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Abstract. Ziehl–Neelsen stained microscopy is a crucial bacteriological test for tuberculosis detection, but its
sensitivity is poor. According to the World Health Organization (WHO) recommendation, 300 viewfields should
be analyzed to augment sensitivity, but only a few viewfields are examined due to patient load. Therefore, tuber-
culosis diagnosis through automated capture of the focused image (autofocusing), stitching of viewfields to form
mosaics (autostitching), and automatic bacilli segmentation (grading) can significantly improve the sensitivity.
However, the lack of unified datasets impedes the development of robust algorithms in these three domains.
Therefore, the Ziehl–Neelsen sputum smear microscopy image database (ZNSM iDB) has been developed, and
is freely available. This database contains seven categories of diverse datasets acquired from three different
bright-field microscopes. Datasets related to autofocusing, autostitching, and manually segmenting bacilli can be
used for developing algorithms, whereas the other four datasets are provided to streamline the sensitivity and
specificity. All three categories of datasets were validated using different automated algorithms. As images avail-
able in this database have distinctive presentations with high noise and artifacts, this referral resource can also
be used for the validation of robust detection algorithms. The ZNSM-iDB also assists for the development of
methods in automated microscopy. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.2.027503]
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1 Introduction
Tuberculosis, alongside the human immunodeficiency virus
(HIV) infection, is the leading cause of death from a single
infectious agent.1 Early diagnosis of tuberculosis is essential
to attain better health outcomes.2 A noninvasive and economical
investigation such as a sputum smear microscopy test is consid-
ered as a crucial factor in misdiagnosis of this disease, especially
in low- and middle-income countries.3 This sputum smear test is
generally performed using fluorescence microscopy (FM) or
bright-field microscopy/conventional microscopy (CM). The
latter is the most preferred test in low- and middle-income coun-
tries due to its accessibility, minimal bio-safety standard, and
cost effectiveness.4,5 This test is also used as the primary tech-
nique for detection of tuberculosis in remote areas.4,5

According to the World Health Organization (WHO) guide-
lines, 300 viewfields of a smear slide should be examined in CM
within 24 h of collection of a specimen for accurate diagnosis.6

As manual identification and counting of bacilli using CM is a
very time consuming and labor intensive task, it takes 40 min to
3 h to analyze even 40 to 100 viewfield images from a single slide
to diagnose a patient as tuberculosis positive or negative.7 There-
fore, the sensitivity of tuberculosis detection varies, and it relies
on the experience of microbiologists.8 The effectiveness of diag-
nosis is compromised to a significant extent for extrapulmonary,

pediatric, or HIV-patients co-infected tuberculosis.9 All of these
shortcomings can be addressed through an automated micro-
scope, which will not only increase the accuracy but also
reduces the time of diagnosis.10,11 Efforts were made to increase
the sensitivity of this diagnostic test by incorporating automated
methods.12,13 However, the attainment of success is limited
mainly because of the inadequacy of data and dependency of
automated methods on image contents.14

The automated microscopy for bacilli detection requires effi-
cient algorithms in the following three domains:

i. Autofocusing: In a stack of images captured from a sin-
gle viewfield with different focuses, an image with the
best average focus over the entire viewfield is defined as
the focused one. The maximum value of the focus mea-
sure function (FMF) corresponds to the best-focused
image.11 This method would facilitate automated captur-
ing of the best-focused image. In recent years, various
autofocusing algorithms have been proposed and imple-
mented in microscopy images for diverse biological
applications.11,15,16

ii. Autostitching: This method stitches viewfields of a
smear-slide to form a mosaic or slide map. The
WHO recommended analysis of 300 viewfields can
be achieved faster and efficiently by automated stitching
of overlapping viewfields followed by detection of
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bacilli in a mosaic (stitched-image) by segmentation
methods.17 Bacilli segmentation algorithms use bacilli
shape and size as the potential features to segment
the bacilli from other objects.5,12 Autostitching also
facilitates automatic detection of bacilli on the edge
by joining half bacillus structures on the boundaries
of two different viewfields. Though many autostitching
methods were developed,17,18–20 they were not validated
on diverse datasets.

iii. Automatic bacilli segmentation and grading: It is a proc-
ess of segmentation and counting of bacilli either from
viewfield or mosaic. Pattern recognition and machine
learning techniques have been used to detect the bacilli
in images,4,5,7,12,21,22 but their efficacy and scopes are
limited due to their implementation on nonunified
and limited datasets.

