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Abstract

Purpose—Most non-small cell lung cancers (NSCLCs) are now diagnosed from small 

specimens, and classification using standard pathology methods can be difficult. This is of clinical 

relevance as many therapy regimens and clinical trials are histology dependent. The purpose of 

this study was to develop an mRNA expression signature as an adjunct test for routine histo-

pathological classification of NSCLCs.

Experimental Design—A microarray dataset of resected adenocarcinomas (ADC) and 

squamous cell carcinomas (SCC) was used as the learning set for an ADC-SCC signature. The 

Cancer Genome Atlas (TCGA) lung RNAseq dataset was used for validation. Another microarray 

dataset of ADCs and matched non-malignant lung was used as the learning set for a Tumor vs. 
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Nonmalignant signature. The classifiers were selected as the most differentially expressed genes 

and sample classification was determined by a nearest distance approach.

Results—We developed a 62-gene expression signature that contained many genes used in 

immunostains for NSCLC typing. It includes 42 genes that distinguish ADC from SCC and 20 

genes differentiating non-malignant lung from lung cancer. Testing of the TCGA and other public 

datasets resulted in high prediction accuracies (93–95%). Additionally, a prediction score was 

derived that correlates both with histologic grading and prognosis. We developed a practical 

version of the Classifier using the HTG EdgeSeq nuclease protection-based technology in 

combination with next-generation sequencing that can be applied to formalin-fixed paraffin-

embedded (FFPE) tissues and small biopsies.

Conclusions—Our RNA classifier provides an objective, quantitative method to aid in the 

pathological diagnosis of lung cancer.

Keywords

lung cancer classification; adenocarcinoma; squamous carcinoma; microarray; expression 
signatures

INTRODUCTION

Most cancers of the lung are carcinomas, and they may be divided into two broad categories, 

small cell carcinoma (SCLC, 10–20%) and non-small cell carcinoma (NSCLC, 80–90%), 

differing in their biology, clinical presentation and therapy (1). While there are rare types of 

NSCLC, the vast majority fall into three categories: adenocarcinomas (ADC), squamous cell 

carcinomas (SCC), and large cell carcinomas (LCC). ADCs are carcinomas that form 

glands, papillary structures, grow in a lepidic pattern, or secrete mucin. As the lung is a 

complex organ with central and peripheral compartments having different histologies and 

functions (2), there are multiple subtypes of ADCs (3). SCCs are believed to arise from 

metaplastic cells in the large airways, as there are no squamous cells in the normal 

respiratory tract. LCCs are undifferentiated NSCLCs that do not show morphologic or 

immunostain evidence of glandular or squamous differentiation. Recent studies confirmed 

that most or all LCCs lacking neuroendocrine features could be assigned to other NSCLC 

types, with only a small number of true null phenotype cases remaining (4, 5).

Originally, the clinical management of the major forms of NSCLC was similar, and the main 

clinical task required of the pathologist was the separation of NSCLC from SCLC (6). 

However during the past decade the therapy of NSCLC has undergone a paradigm shift, as 

we are rapidly moving from an era of empirical therapy to one of personalized therapy 

(“precision medicine”) based on mutational patterns and tumor classification (7). Of interest, 

the known oncogenic “driver” mutations for ADC and SCC are almost completely different 

(8) and the selection of both conventional chemotherapy and targeted therapy may be 

influenced by the NSCLC subtype (6, 9). While most targeted therapies for NSCLC are 

directed at ADCs or non-squamous histologies, the importance of the correct diagnosis of 

squamous tumors by pathological or molecular methods is gaining recognition (10). Hence 

the precise histologic classification of NSCLC is of crucial clinical importance.
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Other major developments in lung cancer management are the ability to obtain computed 

tomography-guided needle and small core biopsies (usually allowing a pathologic diagnosis 

to be made irrespective of anatomic location) and imaging studies that have greatly 

increased the accuracy of preoperative staging. These advances have considerably reduced 

the number of futile lung cancer resections and staging that relied on post operative 

pathologic results. However, one practical disadvantage is that most initial lung cancer 

diagnoses (~70%) now have to be made from small biopsies or cytological specimens (6). 

While the pathological classification of NSCLC is relatively straightforward if there is an 

adequate tumor specimen and the tumor is well or moderately differentiated, the diagnosis of 

poorly differentiated tumors, particularly from small specimens, may be challenging. 

