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Abstract

Background—Although genome-wide association studies (GWAS) have identified many genetic 

variants that are strongly associated with lung cancer, these variants have low penetrance and serve 

as poor predictors of lung cancer in individuals. We sought to increase the predictive value of 

germline variants by considering their cumulative effects in the context of biologic pathways.

Methods—For individuals in the Environment and Genetics in Lung Cancer Etiology study 

(1,815 cases/1,971 controls), we computed pathway-level susceptibility effects as the sum of 

relevant single-nucleotide polymorphism (SNP) variant alleles weighted by their log-additive 

effects from a separate lung cancer GWAS meta-analysis (7,766 cases/37,482 controls). Logistic 

regression models based on age, sex, smoking, genetic variants, and principal components of 

pathway effects and pathway-smoking interactions were trained and optimized in cross-validation, 

and further tested on an independent dataset (556 cases/830 controls). We assessed prediction 

performance using area under the receiver operating characteristic curve (AUC).

Results—Compared to typical binomial prediction models which have epidemiologic predictors 

(AUC = 0.607) in addition to top GWAS variants (AUC = 0.617), our pathway-based smoking-

interactive multinomial model significantly improved prediction performance in external 

validation (AUC = 0.656, P < 0.0001).

Conclusions—Our biologically informed approach demonstrated a larger increase in AUC over 

non-genetic counterpart models relative to previous approaches that incorporate variants.
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Impact—This model is the first of its kind to evaluate lung cancer prediction using subtype-

stratified genetic effects organized into pathways and interacted with smoking. We propose 

pathway-exposure interactions as a potentially powerful new contributor to risk inference.
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INTRODUCTION

Lung cancer (LC) is the most common malignancy worldwide, with 1.3 million new cases 

per year. It is also the top cause of cancer-related death, responsible for 1.4 million deaths 

per year (1). Advanced-stage disease is commonly observed at diagnosis; 22% of newly 

diagnosed LCs have infiltrated regional lymph nodes and 57% have metastasized beyond the 

lung (2). The National Lung Screening Trial showed that among current smokers between 

55 and 74 years of age with a smoking history of at least 30 pack-years, and analogous 

former smokers who quit for less than 15 years, LC screening by low-dose helical computed 

tomography (CT) confers a 20% reduction in mortality compared to screening by chest X-

ray (3). This finding prompted the U.S. Preventive Services Task Force to recommend 

annual CT screening for such high-risk individuals (4). However in practice, clinical pursuit 

of LC usually occurs when patients already present with suggestive symptoms (5). While the 

5-year survival of overall LC is 6–15%, that of stage I LC is estimated to be 70%. Therefore 

better identifying individuals with elevated LC risk that motivates action may enable earlier 

diagnoses and improve outcomes (6).

The major LC prediction models upon which most subsequent models (7) expand are the 

Bach model (8), the Spitz model (9), the Liverpool Lung Project (LLP) model (10), and the 

Tammemagi model (11). Although they differ slightly in population study design, analysis 

of smokers versus non-smokers, and epidemiologic risk factors under consideration, all of 

the models agree that ascertaining airborne exposures and history of respiratory illnesses is 

useful for prediction. In contrast, extended models incorporating variants identified by LC 

genome-wide association studies (GWAS) have so far demonstrated that germline markers 

contribute little to risk prediction due to their small effect sizes. For example, adding 

genome-wide significant single nucleotide polymorphisms (SNPs) rs8034191 and rs402710 

increased area under the receiver operating characteristic curve (AUC) of the Bach model by 

0.02–0.04 (separate analyses for current, former, and ever smokers). However, training and 

test sets were drawn from the same study for cross-validation (12). AUC increased by 0.03 

with the addition of SNP rs663048 to the LLP model. However, predictions were tested on 

the same individuals from which the model had been trained (13). The Spitz model with a 

panel of inflammatory SNPs actually tested predictions on an independent study, but 

observed a gain of only 0.01 in AUC (14). In a decision tree analysis with 6 SNPs, the 0.008 

rise in AUC was not statistically significant (P = 0.056) in external validation (15). Another 

analysis constructed polygenic risk scores from genome-wide significant SNPs and 

improved AUC by 0.02 over the baseline non-genetic model in cross-validation (16).
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We sought to enhance prediction by modeling genetic risk as the aggregate effects of 

disease-associated germline variants within biologic pathways. Subtype-specific 

discriminatory pathways for the two most common LC subtypes, adenocarcinoma (AC) and 

squamous cell carcinoma (SCC), as well as pathway-smoking interactions, were included to 

reflect potential histology-dependent and interactive influences as comprehensively as 

possible. We also derived variant effect sizes, trained our model, and tested our model using 

three independent datasets that were intentionally not pruned into a consensus set of SNPs in 

order to evaluate the generalizability of our approach.

