Skip to main content
. 2017 Jun 6;17(6):1297. doi: 10.3390/s17061297

Table 4.

Various CNN models for comparisons (convN means the filter of N×. For example, conv3 represents the filter of 3 × 3).

Input Image Original Image as Input to CNN (Case 1 of Table 2) Difference Image as Input to CNN (Case 2 of Table 2)
Net configuration VGG Face (no fine-tuning/fine-tuning) VGG Net-16 (no fine-tuning/fine-tuning) VGG Net-19 (no fine-tuning/fine-tuning) Revised Alexnet-1 (whole training) Revised Alexnet-2 (whole training) VGG Net-16 (fine-tuning) (Proposed method)
Method name A/A−1 B/B−1 C/C−1 D E F
# of layers 16 16 19 8 8 16
Filter size (# of filters) conv3 (64)
conv3 (64)
conv3 (64)
conv3 (64)
conv3 (64)
conv3 (64)
Conv11 (96) conv3 (64) conv3 (64)
conv3 (64)
Pooling type MAX MAX MAX MAX MAX MAX
Filter size (# of filters) conv3 (128)
conv3 (128)
conv3 (128)
conv3 (128)
conv3 (128)
conv3 (128)
Conv5 (128) conv3 (128) conv3 (128)
conv3 (128)
Pooling type MAX MAX MAX MAX MAX MAX
Filter size (# of filters) conv3 (256)
conv3 (256)
conv3 (256)
conv3 (256)
conv3 (256)
conv3 (256)
conv3 (256)
conv3 (256)
conv3 (256)
conv3 (256)
conv3 (256) conv3 (256) conv3 (256)
conv3 (256)
conv3 (256)
Pooling type MAX MAX MAX MAX MAX
Filter size (# of filters) conv3 (512)
conv3 (512)
conv3 (512)
conv3 (512)
conv3 (512)
conv3 (512)
conv3 (512)
conv3 (512)
conv3 (512)
conv3 (512)
conv3 (256) conv3 (256) conv3 (512)
conv3 (512)
conv3 (512)
Pooling type MAX MAX MAX MAX MAX
Filter size (# of filters) conv3
(512) conv3 (512)
conv3 (512)
conv3
(512) conv3 (512)
conv3 (512)
conv3
(512) conv3 (512)
conv3 (512)
conv3 (512)
conv3 (128) conv3 (128) conv3 (512)
conv3 (512)
conv3 (512)
Pooling type MAX MAX MAX MAX MAX MAX
Fc6 (1st FCL) 4096 4096 4096 4096 2048 4096
Fc7 (2nd FCL) 4096 4096 4096 1024 2048 4096
Fc8 (3rd FCL) 2622/# of class 1000/# of class 1000/# of class 2 2 2