Following recommendations by the latest version of the WHO Classification (1) pathologists 

now use combinations of immunostains, and various algorithms have been proposed to assist 

in the accurate classification of NSCLC (3, 9, 11, 12). Despite these improvements, not all 

poorly differentiated NSCLCs in small biopsy or cytology samples can be classified into 

ADCs and SCCs and they are usually referred to as NSCLC-not otherwise specified 

(NSCLC-NOS) (6, 9). As a side note, this term should be reserved to the lung cancer 

specimens of small size and should not be applied to surgical resections or large biopsies; 

instead, resected tumors that cannot be classified as specific forms of NSCLC should be 

classified as LCC (13).

In order to improve the classification of lung cancer and reduce potential observer bias and 

variability, we developed and validated an mRNA expression-based classification of NSCLC 

utilizing large datasets of resected NSCLC tumors with expert pathology review. We have 

further developed a practical version of the Classifier based on the HTG EdgeSeq 

technology that, among other advantages, can be applied reproducibly to FFPE and core 

needle biopsies.

MATERIALS AND METHODS

Patient tumor samples

Three cohorts of lung cancer or non-malignant lung specimens were used to derive and test 

the RNA classifiers: A set of 275 NSCLC specimens obtained from the Pathology Core at 

MD Anderson Cancer Center (MDACC), consisting of 183 ADC, 80 SCC, and 12 other 

subtypes; a set of 83 pairs of lung ADCs and matched non-malignant lung tissues obtained 

from British Columbia Cancer Research Centre in collaboration with Early Detection 

Research Network (EDRN) and the Canary Foundation; and a set of 979 NSCLC (490 ADC, 

489 SCC) and non-malignant lung tissues (n=108) from The Cancer Genome Atlas (TCGA). 

Reference pathologists for the tumor specimen diagnoses were Ignacio Wistuba and Jaime 

Rodriguez for the MDACC set, Adi Gazdar for the EDRN/Canary set, and the TCGA Lung 

Cancer Pathology Panel (chaired by William Travis and including Natasha Rekhtman) for 

the TCGA set. For most of the tumors analyzed in this study, immunostaining was not 

utilized for pathologic classification. Histologic typing of the TCGA set was performed by 

light microscopy according to the previous WHO classification (14).
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Expression Profiling Datasets

MDACC set—Frozen tissues from NSCLC tumors resected at MDACC were used to 

generate multiple 5-micron thick sections. Representative tissue sections were hematoxylin 

and eosin (H&E)-stained and reviewed to estimate the percentage of tumor and non-

malignant cells. About 5–10 sections were processed to extract RNA, whose quality was 

assessed on Nano Series II RNA LAB-chips using Agilent Bioanalyzer 2100 (Agilent 

Technologies, Inc., Santa Clara, CA). Cases were selected with the following defined 

characteristics: tumor (vs. non-malignant) ≥ 70%, malignant cells (vs. stromal cells) ≥ 30%, 

RNA Integrity Number (RIN) ≥ 4 (range 0–10). RNA samples were shipped to UT 

Southwestern for expression profiling. Five hundred nanograms of RNA were labeled and 

hybridized to the Illumina Beadchip array HumanWG-6 V3 (San Diego, CA). Array data 

were pre-processed using the R package mbcb (15) for background correction. The arrays 

were then log-transformed and quantile-normalized. This dataset was submitted to Gene 

Expression Omnibus (GEO) under the accession GSE41271.

EDRN/Canary set—RNA was prepared with TRIzol (Invitrogen) as previously described 

from ADCs resected in British Columbia, Canada and collected by Dr. Stephen Lam (16, 

17). Profiling was done on Illumina HumanWG-6 V3 at UT Southwestern and processed 

similarly to the MDACC set. This dataset was submitted to GEO under the accession 

GSE75037.

TCGA Set—RNAseq data were downloaded from the TCGA portal (18). The archive 

filenames were unc.edu_LUAD.IlluminaHiSeq_RNASeqV2.1.13.0 for ADC and 

unc.edu_LUSC.IlluminaHiSeq_RNASeqV2.1.10.0 for SCC. The extracted files consisted of 

548 and 539 samples respectively. Using the barcode key provided (19) we found that the 

first set had 490 ADCs and 58 non-malignant lung samples and the second set had 489 SCCs 

and 50 non-malignant samples.

FFPE Material—FFPE specimens from resected NSCLC (n=35), non-malignant lung 

tissue (n=11) or core needle biopsies (n=36) were collected at MDACC. They were then cut 

in a microtome at 4-micron tick sections, mounted on glass slides using nuclease-free 

conditions, and sent to HTG labs for EdgeSeq profiling (see below).