MATERIALS AND METHODS

Variant effect sizes from lung cancer GWAS meta-analyses

Fixed effects meta-analysis with inverse variance weighting was conducted using previously 

reported GWAS of 11,864,235 genotyped and imputed SNPs in 7,766 LC cases (2,424 AC 

cases and 2,274 SCC cases) and 37,482 controls of European ancestry by the 

Transdisciplinary Research in Cancer of the Lung (TRICL) consortium (17–25), including 

stratified analyses for AC and SCC (Table 1). These data are available in the Database of 

Genotypes and Phenotypes (accession number phs000877.v1.p1).

Individual-level data for training and testing risk prediction models

IARC Lung Cancer Study—representative linkage disequilibrium structure (26) of the 

TRICL meta-analysis. The IARC study of LC in central Europe recruited subjects from 

Czech Republic, Hungary, Poland, Romania, Russia, and Slovakia (22). After quality control 

(QC) defined below, 303,135 SNPs (Illumina HumanHap300) in 1,841 cases and 2,441 

controls remain.

Environment and Genetics in Lung Cancer Etiology (EAGLE) Study—prediction 

training data. The EAGLE study investigated genetic and environmental determinants of LC 

and smoking persistence in Italians (27). Age and smoking history were ascertained at the 

time of enrollment, which also coincided with age at LC diagnosis for cases (incident cases). 

After QC, 501,658 SNPs (Illumina HumanHap550v3.0) in 1,815 cases and 1,971 controls 

remain.

The Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) Screening Trial—
prediction test data. LC cases were selected from both arms of the screening trial, and were 

frequency-matched by sex and age in 5-year intervals with controls from the lung and 

prostate components of PLCO, all European-Americans (28). Age and smoking history were 

recorded at time of intervention randomization for controls and LC diagnosis for cases. After 

QC, 502,961 SNPs (Illumina HumanHap550v3.0) in 556 cases and 830 controls remain.

We excluded individuals with more than 10% missing genotypes or any missing age, sex, 

and smoking pack-years information, SNPs with minor allele frequency less than 5%, SNPs 

with genotyping rate less than 90%, and SNPs that failed the Hardy-Weinberg test at the 

0.0001 significance level (Table 2). Genotype data were then imputed to the 1000 Genomes 

Project (Phase 3) (29) with haplotype phasing by SHAPEIT (30) using IMPUTE2 v2.3.1 
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(31). We accepted the best-guess genotypes of imputed SNPs with information measure 

greater than 0.9. This stringent quality filter was applied because subsequent analyses 

require hard call genotypes, unlike in GWAS where >0.3–0.4 is accepted to allow non-

integer allelic dosages (32). If germline-based LC risk assessment ever becomes a 

commercial reality with validated medical utility, it is doubtful that relevant genetic markers 

would be imputed with uncertainty from surrounding markers on a research chip. They 

would be directly genotyped on a disease-specific chip. We wanted to approximate such a 

scenario in our training and test datasets.

Statistical Analyses

The study design overview is presented in Figure 1. We trained logistic regression models on 

individuals in the EAGLE study to predict LC status for individuals in the PLCO study. In

Yi is the disease status of individual i, having no LC denotes the reference outcome, k an 

alternative outcome, X a matrix of predictor values, γ a vector of predictor effects, and ε a 

vector of error terms. Different choices for predictors are described below. In binomial 

logistic regression, k denotes having LC. For a set of test instances, LC prediction 

performance was evaluated by AUC applied to the range of risk prediction scores P(Yi = k). 