Databases and tools have already provided a better diagnosis
of cancer and other diseases.23,24 Databases were used to
develop algorithms/methods, which were implemented in com-
puter-aided diagnosis (CAD) systems to obtain a second opinion
about a disease.25–27 The databases and CADs are also effec-
tively used for the early detection of diseases. Keeping in
view these accomplishments of databases, the Ziehl–Neelsen
sputum smears microscopy image database (ZNSM-iDB) has
been developed.28 This database contains diverse categories
of image datasets with both medium and high noise back-
grounds. It possesses datasets for all three processes required
for automated microscope development. Standard protocols
were used to acquire the images,6 and the datasets were vali-
dated by various automated microscopy algorithms to establish
their robustness. This database can be used to develop and
evaluate efficient and robust algorithms related to automated
microscopy.

2 Materials and Methods

2.1 Data Collection

Digital images of viewfields from 10 different ZN-stained spu-
tum smear slides (belonging to tuberculosis positive patients)
were acquired under the guidance of two expert microscopists.
Triplicate data for each category were collected using three

different microscopes at 100× magnification (Table 1 and
Secs. 2.2.1–2.2.7). The objective lens with 100× magnification
was used as the typical Mycobacterium tuberculosis bacilli
width and length of about 0.5 and 2 − 4 μm, respectively.29

Images were acquired in RGB (red, green, and blue) color
space with “.jpg” file-format. Image dimensions in pixels and
DPI (dots per inch) are also provided. The dimensions of
image represent the number of pixels in an image. Detailed con-
figurations of all the microscopes and acquired image properties
are mentioned below:

i. First datasets were acquired using a Labomed Digi 3
digital microscope (MS-1), which features an L × 400
trinocular microscope and an iVu 5100 digital camera
module 5.0 megapixel CMOS sensor. The acquired
images were 800 × 600 pixels with bit depth and reso-
lution of 24 (eight per channel) and 120 DPI, respec-
tively, at 100× magnification. The physical size (pixel
pitch) of each single pixel is 2.2 μm.

ii. Second datasets were acquired using a Motic BA210
digital microscope (MS-2), which features a Siedentopf
type Binocular head and Moticam 2500 digital camera
module 5.0 megapixel CMOS sensor. The acquired
images were 1280 × 1024 and 2592 × 1944 pixels
with bit depth and resolution of 24 and 96 DPI, respec-
tively, at 100× magnification. The physical size of a
pixel is 2.2 μm.

iii. Third datasets were acquired using an Olympus CH20i
digital microscope (MS-3), which features a trinocular
microscope and a smartphone digital camera with 16-
megapixel BSI-CMOS sensor. The smartphone was
attached to the microscope using HY0088 microscope
mobile phone interface. The acquired images were
5312 × 2988 (16 MP), 3984 × 2988 (12 MP), and
2048 × 1152 (2.4 MP) pixels with bit depth and resolu-
tion of 24 and 72 DPI, respectively, at 100× magnifica-
tion. The physical size of a pixel is 1.12 μm.

2.2 Description of Datasets

The architecture of ZNSM-iDB with its applications is presented
in Fig. 1. This database contains seven different categories of

Table 1 Category-wise presentation of datasets available in ZNSM-iDB

Group Category of data

No. of digital images from different microscope (MS)

MS-1 MS-2 MS-3

1. Autofocusing dataseta 9 stacks 10 stacks 30 stacks

2. Overlapping viewfields for autostitching 7 sets (50 to 90 images∕set) 6 sets (50 images∕set) 10 sets (50 images∕set)

3. Manually segmented bacilli in a viewfield 2 sets (50 images∕set) 2 sets (50 images∕set) 2 sets (50 images∕set)

4. Viewfields without bacilli 50 50 50

5. Single or few bacilli 100 100 100

6. Overlapping (occluded) bacilli 200 200 200

7. Over-stained viewfields with bacilli and artifacts 250 250 250

aEach stack contains 20 images.
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digital images in triplicate sets (one set from each microscope),
which may be separately visualized or retrieved for further
processing and applications (Table 1). Multiple and diverse data-
sets were provided so that the robustness of developed algo-
rithms can be evaluated.