Statistical Analysis

A Sweave report documenting all statistical steps (written in R code) pertaining to this 

manuscript is available from the authors on request. In brief, classifiers were generated from 

the training set’s two classes by generating a volcano plot and selecting the n most 

significantly overexpressed genes in the two classes, where n is optimized by 5-fold 

stratified cross validation with 100 iterations (which resulted in n=21 for the ADC-SCC 

classifier, and n=10 for the Tumor-Nonmalignant classifier, see Supplementary Figure 1). 

We thus obtained a 2n-gene classifier (42 genes for ADC-SCC classification, 20 genes for 

Tumor-Nonmalignant classification). Classification was determined by a nearest distance 

approach that compares each sample’s expression values for the classifier genes to the mean 

expression values in the training set’s two classes (called class centroids). Pearson 

correlation was used as a similarity measure. The relative magnitude of this measure 
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determined the class prediction. i.e. if the Pearson correlation was greater with the ADC 

centroid than with the SCC centroid, then the sample was predicted to be ADC, and vice 

versa. A correlation plot was generated from each sample’s correlation pair (correlation with 

ADC, correlation with SCC). A score for each sample was calculated as the signed distance 

from its plotted location to the diagonal where the correlations are equal. After 

normalization, this score ranged from −1 to +1. A positive score indicates ADC prediction 

while a negative score indicates SCC prediction. The magnitude of these scores can be 

viewed as an estimate of the prediction’s confidence.

HTG EdgeSeq assay

The assay couples quantitative nuclease protection (qNPA) with Next-Generation 

Sequencing (NGS) to measure gene expression in small FFPE or frozen samples without 

RNA extraction (20). A more detailed description of the assay is available in the 

Supplementary Material. Briefly, the FFPE specimens from MDACC were scraped into 

tubes and lysed in HTG’s lysis buffer, followed by the introduction of gene-specific DNA 

nuclease protection probes (NPPs). After allowing the NPPs to hybridize to their target 

RNAs, which can be both soluble or cross-linked in the biological matrix, S1 nuclease is 

added which removes excess unhybridized NPPs and RNAs, leaving behind only NPPs 

hybridized to their target RNAs. Thus, a stoichiometric conversion of the target RNA to the 

DNA nuclease protection probes is achieved, producing a virtual 1:1 ratio of NPP to RNA. 

The qNPA steps are automated on the HTG EdgeSeq processor, which is followed by PCR 

to add sequencing adaptors and tags. The labeled samples are pooled, cleaned, and 

sequenced on an NGS platform using standard protocols. Data from the NGS instrument are 

processed and reported by the HTG EdgeSeq parser software. Supplementary Fig. 6 shows 

an example of the assay results for 25 FFPE samples used in this study. Good dynamic range 

and reproducibility were obtained, which indicates that the assay is both sensitive and 

specific.

RESULTS

SEER-based classification of NSCLC

We examined the Surveillance, Epidemiology and End Results (SEER) database for lung 

cancer classifications which covers the years 2008–2012 (21) and identified 227,000 lung 

cancer cases, of which 83.4% were classified as NSCLC, 13.3% as SCLC, and 3.1% were 

unclassified (Carcinoma-NOS). Of the NSCLCs, 51.9% were ADCs, 27.1% were SCCs, 

2.5% were LCCs, 5.9% were other forms of NSCLC, and 12.6% were not classified 

(NSCLC-NOS). From these figures, a total of 13.6% of lung cancer cases, which after 

sampling adjustment represent about 22,000 patients yearly, were not histologically 

classified. These patients therefore were not eligible for histology type-based therapies.

ADC-SCC Signature: Training on the MDACC set

To build a classifier distinguishing ADC and SCC, we used the MDACC dataset which 

contains mRNA profiles for 183 ADCs and 80 SCCs from surgically resected frozen 

specimens. Forty-two genes differentially expressed between the two subtypes were selected 

from a volcano plot (Fig. 1A and B, Supplementary Table 1). These genes were highly 
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significant with expression fold differences > 2.6 and T test p-value < 10−18 (FDR < 10−16). 

Some of the proteins encoded by the significant genes are already used as immunostains in 

clinical diagnostic procedures and include high molecular weight keratins (KRTs), NKX2-1 

(TITF1), TP63 and DSG3 (desmoglein 3).