In multinomial logistic regression, k denotes having one of several possible LC subtypes: 

“AC”, “SCC”, or “other lung cancer”. “Other lung cancer” pools together LC subtypes that 

are neither AC nor SCC, including mixed or unknown histology. Overall LC prediction 

scores were computed as the linear combination of subtype prediction probabilities: a ⋅ 
P(AC) + b ⋅ P(SCC) + c ⋅ P(other). Over a grid search on [0.01, 4] in 0.01 increments, 

optimal a*, b*, c* were identified through 4003 rounds of 5-fold internal cross-validation 

within the EAGLE study. Then following model training on the entire EAGLE study, LC 

prediction performance was evaluated by AUC applied to the range of risk prediction scores 

S = a* ⋅ P(AC) + b* ⋅ P(SCC) + c* ⋅ P(other) for individuals in the PLCO study. Mean, 

confidence interval, and comparison tests by DeLong’s method (33) of AUC were computed 

using the R package “pROC”.

1. Epidemiologic factors age, sex, and smoking pack-years—Equation 1 was fit 

to LC status, age, sex, and smoking pack-years of individuals in the EAGLE study, and used 

to infer LC status of individuals in the PLCO study. In this model and subsequent models, 

the increases in log odds of having outcome k relative to not having LC with every 

additional year of age, being female, and every additional pack-year of smoking are β1,k, 

β2,k and β3,k, respectively.

(Equation 1)
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2. Epidemiologic factors and top GWAS SNPs—We applied the software Genome-

wide Complex Trait Analysis (GCTA) (34) to summary statistics of the TRICL meta-

analysis to determine independently associated SNPs through stepwise-selection conditional 

analysis (26). In the absence of individual-level genotype data for the meta-analysis, GCTA 

estimated LD structure from the IARC study. Of the 1,343 SNPs deemed to be 

independently associated (GWAS P < 0.05 and conditional association P < 0.001), 301 SNPs 

appear in both EAGLE and PLCO (Supplementary Table S1). Using the EAGLE study, 

Equation 2 was fit to epidemiologic factors plus the top n independently associated SNP(s) 

ranked by ascending GWAS P-value (1 ≤ n ≤ 301), and was tested on the PLCO study. We 

reported the highest AUC for each set of 301 binomial and multinomial models. The 

increase in relative log odds with every additional copy of the variant allele for SNP j is θj,k.

(Equation 

2)

3. Epidemiologic factors, top GWAS SNPs, and SNP-smoking interactions—
Corresponding smoking interactions of the top n independently associated SNPs were added 

to the previous model. The increases in relative log odds with every additional pack-year of 

smoking and copy of the variant allele for SNP j are  and θj,k + ξj,k ⋅ 
packyearsi, respectively.

(Equation 3)

4. Epidemiologic factors and biologic pathways—For nominally significant SNPs in 

the TRICL meta-analysis (association P < 0.05) that may affect a gene through either 

residing within the gene or influencing the gene’s expression in lung (eQTL FDR < 0.05 in 

the Genotype-Tissue Expression project) (35), we determined the number of variant alleles 

possessed by individuals in the EAGLE and PLCO studies. Although some SNPs are 

available in one study but not the other, the following construction of pathway predictors 

does not depend on identical genotype data between the two studies. Gene-level 

susceptibility effects were first computed for every individual in both studies as variant allele 

count (0, 1, or 2) multiplied by additive effect size (log odds ratio) of each gene’s LC-

associated mapped SNP from the meta-analysis. We then derived pathway-level 

susceptibility effects for all individuals with respect to every curated pathway in the 

Molecular Signatures Database (36) as the sum of effects for genes relevant to that pathway. 
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Using a randomly sampled 80% of the EAGLE study, we identified pathways that exhibit 

significant differences (t-test P < 0.05) between LC cases and controls. Principal 

components (PCs) of pathway z-scores were separately derived for the internal training and 

testing data (remaining 20% of the EAGLE study) using the R package “FactoMineR”. A 

binomial logistic regression model was then fit to epidemiologic factors plus the top p PCs 

of the 80% EAGLE training set, and tested on the 20% EAGLE test set. This process was 

repeated 30×100 times for positive integers p ≤ 30 and across one hundred 80/20 re-

samplings of EAGLE to optimize AUC. Using the optimal p*, we trained Equation 4 on the 

entire EAGLE study to infer LC status in the PLCO study. The increase in relative log odds 

with every unit increment of PC x is ϕx,k.

