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Abstract: The design of multiple human activity recognition applications in areas such as healthcare,
sports and safety relies on wearable sensor technologies. However, when making decisions based
on the data acquired by such sensors in practical situations, several factors related to sensor data
alignment, data losses, and noise, among other experimental constraints, deteriorate data quality
and model accuracy. To tackle these issues, this paper presents a data-driven iterative learning
framework to classify human locomotion activities such as walk, stand, lie, and sit, extracted from
the Opportunity dataset. Data acquired by twelve 3-axial acceleration sensors and seven inertial
measurement units are initially de-noised using a two-stage consecutive filtering approach combining
a band-pass Finite Impulse Response (FIR) and a wavelet filter. A series of statistical parameters
are extracted from the kinematical features, including the principal components and singular value
decomposition of roll, pitch, yaw and the norm of the axial components. The novel interactive
learning procedure is then applied in order to minimize the number of samples required to classify
human locomotion activities. Only those samples that are most distant from the centroids of data
clusters, according to a measure presented in the paper, are selected as candidates for the training
dataset. The newly built dataset is then used to train an SVM multi-class classifier. The latter will
produce the lowest prediction error. The proposed learning framework ensures a high level of
robustness to variations in the quality of input data, while only using a much lower number of
training samples and therefore a much shorter training time, which is an important consideration
given the large size of the dataset.

Keywords: large wearable sensor dataset; human locomotion; inertial measurement units;
3-axial acceleration sensors; finite impulse response; wavelet filters; iterative classifier; SVM;
multi-class classification

1. Introduction

Wearable sensor technologies are gaining interest in different research communities due to the use
of significantly miniaturized electronic components, with low power consumption, which makes them
ideal for applications in human activity recognition for both indoor and outdoor environments [1].
These applications allow users to achieve a natural execution of any physical activity, while providing
good results in multiple practical applications, such as health rehabilitation, respiratory and muscular
activity assessment, sports and safety applications [2]. However, in practical situations, the collected
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data are affected by several factors related to sensor data alignment, data losses, and noise among other
experimental constrains, deteriorating data quality and model accuracy [3]. Also, the non-ergodicity
of the acquisition process, especially when processing signals from acceleration sensors, will result
in poor learning performance [4] in applications involving multi-class classification [5]. The problem
becomes even more complex if the multi-class classification process is applied on high dimensionality
data vectors. Considering these restrictions prevalent in multimodal sensor data fusion [4], which is
the case of the work reported in this paper, feature extraction becomes a critical component for finding
multi-variable correlations that allow the classifier to improve the model precision while producing a
low misclassification rate.

In this paper, we present a novel method for classifying human locomotion activities, such as
walk, stand, lie and sit, by implementing a data-driven architecture based on an iterative learning
framework. The proposed solution optimizes the model performance by choosing the best training
dataset for non-linear multi-class classification by using an SVM multi-class classifier, while also
reducing the computational load. We aim to show that by appropriately choosing the data samples for
the training of this multi-class classifier, we can achieve results close to the current approaches reported
in literature, while using only a fraction of the data and improving significantly the computation
time. The article is organized as follows: Section 2 discusses relevant work on the topic from the
literature. Section 3 formalizes and details our method. Sections 4 and 5 present experimental results,
and Section 6 discusses the conclusions.

2. Literature Review and Related Works

The new wearable technology used to recognize human activity, based on a wide offer of
wireless sensors such as accelerometers, gyroscopes, barometers and other devices with low power
consumption, is extremely attractive to customers in a wide area of applications, ranging from
fitness to clinical monitoring. Nevertheless, the interpretation of the data collected by such sensors
when characterizing the type of activities being executed by a user still brings serious challenges to
developers, related to the activity complexity (i.e., certain activities contain similar gestures), to the
extraction of relevant features that allow to differentiate the activities, to the data loss that characterizes
any wireless transmitter, and to the complex data preprocessing required to deal with the noise inherent
in the collected measurements [6].

The complex problem of recognizing human activity has motivated different groups of researchers
to benchmark different real-world, multi-mode, non-stationary scenarios with wearable sensing
solutions. Machine learning provides an excellent approach to improve model accuracy, based on data
structures that might dynamically change, while dealing with complex and large datasets acquired
from a particular environment [7]. The three most common learning techniques in machine learning
are supervised learning, unsupervised learning and semi-supervised learning. Supervised learning
occurs when the learner receives a series of labeled examples as training set and makes predictions on
previously unseen examples. The problem with this type of learning is the fact that data needs to be
labeled, most of the time manually, in order to guide the learning process. In unsupervised learning,
the learner receives a series of unlabeled examples as training set and makes predictions for previously
unseen examples. This technique is frequently used in problems of clustering and dimensionality
reduction. When the learner receives a limited series of labeled and unlabeled examples as training
set and makes a prediction on unseen examples, the process is known as semi-supervised learning.
The advantage of the latter is the fact that only a limited number of labeled samples are required,
instead of an entire labeled training dataset. Semi-supervised as well as supervised learning are used
in classification, regression and ranking problems [8].

Learning results can be enhanced by using iterative learning procedures. In a wide range
of classification problems, especially in those characterized by multimodality and non-ergodicity.
Iterative learning extracts training samples from previous instances and then uses them to improve
task performance in the next iteration by updating a learning function with the best result. This process
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reduces the classification error and generates a prediction rule that leads to an improvement of a
learned function. In the literature, we can find different examples of iterative learning applications in
problems related to text recognition, control, data de-noising and model accuracy improvement [9–14].

In the context of wearable sensors applications, some results obtained using machine learning
techniques are described by Lara and Labrador [15]. The authors reported on human activity recognition
systems based on supervised learning approaches, with overall accuracy between 84% and 97.5%,
in applications related to exercise analysis and monitoring of patients with heart disease, diabetes and
obesity [15], with data gathered on a daily or weekly basis. The authors also reported applications based
on semi-supervised learning techniques with an overall accuracy up to 96.5%. Some of these results
were obtained by using a training dataset containing 2.5% of the total amount of data, and employing
multi-graph algorithms and support vector machines (SVM) combined with multiple eigenspaces. This
approach is close to our approach, since we also make use of eigenvalues (scores) produced by principal
component analysis (PCA). Other learning techniques, like decision trees, Bayesian and neural networks,
fuzzy logic, Markov models and boosting [16] have also shown significant potential in wearable sensing,
especially when dealing with problems like segmentation (determined by the variability and the periodicity
produced by human activity) and classification [15,17].

This paper is based on our previous work on the topic of human activity classification from wearable
sensor data [1]. The classification task is carried out by an iterative learning procedure, where the selection
of training samples from previous iterations is guided by the distribution of sample clusters. We are
presenting here a novel approach to the problem by using a two-stage consecutive filtering instead of the
single stage used in [1]. The objective of the second stage is to enhance the precision of the acceleration
signals (i.e., related to activity frequency and motion intensity), and therefore facilitating the process of
feature extraction and selection [18,19]. In [1], an iterative learning process is investigated, where data sets
associated with each statistical modality are identified through the process of a consecutive selection of the
best candidate samples. The iterative process was initially proposed in [13] to solve a regression problem
of finding a chlorophyll-a concentration model in inland waters. This paper addresses a classification
problem. The learning method and the above changes lead to improved classification results, as it is
demonstrated in the experimental section of the paper.

3. Sensor Data Processing

3.1. Acquisition of Sensor Data

We address the problem of classifying human locomotion by defining a learning framework
based on an iterative learning multi-class classification supported by a multi-class SVM classifier that
incorporates the maximum-margin principle to select the best sample candidates. Our framework
is experimentally validated on data extracted from the Opportunity dataset [20]. In particular,
we are analyzing data acquired from body–worn sensors, as they were recorded in this dataset.
The Opportunity dataset has been previously used as a benchmarking reference for modeling different
systems, such as labeling large robot-generate activity data sets [21], sensors relocation due to
replacement or slippage [22,23], dynamic sensor selection with power minimization [24], and other
application-related initiatives [25].

According to the Opportunity project’s technical description [26], the body-worn sensors used
are twelve 3-axial acceleration sensors and seven inertial measurement units—IMUs (Xsens model
MT9). The location of these units is summarized in Table 1 [20]. The dataset has a total of 58
dimensions including the time stamp. Each device senses the acceleration in the three perpendicular
axes, recording the acceleration values at the sampling rate of 30 Hz. Records are labeled according to
four primitive classes, namely walk, lie, sit and stand. The signal acquisition protocol is performed
under a pre-established scenario with six experimental sessions (or runs), performed independently by
each of the four users. The extracted dataset contains a total of 869,387 samples, which are distributed
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as follows: 234,661 samples for user 1; 225,183 samples for user 2; 216,869 samples foruser 3, and 192,674
samples for user 4.

Table 1. Placement of sensors (as specified in the Opportunity activity recognition dataset [20]).

Placement
Sensor

IMU 3-Axial

Left Foot 1
Right Foot 1

Up Right Knee 1
Low Right Knee 1

Hip 1
Back 1 1

Right Forearm 1 2
Left Forearm 1 2

Right Arm 1
Left Arm 1

Right Hand 1
Left Hand 1

Right Wrist 1

Our goal is to extract from these data the best training samples that enable the classification of the
locomotion activity of the user-dependent models. For this purpose, we are proposing a framework
that contains six functional blocks, illustrated in Figure 1, and described in the next sections.

1 
 

 
Figure 1. 

Figure 1. Iterative architecture for multiclass classification.

3.2. Data Pre-Processing

The data pre-processing phase consists of two steps. First, we proceed with the exclusion of
values affected by data losses and random noise, issues that are very common in wireless acceleration
sensors. This represents in the case of our dataset roughly 30% of the sensor readings. To deal with
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the problem of missing data, we fused—as detailed later in Section 3.3—all readings produced by
each sensor, for each user and each experiment, to work exclusively from a data-driven perspective.
The aim of the second data-preprocessing step is to filter and de-noise raw data (i.e., sensor readings).
In our previous work [1], we used a single filtering stage, based on wavelets. In this work, we are
adding an additional finite impulse response (FIR) filter prior to the wavelet filtering stage in order to
enhance the precision of the acceleration signals.

3.2.1. Band-Pass FIR Filtering

In our analysis, high frequency bands are not relevant due to the fact that users are not
performing routines with high motion intensity like running, jumping or jogging. Moreover, in general,
the acceleration signals present a high level of correlation within a limited-length time window,
implying that a FIR filter can be efficiently used in this application [27–29]. We use a FIR passband
architecture of the order of 40, which is a compromise between the complexity of the signals under
observation and the delay introduced by higher orders. Due to the fact that the 3-axial acceleration
sensors used sampling frequencies of 32 Hz and 64 Hz, we use cutoff frequencies of 2 Hz and 15 Hz.
The frequency of 15 Hz meets the Nyquist theorem (fs > 2× fn), where fs is the sampling frequency
and fn corresponds to the motion intensity [30]. The frequency of 2 Hz is selected according to criteria
presented in [30]. The selected passband provides us with an optimal range of motion intensity due
to the fact that the motion recorded in this study does not go beyond 15 Hz, making it acceptable
to perform human motion sensing. Once the FIR filtering is processed, we proceed with the second
stage—based on wavelets—that is described in the following section.

3.2.2. Wavelet Filtering

In order to efficiently de-noise raw data, we include a mechanism that guarantees that the
resulting classification model is not biased due to the quality of the input data [31]. In general,
the acceleration sensors are influenced by several noise sources, such as electrical noise induced by the
electronic devices [32], or noise produced by the wireless communication processes, resulting from
the propagation phenomenon and causing distortion in the transmitted signal. The noise present in
the acceleration sensor measurements has commonly a flat spectrum. It is present in all frequency
components, constituting a serious challenge for the use of traditional filtering methods, which by
removing sharp features, can introduce distortions in the resulting signal. Decomposition of the noisy
signal into wavelets [33] eliminates small coefficients, commonly associated with the noise, by zeroing
them, while concentrating the signal in a few large-magnitude wavelet coefficients. Wavelet filtering
consists in the decomposition of the signal into wavelet basis functions ψa,b(t) given by [34]:

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
(1)

where a, b ∈ R are called scale and position parameters respectively. The wavelet basis is defined
by the selection of the previous parameters. Their choice is commonly known as critical sampling,
hence, a = 2−j and b = (k)2−j, where k and j are integers, will give a spare basis [35]. The function in
Equation (1) can be represented in powers of two; this strategy is called dyadic and can be formulated as:

ψm,n(k) = 2
−m

2 ψ
(
2−mk− n

)
(2)

where m, n ∈ Z. By computing an inner product between any given function f(k) and ψm,n(k), we can
obtain the wavelet transform as:

DWT(m, n) = 〈f,ψm,n〉 = 2
−m

2

∞

∑
k=−∞

f(k)ψ
(
2−mk− n

)
(3)
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The advantage of having a function represented in wavelets is the flexibility of the mathematical
model, defined in the domain of both frequency and time, in the frequency domain via dilation and
in the time domain via translation. This feature is helpful also when removing noise, because the
main characteristics of the original signal can be more easily preserved. Wavelet de-noising involves
thresholding of a range of wavelet coefficients. Setting wavelet coefficients below a specific value (λ)
to zero [34] is called hard-thresholding and it can be represented as:

f(k) =

{
k if |k| > λ

0, otherwise
(4)

In addition, if the wavelet coefficients are below the threshold value, they are shrunk, and when
the coefficients are above the threshold value, they are scaled. This process is called soft-thresholding
and can be represented as:

f(k) = max(0, 1− λ

|k| ) (5)

In the literature, we can find four well-known threshold estimation methods [34], namely the
Minmax criterion [35], the Square root log (SQTWOLOG) criterion [35], the Rigrsure criterion [36]
and the heursure criterion. In general, the correct selection of the threshold leads to a better noise
suppression; a large threshold value will bias the estimator, while a low value will increase the
variance. The thresholding approach selected in this work employs the SQTWOLOG criterion, because
it guarantees a high signal-to-noise ratio (SNR) with a low mean square error (MSE). The threshold
values are calculated by the universal threshold

√
2× ln(N) where N is the length of the signal,

or λi = σj

√
2 log

(
Nj
)
, where Nj is the length of the noise at jth scale and σj is the Median Absolute

Deviation (MAD) at the jth scale given by [34]:

σj =
MADj

0.6745
=

median(|ω|)
0.6745

(6)

whereω represents the wavelet coefficients at scale j. The value 0.6745 in Equation (6) is obtained as:
1

erf(0.5)∗
√

2
, where the Gauss error function (erf) is computed by integrating the normal distribution.

This value will scale the MAD to obtain an approximation for sigma (only for a Gaussian distribution).

3.3. Feature Extraction and Selection

After filtering the raw data, we proceed with the feature extraction and selection process. The aim
is to retrieve a set of data with high correlation, allowing us to extract the best candidates for the
training dataset [37]. This process focuses on the extraction of kinematics features, such as roll, pitch,
yaw (RPY), and the norm of the axial components produced by each of the body–worn sensors. Our
first feature set is based on the signal magnitude vector (SMV). At each time instance j, the acceleration
sensor k produces a 3-axial vector, consisting of acceleration values along a system of orthogonal axes
aj,k =

(
accx, accy, accz

)
∈ R3. For each sensor, we can retrieve the single magnitude vector

∣∣∣aj,k

∣∣∣.
The second feature set is related to roll, pitch and yaw (RPY) angles, calculated as follows:

rollj,k = atan
(

accx√
accy+accz

)
; pitchj,k = atan

(
accy√

accx+accz

)
; yawj,k = atan

(
accz√

accx+accy

)
(7)

Finally, we build a matrix with all axial components produced by all sensors under observation:

accx,y,z,k =
{
[accx,k],

[
accy,k

]
, [accz,k]

}
(8)

This matrix has n× aj,k × k components, where n is the number of samples in each experiment
for k sensors in aj,k dimensions. To deal with the absence of some values, we use principal component
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analysis (PCA) and singular value decomposition (SVD). PCA provides a mechanism to reduce
dimensionality, while SVD provides a convenient way to extract the most meaningful data. Combining
these techniques, we find data dependency while removing redundancy. PCA [38] and SVD [39] ensure
the preservation of the nature of the resulting data structures in each feature category. When applying
PCA, each feature is compressed in two principal components as presented in Section 4.1. Similarly,
when SVD is applied, each feature is reduced to two SVD dimensions, as shown in Equation (9).
The new target function fj,k() is represented as follows:

fj,k = f
(

pca (RPY), pca(SMV), pca(accx,y,z,k), svd(RPY), svd(SMV), svd
(

accx,y,z,k

) )
(9)

where j corresponds to each observation produced by sensor k. We are therefore reducing our analysis
to a function with three attributes (RPY, SMV, accx,y,z,k) and two mathematical methods, PCA and SVD.

4. Iterative Learning Architecture

Our learning framework aims to classify human activities using a single multi-class SVM
classifier [40] (LibSVM version 3.20 for Matlab). To achieve this, we must deal with two data
constrains: (1) the large size of the experimental dataset, containing in many cases overlapping
class members and high data density; and (2) the non-ergodicity of the recorded signals. In order
to improve the classification accuracy, while keeping the required processing time at the minimum,
features ((f1, f2), . . . ,

(
fj, fk

)
) produced by Equation (9) are grouped pairwise to cover all the possible

combinations. The candidates for the training dataset are then determined by measuring the Euclidean
distance between each class member and the centroids of each distribution of (fj, fk). If the resulting
distance is larger than the mean plus the standard deviation of all resulting Euclidean distances, then
the class member is considered a candidate for the training set. This process leads to the creation of
support vectors, which generate the optimal separation plans to classify the remaining data with only a
fraction of the total data presented for each user experiment. The goal is to build a robust classification
model, which will not be affected by the quality of the input data [41].

4.1. Training Data Selection

The following procedure, illustrated in detail in Figure 2, summarizes the process for the extraction
of the training dataset (for any user and any experiment):

1 Select sensor readings recorded (in this case, from the Opportunity dataset [20]), perform time
stamping and missing-data imputation (Figure 2).

2 Select band-pass FIR filter (2–15 Hz) and perform wavelet de-noising using SQTWOLOG criterion
(Figure 3).

3 Extract kinematics features: signal magnitude vector, roll, pitch, yaw (RPY), and the norm of
the axial components produced by each of the body–worn sensors, in order to create the target
function fj,k() as indicated in Equation (9). This step will produce twelve features.

4 Build a subset of features (fj, fk), where j = (1, . . . , 11) and k = (2, . . . , 12) from target function
fj,k() and extract classes presented in subset (fj, fk) (Figure 4a).

5 Select a pair of classes (xn, x,m), from subset (fj, fk) where n = (1, . . . , l− 1) and m = (2, . . . , l) and
l is the number of labels in the dataset (in our case four classes corresponding to each locomotion
activity), and extract centroids produced by members of each class.

6 Extract the Euclidean distance between each class member in (xn) and the centroid of the class
(xm). Store the results in a vector of distances Rn,m(j):

Rn,m(j) = |(xn,m(j))−Centroidn,m| (10)
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where n and m are the classes of (fj, fk), j is a class member and Centroidn,m is the opposite
centroid, with respect to the discriminating hyperplane, of the class member under evaluation
(Figure 4b).

7 If the resulting Euclidean distance vector Rn,m(j) satisfies condition (11), then the class member is
a candidate for the training dataset.

Rn,m(j) ≥ Rn,m + σ(Rn,m
)

(11)

where Rn,m and σ(Rn,m) are the mean and standard deviation of the Euclidean distance vector
Rn,m(j). The candidate is stored in a vector of candidates (VoC), VoC(xn,m(j)) (Figure 4c).

8 Repeat steps 9 to 12 until n = l− 1 and m = l.
9 Repeat steps 7 to 13 until j = 11 and k = 12. 

2 

 

Figure 2. 

Figure 2. Iterative architecture for multiclass classification.
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Figure 3. Measurements recorded for user 1 and experiment 1 for a 3-axial acceleration sensor located
on the up right knee: (a) raw data; and (b) after applying 2-stage filtering.
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Figure 4a shows the data distribution when PCA is applied to features generated by axial
components from the sensor measurements, for example, for the first two PCA components
f1,2 = f

(
pca
(

accx,y,z,k

))
. Both components are called scores. The advantage of PCA is that the

resulting score does not change the order of the original rows (observations), helping us to preserve the
previously assigned labels. In this figure, we also observe a clear separation between the sit (shown in
yellow) and the lie (shown in cyan) instances, while the stand (shown in red) and the walk (shown in
blue) classes overlap. Permutation of the members from fj,k helps us to find different data distributions
from the original data structure. This provides some distributions with linearly separable data, which
decreases the misclassification error rate produced by the multi-class classifier.

Figure 4b represents the extraction of two classes (xn, x,m) from fj,k and their respective clusters.
Our goal is to extract the samples producing the largest Euclidean distances as measured between
each sample and its opposite centroid. This operation is processed by pairing the classes (stand = 1,
walk = 2, sit = 3 and lie = 4).

Figure 4c shows the resulting VoC(xn,m(j)) composed by samples that satisfy Equation (11), that is:
VoC(xn,m(j)) = [(Class1, Class1), (Class1, Class2), . . . , (Classn−1, Classm)], where n, m = 4. This mechanism
provides an effective way to deal with non-separable data (data overlapping). Because the SVM
classification depends only on the training samples near the decision boundary, the optimal separation
margin will be determined by the separation of the training samples controlled by the cost parameter
C [13]. The improvement can be observed by comparing the separation on Figure 4c with Figure 4a,
where we notice a strong overlapping of data samples, in particular for the stand, walk and sit classes.
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4.2. Model Selection

Once the best training dataset VoC(xn,m(j)) is identified, we proceed with the selection of the
best classification model using a multi-class SVM classifier with an RBF kernel [1]. The training and
testing samples are normalized in the range of 0 to 1 [40]. The kernel selection is done based on an
experimental performance evaluation with different kernels, e.g., linear, cubic polynomial and sigmoid.
The evaluation presented in [13] and confirmed by initial tests on the Opportunity dataset indicate
that RBF kernels consistently produce models with the lowest or close to the lowest misclassification
error rates. In this paper, we deal with a multi-class classification problem. The selection of the
one-versus-all (OVA) classification method reduced our problem to a multiple binary classification
problem. Designing the SVM classifier requires to find the best combination of the cost and gamma
(C, γ) parameters. These parameters are extracted from a k-fold cross validation process with k = 5
(using four subsets for training and one subset for testing). This process allows us to find a tradeoff
between bias and variance by adjusting C and γ. In order to find the best C and γwe use a grid search,
where C = (2−5, . . . , 27) and γ = (2−5, . . . , 27). In practical terms, the best combination, in the sense of
a high variance and a low bias, is that of large C with small γ.

The resulting model is then used to predict the labels on the testing dataset. Once the classification
rate is determined, the algorithm stores the accuracy values, features (fj, fk), C, γ and the size of the
VoC(xn,m(j)), and repeats the process until all combinations of (fj, fk) are exhausted.

5. Experimental Results

The proposed solution, based on iterative learning, is tested in two scenarios, one focusing on a
single-stage filtering, such as previously presented in Section 2.1.1 of our conference paper [1], and the
other one on a two-stage consecutive filtering, as detailed in Sections 3.2.1 and 3.2.2 at the present
article. The difference between the two filtering cases is shown in Figure 5.
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5.1. Results Obtained Using Single-Stage Wavelet Filtering

The proposed process was evaluated initially using a single wavelet filtering stage in three
experiments: two considering the measurements of a sole sensor and one combining the use of various
sensors. Two measures were used to validate the results, namely the prediction accuracy (Acc) and the
size (as percentage of the total dataset) of the training dataset that was used for classification (TS):

Acc =
Labels correctly predicted
(size of user’s dataset)

× 100%; TS =
size(Rn,m)

(size of user’s dataset)
× 100% (12)

It is important to note that the values of Acc and TS depend on the size of the user dataset
and the resulting value of Rn,m(j) in Equation (11). These values are changing with the number of
measurements in each user experiment. Table 2 presents the results when using only data obtained
from the IMU sensors, Table 3 shows the values for Acc and TS when using data obtained from
3-axial acceleration sensors, and Table 4 when using data obtained when fusing measurements from
the 3-axial acceleration sensors and IMU devices in three experiments. The results obtained by our
iterative learning framework are compared with the case in which 80% of total of data are used of each
user experiment, which is a common practice when a k-fold cross-validation process is performed,
with k = 5. In this case, the samples are randomly selected from the input domain.

Table 2. Classification performance obtained for IMU sensors.

Experiments

Experiment 1
(Acc%/TS%)

Experiment 2
(Acc%/TS%)

Experiment 3
(Acc%/TS%)

Experiment 1
(Acc%/80%)

Experiment 2
(Acc%/80%)

Experiment 3
(Acc%/80%)

User 1 80/4.47 75.36/1.19 81/3.31 83.92 74.76 80.55
User 2 71.56/4.97 47.43/11.96 65.23/10.18 77.53 77.17 78.31
User 3 70,64/5.70 57/7.70 73.28/0.16 71.46 69.43 75.19
User 4 66.19/2.8 61.27/2.70 78 /1.86 77.2 74.46 79.88

Table 3. Classification performance obtained from 3-axial acceleration sensors.

Experiments

Experiment 1
(Acc%/TS%)

Experiment 2
(Acc%/TS%)

Experiment 3
(Acc%/TS%)

Experiment 1
(Acc%/80%)

Experiment 2
(Acc%/80%)

Experiment 3
(Acc%/80%)

User 1 82.82/3.03 79.23/11.38 83.71/9.11 83.12 79.12 80.56
User 2 52.42/2.96 50.86/12 57.84/1.89 69.9 75 73.56
User 3 69/13.16 67.86/0.60 76.62/3.37 72.09 65.21 77.51
User 4 66/1.63 64/10.4 77.53/3.45 71.59 76.15 87.55

Table 4. Classification performance obtained from IMU and 3-axial acceleration sensors.

Experiments

Experiment 1
(Acc%/TS%)

Experiment 2
(Acc%/TS%)

Experiment 3
(Acc%/TS%)

Experiment 1
(Acc%/80%)

Experiment 2
(Acc%/80%)

Experiment 3
(Acc%/80%)

User 1 80.62/7.15 77.21/8.3 84.77/8.17 81.11 75.92 80.85
User 2 65.85/8.78 45.16/12.49 66.25/0.90 71.54 76.68 74.56
User 3 58.49/13.93 67.62/1.42 70.35/2.97 72.30 65.18 77.08
User 4 66.48/0.70 66.64/11.41 71.54/4.14 73.43 75.80 87.38

These results are compared graphically in Figure 6 that shows the average accuracy when using
two training dataset selection strategies: iterative with a limited number of training samples (in blue),
and supervised one with a large number of training samples (in red). One can observe that using on
average 7.33% of the dataset for training (Figure 7), the performance achieved is only 7.28% under the
performance obtained when the classifier processes a high number of training samples.
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Figure 7. Training size comparison.

The use of a smaller training set leads as well to an important decrease in the computation time.
The average processing time per user is roughly 35 min when using the training with 80% of the
dataset (Matlab running on a single processor Intel 7 CPU with 6 Gb RAM memory). The use of the
iterative process leads to a reduction in the average time for processing an experiment to about 5 min,
which is less than 15% of the time required by the fully supervised process.

5.2. Results Obtained Using Two-Stage Consecutive Filtering

In this section, we present the experimental results when the bandpass FIR filter and subsequently
wavelet de-noising are applied on the data collected from IMU sensors, 3-axial acceleration sensors
and when fusing measurements from the IMU and 3-axial acceleration sensors (Tables 5–7). These
values are co with results obtained in Section 5.1. As detailed in Sections 3.1 and 3.2, it is expected that
performance will increase as a result of this two-stage consecutive filtering.

Table 5. Classification performance obtained from IMU sensors: filtering comparison.

Two-Stage Consecutive Filtering Wavelet Filtering

Experiment 1
(Acc%/TS%)

Experiment 2
(Acc%/TS%)

Experiment 3
(Acc%/TS%)

Experiment 1
(Acc%/TS%)

Experiment 2
(Acc%/TS%)

Experiment 3
(Acc%/TS%)

User 1 80.23/5.5 79.5/6.05 80/5.9 80/4.47 75.36/1.19 81/3.31
User 2 76/8.19 50.23/13.8 76.91/6.18 71.56/4.97 47.43/11.96 65.23/10.18
User 3 73.55/5.8 68.22/5.68 76/6.01 70,64/5.70 57/7.70 73.28/0.16
User 4 75.62/4.23 67.71/5.11 72.85/13.79 66.19/2.8 61.27/2.70 78 /1.86
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Table 6. Classification performance obtained from obtained from 3-axial acceleration sensors:
filtering comparison.

Two-Stage Consecutive Filtering Wavelet Filtering

Experiment 1
(Acc%/TS%)

Experiment 2
(Acc%/TS%)

Experiment 3
(Acc%/TS%)

Experiment 1
(Acc%/TS%)

Experiment 2
(Acc%/TS%)

Experiment 3
(Acc%/TS%)

User 1 81.93/6.05 73.5/6.05 81.48/5.9 82.82/3.03 79.23/11.38 83.71/9.11
User 2 63.25/5 66.53/14 72.50/12.72 52.42/2.96 50.86/12 57.84/1.89
User 3 68.38/7.4 71.60/5.29 78.44/5.46 69/13.16 67.86/0.60 76.62/3.37
User 4 73.63/6.67 72.07/6.33 79.80/6.03 66/1.63 64/10.4 77.53/3.45

Table 7. Classification performance obtained from IMU and 3-axial acceleration sensors:
filtering comparison.

Two-Stage Consecutive Filtering Wavelet Filtering

Experiment 1
(Acc%/TS%)

Experiment 2
(Acc%/TS%)

Experiment 3
(Acc%/TS%)

Experiment 1
(Acc%/TS%)

Experiment 2
(Acc%/TS%)

Experiment 3
(Acc%/TS%)

User 1 87.26/6.28 78/5.47 82.30/6.39 80.62/7.15 77.21/8.3 84.77/8.17
User 2 67.5/7.2 71.50/6.40 75/7.46 65.85/8.78 45.16/12.49 66.25/0.90
User 3 74.45/5.12 70.82/5.40 71.67/5.69 58.49 /13.93 67.62/1.42 70.35/2.97
User 4 74.20/7.18 73/7.74 81.41/7 66.48/0.70 66.64/11.41 71.54/4.14

In general, we noticed a performance improvement when the framework uses a two-stage
consecutive filtering. Deployment of the extra filtering stage generated an increase in the average
accuracy. For example, for User 2, an average accuracy of 61.40% is obtained with wavelet filtering
(Table 5). An average accuracy of 67.71% is obtained with two-stage consecutive filtering, which
corresponds to an improvement of 6.30%. Similarly, in Table 6, an average improvement of 12.72% can
be noticed. Finally, in Table 7, for the same user we obtained an improvement of 12.24%.

Results obtained by using a training data set of 80% of total data are summarized in Tables 8–10.
Better results are obtained when classification is performed on fused data coming from IMU and
3-axial acceleration sensors.

Table 8. Classification performance obtained from IMU sensors: filtering comparison.

Two-Stage Consecutive Filtering Wavelet Filtering

Experiment 1
(Acc%/80%)

Experiment 2
(Acc%/80%)

Experiment 3
(Acc%/80%)

Experiment 1
(Acc%/80%)

Experiment 2
(Acc%/80%)

Experiment 3
(Acc%/80%)

User 1 89.88 77.33 89.33 83.92 74.76 80.55
User 2 84.83 82.36 84.17 77.53 77.17 78.31
User 3 81.79 83.55 85.76 71.46 69.43 75.19
User 4 86.19 84 89.41 77.2 74.46 79.88

Table 9. Classification performance obtained from 3-axial acceleration sensors: filtering comparison.

Two-Stage Consecutive Filtering Wavelet Filtering

Experiment 1
(Acc%/80%)

Experiment 2
(Acc%/80%)

Experiment 3
(Acc%/80%)

Experiment 1
(Acc%/80%)

Experiment 2
(Acc%/80%)

Experiment 3
(Acc%/80%)

User 1 83.42 79.85 82.36 83.12 79.12 80.56
User 2 69.68 76.05 77.90 69.9 75 73.56
User 3 72.30 69.41 82.33 72.09 65.21 77.51
User 4 76.90 74.36 82.21 71.59 76.15 87.55
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Table 10. Classification performance obtained from IMU and 3-axial acceleration sensors:
filtering comparison.

Two-Stage Consecutive Filtering Wavelet Filtering

Experiment 1
(Acc%/80%)

Experiment 2
(Acc%/80%)

Experiment 3
(Acc%/80%)

Experiment 1
(Acc%/80%)

Experiment 2
(Acc%/80%)

Experiment 3
(Acc%/80%)

User 1 91.43 79.64 88.32 81.11 75.92 80.85
User 2 74.51 79.93 79.98 71.54 76.68 74.56
User 3 78.97 68.91 82.92 72.30 65.18 77.08
User 4 82.97 78.66 86.85 73.43 75.80 87.38

Figure 8 presents an accuracy comparison between the single-stage approach [1] and the two-stage
filtering process.

1 
 

 Figure 8. Average accuracy comparison between single-stage and two-stage filtering. (a) average
accuracy when using two-stage filtering and the iterative methodology (in blue) and when using the
supervised method (in orange); and (b) average accuracy when using the single-stage (wavelet filtering)
solution and iterative methodology (in blue) and when using the supervised method (in grey).

The approach with two-stage filtering, as compared with the wavelet filtering only, generated an
accuracy improvement in those experiments where only a fraction of samples was used for training.
Overall, the second filtering produced an average accuracy of 74.08% versus 68.76% produced by the
single filtering approach [1], an equivalent of 5.32% of improvement. The model accuracy for user 2
was improved by 6.11% for readings obtained from 3-axial acceleration sensors and by 3.88% when
IMU and 3-axial acceleration sensors were fused. The performance was improved by 5.03% for the
case of the training size of 80% of the total amount of the input data (Figure 9).
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5.3. F-Measure Results when Using Two-Stage Consecutive Filtering

In previous experiments, we presented the results based on how effective the algorithm was in
predicting the true values of a label. In this section, we quantify the classification results using the
F1 score [42], which takes into account recall and precision metrics. Precision is defined as the ratio
of true positive (TP) divided by the sum of the TP and false positives (FP), while recall will be the
radio between TP divided by the sum of TP and false negatives (FN). In a general case, the F1 score is
defined as [42]:

Fβ =
Precision× recall×

(
1 + β2

)
Precision + recall× β2 (13)

where β is the parameter that controls the importance given to the precision and recall. In our case, we
give equal importance to both metrics (β = 1), therefore, F-measure is defined as:

F1 =
2× precision× recall

precision + recall
(14)

By applying the result to each class, we have [2]:

F1 = ∑
i

2×
precisioni × recalli
precisioni + recalli

×wi (15)

where i is the class index, wi =
ni
N , N is the total number of samples, and ni—the number of samples of

the ith class. The results are presented in Table 11.

Table 11. F1 score for data fused from IMU and 3-axial acceleration sensors.

Experiments

Experiment 1
(F1/TS%)

Experiment 2
(F1/TS%)

Experiment 3
(F1/TS%)

Experiment 1
(F1/80%)

Experiment 2
(F1/80%)

Experiment 3
(F1/80%)

User 1 0.8506/6.28 0.7669/5.47 0.79/6.39 0.9103 0.7701 0.8786
User 2 0.62/7.22 0.6809/6.40 0.695/7.46 0.7324 0.7821 0.7545
User 3 0.7283/5.12 0.6756/5.40 0.6346/5.69 0.7835 0.5805 0.8104
User 4 0.6847/7.18 0.6665/7.74 0.7627/7 0.8297 0.7691 0.8234

Figure 10 presents the F1 score for both learning schemes. One can notice a total average difference
of 0.075 between the two methods, as compared to 0.0532 in Table 11.
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Finally, the performance of our algorithm was evaluated for each class. Figure 11 shows the
average accuracy obtained for each user. One can notice a marked separation between the sit and
lie activities versus walk and stand. The difficulty in distinguishing walk from stand stems from
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the overlapping of data. The iterative method produced an average accuracy of 75.4% for the walk
movement, compared with 82.1% obtained by the supervised method. Similarly, for the stand activity,
the iterative method produced an average accuracy of 77.06%, which makes a difference of 6.57%
with respect of the value obtained by the supervised method (83.63%). However, the classification
difference is reduced for the lie activity—an average accuracy of 97.57% for the iterative method and
99.18% for the supervised one. When classifying the sit activity, the iterative process produced an
average accuracy of 91.46% while the supervised method produced 97.27%.
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6. Conclusions 

In this paper, we proposed a novel iterative learning process to reduce the number of samples 
and subsequently the processing time for the classification of human activities from wearable sensor 
measurements. The challenges related to the large percentage of missing data and the noise affecting 
the measurements were successfully dealt when applying data fusion with a robust two stage 
filtering mechanism combined with an iterative learning process. Our iterative learning framework 
produced an average accuracy of 74.08% while using only 6.94% of the samples in the input domain 
for training. This result compares to the average accuracy of 81.07% obtained by the supervised 
method when using 80% of samples for training and the 20% remaining samples for testing. The 
need for significantly less data entails much shorter computation times. The additional FIR filtering 
stage and the wavelet filtering resulted in a substantial average improvement for some user data 
models (e.g., user 2) with up to 13.74%, due to the elimination of spurious values produced by noise 
and other environmental phenomena. The inclusion of a mechanism for the selection of the training 
dataset allows us to work with only a fraction of the total dataset (average of 6.44%) used in the SVM 
multi-class training process. The minimization of the number of samples is an important 
contribution that allows the user to deal efficiently with an ever-growing number of large data sets. 
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Figure 11. Classification model accuracy comparison between iterative and supervised methods.

6. Conclusions

In this paper, we proposed a novel iterative learning process to reduce the number of samples
and subsequently the processing time for the classification of human activities from wearable sensor
measurements. The challenges related to the large percentage of missing data and the noise affecting
the measurements were successfully dealt when applying data fusion with a robust two stage filtering
mechanism combined with an iterative learning process. Our iterative learning framework produced
an average accuracy of 74.08% while using only 6.94% of the samples in the input domain for training.
This result compares to the average accuracy of 81.07% obtained by the supervised method when using
80% of samples for training and the 20% remaining samples for testing. The need for significantly
less data entails much shorter computation times. The additional FIR filtering stage and the wavelet
filtering resulted in a substantial average improvement for some user data models (e.g., user 2) with
up to 13.74%, due to the elimination of spurious values produced by noise and other environmental
phenomena. The inclusion of a mechanism for the selection of the training dataset allows us to work
with only a fraction of the total dataset (average of 6.44%) used in the SVM multi-class training process.
The minimization of the number of samples is an important contribution that allows the user to deal
efficiently with an ever-growing number of large data sets.

Acknowledgments: The authors acknowledge support from the Natural Sciences and Engineering Research
Council of Canada, grant 9227, and grant 4953.

Author Contributions: Juan Carlos Dávila conceived and designed the proposed framework and wrote the
paper; Ana-Maria Cretu assessed and corrected the content of the paper, analyzed data results and suggested
methodologies to improve classification results. Marek Zaremba reviewed the paper, validating the methodology
and the final content of paper. He also suggested technical approaches to deal with the problem of noise.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2017, 17, 1287 17 of 18

References

1. Davila, J.; Cretu, A.-M.; Zaremba, M. Iterative Learning for Human Activity Recognition from Wearable
Sensor Data. In Proceedings of the 3rd International Electronic Conference on Sensors and Applications,
Barcelona, Spain, 15–30 November 2016.

2. Patel, S.; Park, H.; Bonato, P.; Rodgers, L.C.M. A review of wearable sensors and systems with application in
rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [CrossRef] [PubMed]

3. Chavarriaga, R.; Sagha, H.; Calatroni, A.; Tejaswi, S.; Troster, G.; Millán, J.R.; Roggen, D. The Opportunity
challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 2013,
34, 2033–2042. [CrossRef]

4. Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor Data Fusion: A Review of the
State-Of-The-Art. Inf. Fusion 2013, 14, 28–44. [CrossRef]

5. Qian, H.; Mao, Y.; Xiang, W.; Wang, Z. Recognition of human activities using SVM multi-class classifier.
Pattern Recognit. Lett. 2010, 31, 100–111. [CrossRef]

6. Atallah, L.; Lo, B.; King, R.; Yang, G.-Z. Sensor Positioning for Activity Recognition Using Wearable
Accelerometers. IEEE Trans. Biomed. Circ. Syst. 2011, 5, 320–329. [CrossRef] [PubMed]

7. Sugiyama, M.; Kawanabe, M. Introduction and Problem Formulation. In Machine Learning in Non-Stationary
Environments; The MIT Press: Cambridge, MA, USA, 2012; pp. 3–13.

8. Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Introduction and the PAC Learning Framework. In Foundation of
Machine Learning; The MIT Press: Cambridge, MA, USA, 2012; pp. 1–32.

9. Jain, S.; Kiner, E. Iterative learning from texts and counterexamples using additional information. J. Mach.
Learn. 2011, 84, 291–333. [CrossRef]

10. Warrier, R.; Devasia, S. Iterative Learning From Novice Human Demonstration for Output Tracking.
IEEE Trans. Hum. Mach. Syst. 2016, 46, 510–521. [CrossRef]

11. Lange, S.; