Skip to main content
. 2017 Jun 6;17(6):1297. doi: 10.3390/s17061297

Table 2.

The proposed CNN configuration used in our research.

Layer Type Number of Filter Size of Feature Map Size of Kernel Number of Stride Number of Padding
Image input layer 224 (height) × 224 (width) × 3 (channel)
Group 1 Conv1_1 (1st convolutional layer) 64 224 × 224 × 64 3 × 3 1 × 1 1 × 1
Relu1_1 224 × 224 × 64
Conv1_2 (2nd convolutional layer) 64 224 × 224 × 64 3 × 3 1 × 1 1 × 1
Relu1_2 224 × 224 × 64
Pool1 1 112 × 112 × 64 2 × 2 2 × 2 0 × 0
Group 2 Conv2_1 (3rd convolutional layer) 128 112 × 112 × 128 3 × 3 1 × 1 1 × 1
Relu2_1 112 × 112 × 128
Conv2_2 (4th convolutional layer) 128 112 × 112 × 128 3 × 3 1 × 1 1 × 1
Relu2_2 112 × 112 × 128
Pool2 1 56 × 56 × 128 2 × 2 2 × 2 0 × 0
Group 3 Conv3_1 (5th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1
Relu3_1 56 × 56 × 256
Conv3_2 (6th convolutional layer) 256 56 × 56 × 256 3 × 3 1×1 1 × 1
Relu3_2 56 × 56 × 256
Conv3_3 (7th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1
Relu3_3 56 × 56 × 256
Pool3 1 28 × 28 × 256 2 × 2 2 × 2 0 × 0
Group 4 Conv4_1 (8th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1
Relu4_1 28 × 28 × 512
Conv4_2 (9th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1
Relu4_2 28 × 28 × 512
Conv4_3 (10th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1
Relu4_3 28 × 28 × 512
Pool4 1 14 × 14 × 512 2 × 2 2 × 2 0 × 0
Group 5 Conv5_1 (11th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1
Relu5_1 14 × 14 × 512
Conv5_2 (12th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1
Relu5_2 14 × 14 × 512
Conv5_3 (13th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1
Relu5_3 14 × 14 × 512
Pool5 1 7 × 7 × 512 2 × 2 2 × 2 0 × 0
Fc6 (1st FCL) 4096 × 1
Relu6 4096 × 1
Dropout6 4096 × 1
Fc7 (2nd FCL) 4096 × 1
Relu7 4096 × 1
Dropout7 4096 × 1
Fc8 (3rd FCL) 2 × 1
Softmax layer 2 × 1
Output layer 2 × 1