(Equation 

4)

5. Epidemiologic factors, biologic pathways, and pathway-smoking 
interactions—We repeated the previous analysis, except PCs were derived for both 

pathways and pathway-smoking interactions (Supplementary Table S2). Pathway-smoking 

interactions were constructed as the product of pathway effects and corresponding 

cumulative smoking pack-years.

6. Epidemiologic factors, subtype-specific biologic pathways, and subtype-
specific pathway-smoking interactions—We repeated the previous analysis, except 

with pathways and pathway-smoking interactions from stratified GWAS meta-analyses for 

AC and SCC (Supplementary Table S3–S4), in addition to those for overall LC. With respect 

to the top p overall LC PCs, top q AC PCs, and top r SCC PCs, 303×100 rounds of internal 

cross-validation for positive integers p, q, r ≤ 30 across one hundred 80/20 re-samplings of 

EAGLE were performed to optimize AUC. Solutions p*, q*, r* were then used to train 

Equation 5 on the entire EAGLE study for prediction in the PLCO study. The increases in 

relative log odds with every unit increment of PCs x, yand z for overall LC, AC, and SCC 

are ϕx,k, ψy,k, and ωz,k, respectively.

(Equation 5)

Classification accuracy—We computed net reclassification improvement (NRI) (37) for 

the pathway-based models compared to the SNP-based binomial model as reference, using 

the R package “PredictABEL” (Table 3). The decision score cutoff for each model was 
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chosen as the receiver operating characteristic (ROC) curve point with minimum Euclidean 

distance to coordinate (0, 1). This cutoff was also used to compute Cohen’s kappa (38) 

between predicted and observed outcomes (no cancer or lung cancer); it is a measure of 

concordance beyond what would be expected by chance alone, ranging from 0 (concordance 

due to chance) to 1 (perfect concordance). Likewise for the multinomial models, a predicted 

disease subtype (no cancer, AC, SCC, or other lung cancer) for each individual was chosen 

as the one with highest probability and Cohen’s kappa was computed.

RESULTS

In order to assess differences in the distribution of demographic variables between cases and 

controls in the EAGLE and PLCO studies, we used the χ2 test to compare categorical 

variables and t-test to compare continuous variables (Table 2). Cases were much more likely 

to have longer smoking histories. LC exhibits modest association with age in the EAGLE 

study, but not in the PLCO study.

Logistic regression models were trained on the EAGLE study and tested on the PLCO study. 

A baseline binomial model with only age, sex, and smoking pack-years as predictors 

attained an AUC of 0.607 (#1 in Table 3). Consistent with previous findings (7), adding top 

SNPs implicated in overall LC GWAS hardly increased AUC, by around 0.01 (#2 in Table 

3). Diminishing returns came from further adding smoking interactions with these SNPs (#3 

in Table 3). To our knowledge, existing studies of genetic interactions with smoking in LC 

tend to be discovery in nature and have not evaluated risk prediction (14, 39–41). Hence 

comparable AUC gains are unavailable. While incorporating top PCs of discriminatory 

pathway-level effects from overall LC GWAS negligibly boosted AUC as well (#4 in Table 

3), significant improvements were achieved by including pathway-smoking interactions 

along with pathways derived from AC and SCC subtype-specific GWAS (#s 5–6 in Table 3).

AUC is usually favored in the early phase of prediction modeling because setting decision 

cutoffs is not required. However, a common critique by clinical researchers is that a specific 

cutoff must be selected in order to assess patient impact (42). We chose the LC prediction 

score cutoff for NRI that equally values sensitivity and specificity. Compared to the SNP-

based binomial model, our best model correctly net re-classified 11.7% of individuals in the 

PLCO study. Sensitivity improved from 56% to 66% and specificity improved from 61% to 

63%. A recent external validation study of several popular non-genetic LC prediction 

models, also treating true positives and false positives as equal tradeoffs, yielded sensitivities 

all less than 66% despite having incorporated many more epidemiologic risk factors, such as 

asbestos exposure, COPD, hay fever, and family history of LC (43). Our model’s specificity 

was not as high though. These findings suggest that genetic considerations may be more 

important for identifying cases, while epidemiologic considerations may be more important 

for identifying controls. Genetics-informed LC prediction models have reported AUCs, but 

not sensitivities and specificities at discrete ROC curve cutoffs against which to further 

compare (7, 12–16).

