Table 4.
Input Image | Original Image as Input to CNN (Case 1 of Table 2) | Difference Image as Input to CNN (Case 2 of Table 2) | ||||
---|---|---|---|---|---|---|
Net configuration | VGG Face (no fine-tuning/fine-tuning) | VGG Net-16 (no fine-tuning/fine-tuning) | VGG Net-19 (no fine-tuning/fine-tuning) | Revised Alexnet-1 (whole training) | Revised Alexnet-2 (whole training) | VGG Net-16 (fine-tuning) (Proposed method) |
Method name | A/A−1 | B/B−1 | C/C−1 | D | E | F |
# of layers | 16 | 16 | 19 | 8 | 8 | 16 |
Filter size (# of filters) | conv3 (64) conv3 (64) |
conv3 (64) conv3 (64) |
conv3 (64) conv3 (64) |
Conv11 (96) | conv3 (64) | conv3 (64) conv3 (64) |
Pooling type | MAX | MAX | MAX | MAX | MAX | MAX |
Filter size (# of filters) | conv3 (128) conv3 (128) |
conv3 (128) conv3 (128) |
conv3 (128) conv3 (128) |
Conv5 (128) | conv3 (128) | conv3 (128) conv3 (128) |
Pooling type | MAX | MAX | MAX | MAX | MAX | MAX |
Filter size (# of filters) | conv3 (256) conv3 (256) conv3 (256) |
conv3 (256) conv3 (256) conv3 (256) |
conv3 (256) conv3 (256) conv3 (256) conv3 (256) |
conv3 (256) | conv3 (256) | conv3 (256) conv3 (256) conv3 (256) |
Pooling type | MAX | MAX | MAX | MAX | MAX | |
Filter size (# of filters) | conv3 (512) conv3 (512) conv3 (512) |
conv3 (512) conv3 (512) conv3 (512) |
conv3 (512) conv3 (512) conv3 (512) conv3 (512) |
conv3 (256) | conv3 (256) | conv3 (512) conv3 (512) conv3 (512) |
Pooling type | MAX | MAX | MAX | MAX | MAX | |
Filter size (# of filters) | conv3 (512) conv3 (512) conv3 (512) |
conv3 (512) conv3 (512) conv3 (512) |
conv3 (512) conv3 (512) conv3 (512) conv3 (512) |
conv3 (128) | conv3 (128) | conv3 (512) conv3 (512) conv3 (512) |
Pooling type | MAX | MAX | MAX | MAX | MAX | MAX |
Fc6 (1st FCL) | 4096 | 4096 | 4096 | 4096 | 2048 | 4096 |
Fc7 (2nd FCL) | 4096 | 4096 | 4096 | 1024 | 2048 | 4096 |
Fc8 (3rd FCL) | 2622/# of class | 1000/# of class | 1000/# of class | 2 | 2 | 2 |