. Mean ± SEM.

(G) Behavioral performance across all sessions in the target-shift task with (blue) or without 

(black) photoinhibition. All sessions averaged at position 2; there was no significant 

difference with or without photoinhibition, p = 0.57 (two-way ANOVA). Mean ± SEM.

(H) Quantification of all the control sessions. *p < 0.05, **p < 0.01, ***p < 0.001 (t test). 

Mean ± SEM.

(I) Quantification of all the photoinhibition sessions, **p < 0.001 (t test). Mean ± SEM.
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Figure 4. Somatosensory Cortex Is Required for Updating Motor Commands during Adaptation 
but Not for the Expression of the Adapted Motor Command
(A) Task structure. During the perturbation block (trials 76–175), photoinhibition was 

applied only in the second half of trials (126–175).

(B) Model prediction. The best-fit parameters from the control data (Figure 3D) were used. 

At trial 126, SPE was clamped to zero (cyan) or the perturbation estimate, ( ) was set to 

zero (dark blue).

(C) Session average from position 2, showing adaptation up to trial 125 (Mann-Whitney U 

test, trials 76–85 versus trials 116–125, p = 0.01).

(D) Top: average perpendicular displacement plotted per session of trials 120–125 versus 

126–131 (Mann-Whitney U test, p = 0.24). Bottom: by session displacement value for trials 

early perturbation (Pe, trials 75–80), 124, 125, 126, 127, and late perturbation (Pl, trials 170–

175) showing there is no systematic drop from trial 125 to trial 126 (paired t test p = 0.82).

(E) Perpendicular displacement across blocks in position bin 1 (spatially above force onset).

(F) Top: average perpendicular displacement of trials 120–125 versus 126–131. Mann-

Whitney U test, p = 0.05. Bottom: same as in (D), showing there is no systematic drop from 

trial 125 to trial 126 (paired t test, p = 0.73).
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