Multinomial logistic regressions assigned LC subtypes to individuals in the PLCO study. 

Although Cohen’s kappa of the most comprehensive model is nearly double that of the non-
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genetic model, classification accuracies across multinomial models are low in absolute 

terms. As expected, all of the binomial models exhibit higher kappas, mainly due to the 

difference in difficulty of predicting 2 outcomes versus 4 outcomes. Overall LC scores 

generated by merging LC subtype probabilities from the multinomial models also achieved 

AUCs similar to those of counterpart binomial models. However, the value of the 

multinomial approach becomes apparent when examining ordered LC prediction scores. 

With individuals in the bottom decile of scores from the best multinomial model (#6 in Table 

3) as reference, those in the upper deciles have odds ratios of developing LC that follow a 

more evenly graded progression with a wider spread, compared to predicted risk deciles 

from the partner binomial model. In particular, the difference in stratification at the extremes 

is highly significant (Figure 2). Based on the multinomial model, odds of developing LC for 

PLCO subjects in the top predicted risk decile is 4.68 times the odds in the bottom decile. 

The binomial model was not as proficient in identifying the highest and lowest risk 

individuals, producing a corresponding odds ratio of 3.42.

Beyond these deciles, constructing clinically meaningful risk categories is outside the scope 

of this study. Nevertheless, we still identified individuals at high risk for LC in a way that 

could at least be compared with the U.S. Preventive Services Task Force criteria: adults aged 

55–80 years with at least 30 pack-years of smoking history, including former smokers who 

quit for less than 15 years (4). Of the 1,386 individuals in the PLCO test set, 777 meet this 

criteria and 362 (47%) actually developed LC. On the other hand, the 777 highest scoring 

individuals in PLCO from the #6 multinomial model consist of 435 (56%) LC cases, 

yielding a positive predictive value increase of 9%.

DISCUSSION

We put forward a method of improving LC risk prediction that is innovative in several ways. 

Since LC is a heterogeneous disease, we used SNP effect sizes from overall LC and subtype-

stratified GWAS. While selection of SNP predictors has traditionally involved filtering SNPs 

by GWAS P-value or suspected functions (12–16), we aggregated relevant SNP effects into 

pathway-level effects. Many studies have already warned about the shortcomings of 

conducting mainly biostatistical polygenic analyses of GWAS for complex disease 

prediction (44), even if a larger than expected portion of “missing heritability” has been 

extrapolated to be hidden rather than actually missing (34). Our biologic integration also 

included constructing pathway-smoking interactions, the first use of pathway-exposure 

interactions in germline genetic prediction.

SNP-gene correspondences were established based on intragenic or lung eQTL status, a 

refinement of the usual proximity approach. As an exercise, we re-computed pathway effects 

by mapping SNPs to genes within 10 kilobases (kb) and discovered that the differences 

between LC cases and controls became less pronounced (data not shown). This suggests 

previous pathway-based analyses of GWAS that mapped SNPs to genes based solely on 

chromosomal position may have introduced noise. Not all genetic variations within 10 kb of 

a gene influence its expression. And some variants farther than 10 kb away can also 

influence expression. Pathway values derived using the position method did not distinguish 
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cases from controls as strikingly because the sums of gene-level effects may have included 

genes that were improperly linked to disease-associated SNPs from GWAS.

Furthermore, simultaneous consideration of LC subtypes through multinomial logistic 

regression identified individuals with the highest and lowest LC risk better than binomial 

regression. This finding is in line with a study that demonstrated jointly predicting risk for 

schizophrenia, bipolar disorder, and depression using SNP data is more effective than 

making separate predictions (45). It is believed that genetic correlation among several 

diseases implies a variant affecting risk for one disease will tend to be informative of risk for 

correlated diseases as well. However, kappa values from joint disease prediction are not 

impressive. Similar to GWAS of most complex diseases, many associated genetic risk loci 

exist for LC, and their effect sizes have been measured to be quite small and with noise (44). 