A detailed description for each category of data is
given below.

2.2.1 Autofocusing dataset

In this category, every stack of images is restricted to a single
viewfield. Each stack contains at least 20 images captured at
different focus lengths, in which one is marked as the best
focused, while the others are unfocused to different extents.
The 10th image is the best-focused one in most of the stacks.

2.2.2 Overlapping viewfields for auto-stitching

Adjacent overlapping viewfields can be stitched to make the
mosaic or slide map using image processing techniques. In
this dataset, 10 overlapping viewfield images were acquired
in a row and then the slide was moved left or right to take
the images of the next row (Fig. 2).

2.2.3 Manually segmented bacilli in a viewfield

This dataset contains viewfields with manually segmented or
marked bacilli. Different shapes were used for marking such
as a circle or oval shape for single bacillus, square or rectangle

for occluded bacilli, diamond for unclassified red structures, and
hexagon for the artifacts [Fig. 3(a)].

2.2.4 Viewfields without bacilli

Images in this group range from medium to very high-density
background depending upon the presence of over-staining

Fig. 1 Architecture and applications of ZNSM-iDB.

Fig. 2 A depiction of direction in which the images were acquired
from a ZN-stained slide. Each square box corresponds to a
viewfield.

Fig. 3 Sample images of five different category datasets available in
ZNSM-iDB. (a) Manually segmented viewfield, (b) viewfield without
bacilli, (c) viewfield with single or few bacilli, (d) viewfield with
occluded bacilli, and (e) over-stained viewfields with bacilli and
artifacts.
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and artifacts, but the viewfield does not contain any bacilli
[Fig. 3(b)].

2.2.5 Viewfields with a single or few bacilli

In this group of images, the number of bacilli in each viewfield
varies from 1 to 10. This group also has medium to high-density
backgrounds [Fig. 3(c)].

2.2.6 Viewfields with overlapping (occluded) bacilli

In many instances, two or more bacilli are overlapped at the
same position and form an occluded bacilli cluster. Images in
this category are diverse in terms of medium to high-density
backgrounds [Fig. 3(d)].

2.2.7 Over-stained viewfields with bacilli and artifacts

Sometimes, the quality of ZN-stained CM images is not good
due to the presence of artifacts and over-staining. Therefore,
bacilli detection is difficult using a segmentation method, and
only robust methods can produce a better performance. In
this category, more than 200 images from each microscope
are provided that contain over-stained (blue) regions with arti-
facts and/or bacilli [Fig. 3(e)].

2.3 Data Validation

ZNSM-iDB resource contains autofocusing, autostitching, and
bacilli segmentation and classification image datasets. Some
algorithms/methods reported in these three domains were also
implemented on the datasets.

Twenty-four FMFs were implemented on autofocusing data-
sets to determine the best-focused one in each stack of images.30

The performance of FMFs in classifying a stack is determined
using different criteria such as accuracy, focus error, false maxi-
mum, and full-width at half-maximum. The robustness of FMFs
to the different imaging conditions (median filtering, noise addi-
tion, contrast reduction, saturation increment, and nonuniform
illumination addition) was also determined.

Autostitching of overlapping viewfields datasets was per-
formed and reported.31 The overlapping subparts of the view-
fields were stitched together using scale-invariant feature
transform (SIFT) feature extraction and random-sample-consen-
sus (RANSAC) selection method. The divide and conquer algo-
rithm was implemented for faster stitching and mosaic
formation. Comparisons of similarities between the original
and stitched images were performed using correlation (COR),
structural similarity (SSIM), and feature similarity (FSIM)
measures.