We defined the Classifier using this training set as follows: We first calculated the Pearson 

correlations between each sample’s 42-gene signature expression values and the mean 

expression values of the same 42 genes in the ADC group and in the SCC group (the class 

centroids). A “correlation plot” was generated (Fig. 1C) where each point represents the pair 

of correlation values associated with each sample. On the straight line y = x the two 

correlations are equal. Below this line, the correlation with the ADC group is higher than 

with the SCC group, and vice-versa. For each point we defined a score as

This score is proportional to the distance from each point to the dividing line (arrows in Fig 

1C; also plotted vertically in Fig 1D). We interpret positive scores as predicting ADC 

histology while negative scores predict SCC histology. The two dotted lines are cutoff scores 

set at

where sd is the standard deviation and abs is the absolute value. This cutoff is equal to +/

− 0.17 in the MDACC set and can be viewed as a prediction threshold: values above 0.17 are 

predicted to be ADC while values below −0.17 are predicted to be SCC. Intermediate values 

are predicted as poorly differentiated (see below). Using these definitions 170 of 183 ADCs 

(93%; original histologic review) had positive scores and were thus correctly classified, 

while 72 of 80 SCCs (90%) had negative score and were corrected classified. Overall the 

accuracy within this training set was 92% (Table 1).

The discrepancies and borderline classified cases (with scores lower than the specified 

cutoffs) were re-evaluated by the MD Anderson pathologists using immunostains when 

appropriate: these pathologists on re-review felt that about half of the discrepant diagnoses 

should be changed, with an improved accuracy of 95%. However, we stress that no change 

was done to the Classifier itself, which was based on the original histologic diagnosis.

ADC-SCC Signature: Testing on the TCGA Set

As a validation set we used the TCGA-lung RNAseq data. Scores were calculated as before 

and values larger than 0.17 predicted ADC while values lower than −0.17 predicted SCC 

(Fig. 2). Intermediate values predicted poorly differentiated tumors favoring ADC (positive 

low scores) or SCC (negative low scores) (see below). Including these lower scores, we thus 

obtained 97% correct prediction for the ADC set of samples (475 out of 490), and 93% 

correct prediction for the SCC set of samples (456 of 489; overall: 95%; Table 1). 

Interestingly, the non-malignant lung tissues largely fell into the same classification group as 

the ADCs.
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Based on these class prediction results, selected cases were re-examined by pathologists 

from the TCGA studies. Many of the SCCs that were scored as ADCs turned out on re-

examination to be called NSCLC-NOS or other subtypes such as undifferentiated LCCs 

(Fig. 2). Using these revised diagnoses, the prediction accuracy for the ADC group was 

unchanged at 97%, while the accuracy for the SCC group increased from 93% to 96% 

(overall accuracy: 97%, Table 1).

Tumor-Nonmalignant Signature

As observed above, most of the non-malignant lung samples in the TCGA set were classified 

as “ADC”. We thus generated an additional signature to distinguish tumor from non-

malignant lung. As a training set, we chose the EDRN/Canary set consisting of 83 pairs of 

ADC specimens and matched non-malignant lung controls. Using the same method as for 

the ADC-SCC signature, we generated a volcano plot (Fig. 3A) and ranked differentially 

expressed genes between tumor and non-malignant using their distance to the plot’s origin. 

Twenty genes were selected as most differentially expressed (10 overexpressed in the tumor 

group, 10 overexpressed in the non-malignant group; Fig. 3B, Supplementary Table 1). A 

correlation plot (Fig. 3C) shows that the two groups are clearly separated in the training set 

(100% correct classification; Table 1), and a score ranging from −1 (non-malignant) to +1 

(tumor) can be computed (Fig. 3C and D).

As a validation set for the Tumor-Nonmalignant signature, we again used the TCGA dataset. 

Fig. 4 shows the score values with 100% prediction accuracy for the non-malignant group 

and 98% prediction accuracy for the tumor group (overall: 98%; Table 1). This shows that a 

20-gene signature is sufficient to differentiate NSCLCs from non-malignant lung with high 

accuracy.

The ADC-SCC and Tumor-Nonmalignant prediction scores can be combined in a 2-D plot 

that clearly segregates the three groups (Supplementary Fig. 2).

Validation in public datasets

To further validate the ADC-SCC and Tumor-Nonmalignant signatures we looked at several 

public mRNA expression datasets containing sufficiently large numbers of NSCLC samples 

(n > 20 each) and deposited in GEO. The selected 22 datasets contained 1,560 ADCs, 732 

SCCs, and 340 non-malignant lung tissues.

Both signatures gave highly accurate predictions (Supplementary Table 2). For the ADC-

SCC signature, the average sensitivity (ADC prediction) and specificity (SCC prediction) 

were 95% and 89% respectively (overall: 93%), similar to the TCGA test set prediction 

values (95%). For the Tumor-Nonmalignant signature, the sensitivity (tumor prediction) and 

the specificity (non-malignant prediction) were 83% and 100% respectively (overall: 86%). 

The tumor prediction was significantly lower than the corresponding TCGA test set 

prediction (98%), which probably reflects larger stromal contents in the various GEO 

cohorts. However the non-malignant prediction was the same at 100%. Together, these 

results provide strong validation of our histology signatures in essentially all of the 

deposited datasets currently available.
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ADC-SCC score as an estimate of differentiation

We hypothesized that ADC-SCC scores are related to the degree of differentiation, i.e. the 

higher the score (in absolute value), the better the differentiation. To support this, we first 

looked at ADC subtypes as reported by TCGA. We found that the lepidic subtype had higher 

scores than both solid (P = 0.026) and invasive mucinous (P = 0.071) subtypes 

(Supplementary Fig. 3A), consistent with the belief that tumors having extensive lepidic 

(non-invasive) components are better differentiated than those with large solid component 

(22). Further, we looked at known genes with different mutational spectra in ADCs and 

SCCs to see whether their mutation (or amplification) was associated with higher score. For 

ADC we indeed observed significantly higher scores for cases with mutation in EGFR, 

CTNNB1, HER2, BRAF, or KRAS (Supplementary Fig. 3B). For SCC we found significant 

differences for SOX2 amplification and for NFE2L2 or PIK3CA mutation (Supplementary 

Fig. 3C). Hence lung tumors with histology-specific mutations (which in some cases may be 

more differentiated) tended to have higher ADC-SCC scores.

Finally, one of us (AFG) looked at a random subset of the TCGA pathology slides and 

graded them using a modification of the standard grading system (23). Specifically we 

selected 50 ADC slides and 50 SCC slides randomly but with a uniform score distribution, 

and their degree of differentiation (grading) was assessed in a blinded fashion, i.e. without 

knowledge of their prediction score. Grading was then compared to prediction scores using 

two statistical tests. Significant associations with ADC and SCC scores were found (P < 0.03 

for ADC and P < 10−4 for SCC; Supplementary Fig. 4). Together these data strongly suggest 

that the signature scores are correlated with the degree of differentiation.

ADC-SCC score and prognosis prediction

Since tumor grading is also correlated with patient survival (high grade tumors, i.e. poorly 

differentiated tumors, having worse prognosis (23, 24)) we hypothesized that a similar 

relationship between ADC-SCC score and survival would exist. We therefore looked at three 

cohorts with available clinical information: the MDACC set (non-neoadjuvant cases only: 

145 ADCs and 64 SCCs), the Director’s Challenge set (ADC only; n=423) (25), and a SCC 

study (GSE4573; SCC only; n=106) (26). In most of these cases, high ADC or SCC scores 

were indeed associated with better prognosis (Supplementary Fig. 5).

Application of the Classifier to FFPE resected tumor specimens and small biopsies

In preliminary studies, the 62-gene signature was adapted to the HTG EdgeSeq technology 

(HTG Molecular Diagnostics) and was used to classify ADC from SCC and tumor from 

non-malignant lung using 4-micron sections from FFPE surgically resected tumors and core 

needle biopsy specimens. We applied our Classifier to these data and found that 34 of 35 

FFPE resected samples (97%) were correctly classified as ADC or SCC and 32 of 36 FFPE 

core needle biopsies (89%) were also correctly classified (Table 1). Interestingly almost all 

discrepant cases had low scores (< 0.1 in absolute value; Supplementary Table 3) and had 

been independently diagnosed as poorly differentiated, thus explaining the majority of the 

discrepancies. Additionally, the ADC-SCC score correlation between FFPE resected tumors 

and matched CNB samples from the same patients was r=0.98, demonstrating the ability to 

use small, clinically relevant samples with this assay. Taken together, these results indicate 

Girard et al. Page 8

Clin Cancer Res. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that our Classifier, adapted to the HTG EdgeSeq platform, can also determine NSCLC 

subtype in fixed tissue, both from resected and CNB specimens.

DISCUSSION

The advent of “precision medicine” has made accurate classification of NSCLC a necessity 

for the clinical management of these tumors. However, currently the majority of diagnostic 

specimens (~70%) are small biopsies or cytological specimens (27), greatly increasing the 

difficulty of accurately diagnosing poorly differentiated tumors. Based on the anticipated 

225,000 new cases of lung cancer for 2016 (28), of which an estimated 85% will be NSCLC, 

this amounts to over 130,000 NSCLC cases per year in the USA that will be diagnosed from 

small biopsies or cytology specimens. Cases without definitive diagnoses, and those wrongly 

classified, may not receive optimal therapy or may not be eligible for histology 

classification-restricted clinical trials. While the use of small panels of immunostains has 

greatly aided this task, about 5–10% of small biopsy cases at major medical centers will still 

be signed out as NSCLC-NOS. Examination of the SEER data registry suggests that the high 

diagnostic standards present at major medical centers may not extend to the medical 

community as a whole. Thus 14% of the lung cancer cases in the SEER registry were not 

further classified, amounting to an estimated 22,000 cases per year in the USA. In addition, 

an unknown percentage of cases will be misclassified or subject to arbitrary diagnosis by 

pathologists using varying pathological criteria or interpretation. A recent European 

interobserver study examined the diagnostic accuracy on lung cancer small biopsies for the 

distinction between ADC and SCC and related these to immunostaining and mutation 

analysis (29). The study was performed on prospectively collected biopsies obtained by 

bronchoscopy or transthoracic needle biopsy of patients with NSCLC. Eleven experienced 

pulmonary pathologists independently read H&E-stained slides of 110 cases, resulting in a 

kappa value of 0.55 +/− 0.10 and the diagnosis of NSCLC-NOS was given on average to 

29.5% of the biopsies. This indicates that even experienced pathologists at major medical 

centers may disagree on interpretation or may not be able to fully classify a relatively high 

percentage of small biopsy specimens without the use of immunostains or other adjunct 

tests.

The widespread use of immunostains for the classification of NSCLC has greatly reduced 

the number of cases in the NOS category (30) and most of these tumors can now be 

classified with a single SCC and a single ADC marker (1). These findings led the new WHO 

Classification to recommend using immunostaining for SCC markers such as TP63 or its 

isoform p40 (deltaNp63) and high molecular weight keratins as well as ADC markers such 

as NKX2-1 (TTF-1) and Napsin A to classify poorly differentiated lung cancers including 

NSCLC-NOS (1, 31). However, interpretation of immunostains is not uniform and 

alternative approaches to lung cancer classification are being explored as adjunct tools to aid 

the pathologic diagnosis of lung cancers. These methods include digital nuclear imaging, 

mutation analysis, copy number variations, and various other molecular methods, either 

singly or in combination (32–34).

In this report, we developed and validated a gene expression classifier from a training set 

consisting of 263 surgically resected tumors in order to accurately and non-subjectively 
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separate ADC from SCC. The list of top differentially expressed genes heavily favored SCC, 

possibly reflecting the greater pathologic heterogeneity and molecular complexity of ADCs 

and their multiple subtypes (3, 11). Thus, we selected an equal number of top genes 

significantly overexpressed in ADCs (n=21) and SCCs (n=21) so as not to bias the selection 

in favor of one NSCLC type. Not surprisingly, many of the selected genes are among the 

most frequently used and reliable immunostains in routine pathological practice (Fig. 1B, 

red arrows) or are known to play a role in lung cancer or in one of the main subtypes (Fig. 

1B, blue labels). We validated the Classifier using the TCGA lung cancer datasets, which 

were available in a different platform (RNAseq) than our training set (Illumina BeadArray). 

We obtained very high prediction accuracies (95%) in spite of the fact that a fraction of the 

TCGA diagnostic materials were found to be of less than optimal quality (e.g. frozen 

sections instead of permanently fixed H&E slides) and in spite of the partially subjective 

nature of pathological diagnosis (29). In fact a significant limitation to the TCGA project 

was that the materials for immunostaining were not always available. Nevertheless, two of 

us (WDT, NR), who are the TCGA reference pathologists, reviewed the discrepancies, and 

this resulted in even better classification accuracy (Table 1, “Revised histopathological 

diagnosis”).

Interestingly, several non malignant lung TCGA specimens were classified as ADC by the 

signature, so we used the EDRN/Canary dataset to develop another classifier, containing 20 

genes, that separated tumor cells from non-malignant lung with high accuracy. The 

combined 62-gene signature could now segregate ADC, SCC and non-malignant lung in this 

TCGA test set.

There are no squamous cells in the normal lung. Squamous metaplasia arises as the result of 

noxious stimuli such as tobacco exposure, mechanical trauma, inflammation or infection. 

Many of the SCC-associated classifier genes are involved in squamous differentiation, 

including basal (stem) cell proliferation, expression of high molecular weight keratins, 

desmosome formation, calcium regulation or cornified envelope formation (35–37). ADCs 

demonstrate considerable heterogeneity of morphological and biological subtypes (31). 

However, most of the ADC genes had relevance to lung cancer or were known to be ADC-

specific. Both NKX2-1 and NAPSA are routinely used in many pathology classification 

schemes, however the latter, with a rank of 177, was not part of the top 21 genes 

overexpressed in the ADC group, and could not be used in the Classifier. Our data indicate 

that other genes in the Classifier, such as the trypsin inhibitor SPINK1 which is already 

known to be overexpressed in lung ADCs (38), may be good candidates for new 

immunostains in pathologic diagnosis, provided sensitive and specific antibodies are 

available. For SCC identification, the Classifier selected several high molecular weight 

keratins (KRTs) as well as TP63 among the top genes, but excluded SOX2, a gene 

frequently amplified in SCCs, although it was also significantly overexpressed in SCC (rank 

= 46) (9, 39, 40).

The Classifier can also provide a score that reflects the degree of differentiation. In support 

of this, we observed that NSCLCs with mutations that are specific for ADCs (EGFR, KRAS 
and others) or SCCs (SOX2 amplification, NFE2L2 mutation) tended to have higher 

magnitude scores than tumors that were wild-type for these mutations or amplifications 

Girard et al. Page 10

Clin Cancer Res. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Supplementary Fig. 3B and C). In addition, the lepidic subtype of ADCs which is believed 

to be more differentiated also had a relatively higher score (Supplementary Fig. 3A). Finally, 

evaluation of tumor grade from TCGA histopathology slides revealed a strong concordance 

between prediction score and histologic grading (high score was associated with better 

differentiation). Thus our Classifier can be interpreted both qualitatively and quantitatively.

Consistent with the association between histologic grading and survival, our signature turned 

out to have prognostic value as well (high score associated with better survival). Thus this 

Classifier has the additional advantage of being of prognostic importance and may be useful 

in selecting the subpopulation of curative resected lung cancer patients that will benefit from 

adjuvant therapy.

Previous ADC-SCC gene signatures have been reported (41–46) and about 10–45% of the 

genes in these signatures overlap with ours. Two of these signatures were formally 

developed as classifiers, with external tumor set validation. The first, from Hou et al (44), 

comprises 50 unique genes (15 of which overlapped with our signature) and were validated 

in one external dataset with a prediction accuracy of 84%. In order to directly compare this 

classifier with our own, we tested it in TCGA RNAseq data using the class centroids 

provided by the study and Pearson correlation to predict the class. The resulting prediction 

had an accuracy of 92% (sensitivity: 99%, specificity: 84%) while our Classifier showed 

95% accuracy (97% sensitivity, 93% specificity). The second study, from Wilkerson et al 

(46), had 15 genes (4 overlapping with our signature) and a reported prediction accuracy of 

81% in external validation. Using the TCGA validation test, this corresponded to an 

accuracy of 92% (sensitivity: 90%, specificity 95%). Our current study thus offers the 

following advantages over prior ones: a) a slightly better overall accuracy; b) a balance 

between sensitivity and specificity; c) the ability to distinguish non-malignant from lung 

cancer; d) validation in a larger number of public NSCLC expression datasets with high 

prediction accuracies (93% for the ADC-SCC classification); e) the quantitative aspect of 

our Classifier and its correlation with differentiation and prognosis (this point also supports 

removing the term LCC and replacing it with poorly differentiated NSCLC); f) the ability, as 

mentioned below, to classify small biopsy samples and FFPE materials, using technology 

that can be transferred to a CLIA-certified environment.

While some pathologists may question the necessity for a molecular classification of 

NSCLC, the large number of non-classified cases, and the potential lack of diagnosis 

reproducibility even among experienced lung cancer pathologists, point to the value of a 

non-subjective test. This may even be a necessity in institutions or countries where 

immunostains are not routinely used and where staff pathologists may apply highly variable 

diagnostic criteria. An especially relevant use of a molecular classification would be for 

large multinational clinical trials where no central pathology review is available. We will 

also need further evaluation in a set of cases that have been diagnosed utilizing established 

immunohistochemical methods recommended by the 2015 WHO classification. 

Unfortunately these new criteria could not be applied to the datasets evaluated in this study.

Finally, to demonstrate the potential clinical applicability of our Classifier, we have 

developed an extraction‐free, highly sensitive, automated and cost‐effective NGS version 
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based on the HTG EdgeSeq technology and have shown that its accuracy is similar to the 

original microarray-based Classifier (Table 1). In fact, the NGS classifier can be 

reproducibly applied to clinically challenging sample types, such as FFPE materials and 

core-needle biopsies.

In summary we have developed and validated a sensitive and specific gene expression 

classifier for NSCLC that distinguishes ADC from SCC, and lung cancer from normal lung. 

The Classifier was shown to be largely independent of the major gene expression platforms 

in common usage. Most of the genes in the Classifier are relevant to lung cancer or are 

known to be differentially expressed in NSCLC. The development and further validation of a 

practical and cost effective FFPE-based CLIA-certified version has the potential to lead to a 

widespread clinical application of the Classifier.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TRANSLATIONAL RELEVANCE

Personalized therapy and entry into clinical trials for non-small lung cancer (NSCLC) are 

heavily dependent on accurate histological classification. While most cases can be 

classified using routine pathology review of H&E and immunostains, examination of the 

US cancer registries indicates that many cases of NSCLC remain unclassified. To address 

this important clinical problem, we developed and validated a quantitative gene 

expression signature for the highly accurate classification of NSCLC. As the signature 

score reflects differentiation, it also provides prognostic information for early stage 

resected NSCLC, and thus may help identify patients who would benefit from adjuvant 

chemotherapy. Additionally we developed a next-generation sequencing (NGS) 

laboratory assay utilizing HTG Molecular Diagnostic’s HTG EdgeSeq chemistry and 

demonstrated that its performance is similar to the original microarray-based classifier. 

Importantly, the NGS classifier can be applied reproducibly to clinically challenging 

sample types, such as formalin-fixed paraffin-embedded (FFPE) materials and core-

needle biopsies.
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Figure 1. 
(A) A volcano plot shows that many genes are significantly different between ADC and 

SCC. Among these are several genes for immunostains typically used by pathologists, 

including high molecular weight keratins (KRTs), TP63, DSG3, and TITF1 (NKX2-1). 

Color-coding is related to the distance of each point to the plot’s origin and shows 

significance levels (red: highly significant). (B) Heatmap of ADC-SCC signature in the 

MDACC dataset. Red, high mRNA expression; green, low mRNA expression. Twenty-one 

genes overexpressed in ADC and twenty-one genes overexpressed in SCC were selected for 

this signature. Blue labels, genes known to be relevant to lung cancer pathogenesis. Arrows, 
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commonly used immunostains; (C) “Correlation plot” where each point represents the 

Pearson correlation values between the 42-gene signature expression of individual samples 

and the mean expression of ADCs (x-axis) and SCCs (y-axis). The scores shown as arrows 

are defined as (Correl ADC − Correl SCC)/2. They are proportional to the distances from 

each point to the line y = x. Dotted lines represent cutoff score values below which the 

samples are thought to be less well-differentiated. Color-coding in this and similar plots 

represents pathological diagnoses. (D) “Score plot” where the y-axis represents the scores 

calculated from (C). PD, Poorly Differentiated. Dotted lines are the score cutoffs.
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Figure 2. 
The ADC-SCC signature is validated on the TCGA and EDRN/Canary datasets and shown 

as score plots as in Fig. 1D. The prediction accuracies for TCGA (before revision) were 97% 

(ADC) and 93% (SCC). Overall accuracy: 95% (Table 1). These accuracies were 97% and 

96% respectively (overall: 97%) after revision of diagnosis of selected TCGA cases which 

included many NSCLC-NOS (blue). The prediction accuracy for the EDRN/Canary dataset 

which consists of ADCs only was 99%.
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Figure 3. 
(A) A volcano plot shows that many genes are significantly different between tumor and 

non-malignant. (B) Ten genes overexpressed in tumors and ten genes overexpressed in non-

malignant lung tissue were selected for the Tumor vs Nonmalignant signature. (C) This 

signature applied to the training set can distinguish tumor and non-malignant with complete 

accuracy (100%). (D) A score plot with the cutoff scores (+/− 0.10) shows a range of 

possible tumor content (tumor, low-tumor content, non-malignant).
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Figure 4. 
The Tumor-Nonmalignant signature is validated on the TCGA dataset, which consists of 979 

lung tumors and 108 non-malignant lung tissues. The prediction accuracies are 98% for 

tumors and 100% for non-malignant lung (overall: 98%, Table 1). Many tumor samples have 

negative scores which could be due to larger stromal infiltration. A score plot for the 

MDACC dataset, which has tumor samples only, shows an accuracy of 92% (Table 1).
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