Therefore prediction accuracy at the single disease (subtype) level is similarly poor. 

Nevertheless, merging subtype risks following multinomial analysis likely enhanced the 

signal-to-noise ratio of genetic effects (46) and has contributed to the more clinically 

important endeavor of better assessing overall LC risk. After all, motivation for LC 

screening does not depend on probable cancer subtype.

Incorporating subtype-specific pathways and pathway-smoking interactions increased AUC 

of overall LC prediction by 0.05 and 0.04 over the baseline non-genetic model and the 

baseline model plus top independently associated SNPs, respectively, in external validation. 

Primarily limited by available data, our best model achieved an AUC of 0.656. While this 

AUC is far from being qualified to sway individual clinical decisions, we emphasize the 

significance of our gain, rather than the absolute value of AUC. The current, most thorough 

non-genetic models that assess many other predictors in addition to age, sex, and smoking 

pack-years, such as history of respiratory illnesses, occupational exposures, and level of 

education, have achieved AUC of 0.797 in external validation (47). This performance can be 

expected to advance another 0.03–0.05 upon inclusion of pathway-based and interactive 

predictors because pathway effects are largely uncorrelated with epidemiologic risk factors 

(Supplementary Tables S2–S4). The projected attenuation is attributed to potential 

overlapping genetic effects on disease and other epidemiologic factors not ascertained here. 

Such a gain would bring us ever closer the goal of accurately identifying high-risk 

individuals for early LC screening.

A drawback of this study is difficulty interpreting the biologic impacts of genetic factors on 

risk prediction. From the training data, we derived pathways and pathway-smoking 

interactions that discern LC cases from healthy controls (Supplementary Tables S2–S4). Of 

note, top pathways for AC and SCC are mostly different, and some pathway-smoking 

interactions are more significant than their corresponding non-interacted pathways. 

Prominent examples include mechanisms of Bcl11b (a zinc finger protein) in AC and 

regulation of Smad2/3/4 (downstream transducers of signaling by transforming growth 

factor β) in SCC. However, the precise risk-influencing effects of pathways and their 

constituent genes are masked by PC regression. Coefficient estimates cannot be ascribed to 

any single factor from the original data. This masking through orthogonalization somewhat 

absolves the concern that evaluating so many interactive terms would inevitably lead to false 

positive biologic inferences. The rankings presented in Supplementary Tables S2–S4 may 
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still merit new experimental pursuits though; actions of Bcl11b and Smad4 have been 

implicated in tumorigenesis of colon AC (48) and head and neck SCC (49), respectively. In 

addition, transforming to PCs has allowed removal of multicollinearity among many related 

pathways, an inherent feature of modern pathway databases, without discarding pathways 

altogether since the subtle distinctions may be important.

Another weakness of this study, along with all existing LC prediction efforts, is poor ability 

to model risk for never-smokers. They lack the top risk factor for LC and their pathway-

smoking interactions are all zero. Adding pathways did not significantly augment AUC 

among PLCO never-smokers compared to the baseline non-genetic model (data not shown). 

With additional information and the adaptability of our pathway-exposure interactions, 

however, this inadequacy has the potential to change in future studies. Other exposures 

besides smoking, such as second-hand smoke, pollution, asbestos, various dusts, and diet, 

can increase risk for LC as well (50). Modeling interactions between a variety of exposure 

risk factors and genetic pathway effects, especially pathways for AC as it is the major tumor 

subtype among never-smokers (51), may reveal new insights.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic overview of study design. Procedures for deriving lung cancer risk predictors 

from the phenotypes and genotypes of independent datasets are outlined. Dashed arrows 

refer to methods that have been previously reported or that are similar to those previously 

reported. Bold arrows refer to new approaches reported herein. AC: adenocarcinoma; 

EAGLE: Environment and Genetics in Lung Cancer Etiology study; eQTL: expression 

quantitative loci; GCTA: Genome-wide Complex Trait Analysis; GTEx: Genotype-Tissue 

Expression project; GWAS: genome-wide association studies; IARC: International Agency 

for Research on Cancer; PCA: principal component analysis; MSigDB: Molecular 

Signatures Database; PLCO: Prostate, Lung, Colorectal, and Ovarian cancer screening trial; 

SCC: squamous cell carcinoma; SNP: single-nucleotide polymorphism.
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Figure 2. 
Odds ratios by risk prediction score deciles. Individuals in the PLCO study were grouped 

into deciles based on their risk prediction scores from the #6 binomial and multinomial 

models in Table 3. The odds of having lung cancer for each decile were compared to the 

odds for the lowest decile. Bars denote the 95% confidence interval for these odds ratios.
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TABLE 1

Component studies of TRICL lung cancer GWAS meta-analyses

Cases Controls

All ACg SCCh

MDACCa 1150 619 306 1134

UKICRb 1952 465 611 5200

IARCc 2533 517 911 3791

Torontod 331 90 90 499

Germanye 481 186 97 478

deCODEf 1319 547 259 26380

Totals 7766 2424 2274 37482

a
MD Anderson Cancer Center study (18)

b
United Kingdom Institute of Cancer Research study (19–21)

c
International Agency for Research on Cancer study (22, 23)

d
University of Toronto and Lunenfeld-Tanenbaum Research Institute study (22)

e
Helmholtz-Gemeinschaft Deutscher Forschungszentren study (24)

f
deCODE Genetics study (25)

g
Lung adenocarcinoma

h
Lung squamous cell carcinoma
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TABLE 3

Performance of lung cancer prediction models

Logistic regression model AUC (95% C.I., P) a NRI (95% C.I., P) b Cohen’s κ (95% C.I.)

1) Epidemiologic: age, sex, pack-years (PY)

  Binomial 0.607 (0.577–0.637) 0.172 (0.120–0.224)

  Multinomial 0.608 (0.577–0.638) 0.081 (0.037–0.125)

2) Epidemiologic + top independently associated 
SNPs c

  Binomial 0.617 (0.587–0.647, ref.) (ref.) 0.194 (0.141–0.246)

  Multinomial 0.617 (0.587–0.647, 0.618) 3.6% (0.9–6.4, 0.0104) 0.095 (0.047–0.144)

3) Epidemiologic + top independently associated 
SNPs c and their interactions with PY

  Binomial 0.619 (0.589–0.650, 0.598) 2.9% (0.7–5.1, 0.0097) 0.195 (0.143–0.247)

  Multinomial 0.620 (0.590–0.650, 0.586) 2.2% (0.1–4.3, 0.0438) 0.101 (0.052–0.150)

4) Epidemiologic + PCs of top overall pathways

  Binomial 0.621 (0.591–0.651, 0.568) 5.3% (1.8–8.8, 0.0027) 0.200 (0.146–0.253)

  Multinomial 0.621 (0.591–0.651, 0.582) 5.0% (1.7–8.4, 0.0033) 0.105 (0.058–0.152)

5) Epidemiologic + PCs of top overall pathways 
and their interactions with PY

  Binomial 0.630 (0.600–0.660, 3.28 × 10−2) 4.9% (2.5–7.4, 0.0002) 0.207 (0.154–0.261)

  Multinomial 0.631 (0.600–0.661, 2.94 × 10−2) 5.0% (2.4–7.6, 0.0002) 0.125 (0.077–0.173)

6) Epidemiologic + PCs of top subtype-specific 
pathways and their interactions with PY

  Binomial 0.651 (0.621–0.681, 8.78 × 10−4) 8.9% (5.7–12.1, <0.0001) 0.226 (0.171–0.281)

  Multinomial 0.656 (0.626–0.685, 6.11 × 10−5) 11.7% (7.3–16.0, <0.0001) 0.152 (0.108–0.195)

a
Changes in AUC were computed relative to the #2 binomial model as reference.

b
Net reclassification improvement values (%) were computed relative to the #2 binomial model as reference. Classification was determined based 

on choosing a risk prediction score cutoff for each model that corresponds to the ROC curve point with minimum Euclidean distance to coordinate 
(0, 1).

c
Three hundred and one independently associated SNPs were identified by stepwise-selection conditional analysis of the TRICL overall lung 

cancer GWAS meta-analysis. Logistic regression models that include the top n SNPs were tested, for 1 ≤ n ≤ 301. Optimal n yielding the highest 
AUC were 30 and 39 for models 2 and 3, respectively.
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