Bacilli segmentation and classification using the watershed
algorithm32 was performed on ZNSM-iDB database. Forty
images from three microscopes (MS-1, MS-2, and MS-3)
were randomly extracted and grouped into medium- and
high-density background datasets. The shape and size of the
objects were determined to filter the true bacilli.33 Similarly,
the watershed algorithm was implemented on 30 randomly
extracted images from the smartphone enabled microscope
(MS-3) to segment bacilli.34 In both studies, sensitivity and
specificity of the watershed algorithm were calculated. In an
another study, images were divided into four groups based
on the infection level (Table 2),35 and sensitivity and specificity
of the watershed segmentation method for classifying an image
as TB positive or negative were determined for each group.

Sensitivity and the precision rate of this segmentation method
for identifying true bacilli were determined for each group.
Furthermore, the discordance rate was calculated for the water-
shed segmentation method to evaluate the percent of pairs where
the observation with TB-positive has a lower predicted proba-
bility than TB-negative.36,37 The predicted probability was cal-
culated in a binary logistic regression model.36

3 Results and Discussion

3.1 Applications of the Data Resource

The ZN sputum smear microscopy image database (ZNSM-
iDB) is a unified image resource that has the potential to assist
in the development of algorithms and tools related to automated
grading (computer aided detection of bacilli) of smear slides
using image processing techniques (Fig. 4). The database is
freely available from Ref. 28, and a tutorial is provided for effec-
tive exploration of diverse datasets (Table 1 and Fig. 5). As most
of the tuberculosis diagnosis centers have a high patient load,
false negative rates resulting in poor sensitivity is the stark
reality.7 The sensitivity of the CM varies from 0.32 to 0.94,
whereas it ranges from 0.52 to 0.97 for FM.38 The specificity
is approximately similar in both microscopy tests ranging
from 0.94 to 1.0. As examination of a few viewfields is consid-
ered as an important factor for the poor sensitivity of this bac-
teriological test, automation can improve the accuracy of a
diagnosis.

In addition to automatic loading of the slide, an automated
microscope for tuberculosis detection requires a combination of
robust methods for automated capturing of the focused image
(autofocusing), stitching of viewfields to form a mosaic (autos-
titching), and automatic bacilli segmentation and grading.
Groups 1, 2, and 3 datasets can be used for the development
and validation of bacilli grading algorithms (Table 1). The
remaining four categories (groups 4, 5, 6, and 7) of datasets
are provided to streamline the sensitivity and specificity of
the bacilli detection method as images in these categories are
diverse in terms of contents (medium to a high-density back-
ground, occluded bacilli, few bacilli, without bacilli, over-stain-
ing, etc.). As 300 viewfields should be analyzed for efficient
diagnosis, automation can significantly improve the CM perfor-
mance through analysis of a large number of viewfields.12

3.2 Validation

Autofocusing, autostitching, and bacilli segmentation and clas-
sification algorithms were implemented on ZNSM-iDB
datasets.

Table 2 Grading of viewfields on the basis of infection level.

Number of bacilli
Number of viewfields

to be examined Grading

1 to 9 in 100 viewfields 100 Scantya

10 to 99 in 100 viewfields 100 1+

1 to 10 in each viewfield 50 2+

>10 in each viewfield 20 3+

aReport exact number of bacilli present in the viewfields.
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3.2.1 Performance of focus measure functions

Comprehensive and comparative analyses of 24 FMFs have
shown that Gaussian derivative, Tenengrad gradient, steerable
filters, and Hemli and Scherer’s mean are the most robust
and accurate FMFs in all three microscopes to determine the
best focus in CM images. These four FMFs were also robust
to image distortions (noise addition, contrast reduction, satura-
tion increment, and nonuniform illumination addition).30 In an

earlier study, it was also reported that the Tenengrad method
produced a better FMF for CM images.11

3.2.2 Autostitching of viewfields

Different autostitching methods were evaluated on ZNSM-iDB
datasets acquired using MS-1. The SIFT feature extraction and
RANSAC feature selection methods were used to generate a
mosaic.31 Similarity scores between the stitched and original

Fig. 5 Image visualization and data download page.

Fig. 4 Application of ZNSM-iDB database in automated microscopy.
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images were 0.997, 0.988, and 0.989 using COR, SSIM, and
FSIM measures, respectively. These results were significantly
better than the performances of Autostitch20 and MicroMos38

software (Fig. 6).

3.2.3 Bacilli segmentation and classification

Bacilli segmentation and classification was performed using a
watershed segmentation method on ZNSM-iDB datasets.33,34

The sensitivity and specificity of this method for classifying
a medium density background image as tuberculosis positive
or negative were 100% and 93%, respectively, while for a
high-density background the sensitivity remained unchanged,
but specificity was reduced to 72% due to over-staining and
artifacts.33 Similarly, the sensitivity and specificity of this seg-
mentation method for classifying a smartphone enabled micro-
scopic images (medium to high-density background) as
tuberculosis bacilli positive or negative were 93.3% and 87%,
respectively.34

The sensitivity, specificity, and precision rate of watershed
segmentation on different infection levels (Scanty, 1+, 2+,
and 3+) are depicted in Table 3. The performance of this
segmentation method is related to the level of infection
where a higher level of infection yields a better performance.
Furthermore, this segmentation provided a discordant rate
of 3.73% with respect to tuberculosis positive and nega-
tive cases.

4 Conclusion
The ZNSM-iDB is well diverse in terms of image acquisition
technology and content. These images were acquired from
three microscopes with different configurations and scopes.
Since autofocusing, autostitching, and automated grading meth-
ods are necessary for automated microscope development, this
resource may work as a standard platform to compare existing
methods as well as to develop new algorithms (Fig. 4). CAD
helps to achieve better sensitivity and specificity for complicated
diseases.39 An established CAD system, “TBDx,” is available
for tuberculosis screening in FM images,40 but most of the tuber-
culosis-endemic countries are using CM due to its accessibility,
minimal bio-safety standard, and cost-effectiveness. Kinyoun-
stained sputum smear bright-field microscopic images are avail-
able for autofocusing and bacilli segmentation,41 but bacilli in
these images are less visible leading to poorer sensitivity than
those in ZN-stained images.42

The ZBSM-iDB contains seven different categories of
diverse viewfield images for the development of efficient and
robust algorithms for automated capturing of focused image
(autofocusing), stitching of viewfields to form mosaics (autos-
titching), and automatic bacilli segmentation and grading. The
MS-3 image datasets can assist a smartphone-based inexpensive
disease diagnosis system and have the potential to be used in the
remote areas of TB-endemic countries where smartphones are
widely available. Additionally, the advantage of using a smart-
phone camera is that it can be used simultaneously for automatic
bacilli detection using image processing methods as well as
maintaining an electronic health record.43 Validation of ZNSM-
iDB datasets was also performed using autofocusing, autostitch-
ing, and bacilli segmentation and classification methods.
Performances of these algorithms suggested that the datasets are
diverse and can be used for the development of automated CM.
Diverse data available in this resource can facilitate the develop-
ment of algorithms/model on one microscope, while the valida-
tion of the same method can be done on another microscope(s).
The ZNSM-iDB is expected to serve as a referral resource for
the development and validation of robust segmentation algo-
rithms as the images possess high noise and artifacts. This re-
source also assists research communities in the development of
methods in the domains of automated microscopy.
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Fig. 6 Comparison between images of original viewfield with stitched mosaic. (a) Original image,
(b) mosaic formed using Autostitch, (c) MicroMos, and (d) divide-and-conquer. Reproduced this figure
from Ref. 31 with permission.

Table 3 Performance of watershed segmentation method on differ-
ent infection levels.

Grade

TB positive or negative (%) True bacilli (%)

Sensitivitya Specificitya Sensitivityb Precisionb

Scanty 42.86 74.73 55.56 26.19

1+ 81.25 75.29 55.56 52.4

2+ 92.86 NAc 61.73 72

3+ 100 NA 90.23 79.09

aSensitivity and specificity of watershed segmentation method for
classifying an image as TB positive or negative.

bSensitivity and precision rate of watershed segmentation method for
identifying true bacilli in the viewfield images.

cDatasets does not contain tuberculosis negative viewfield images.
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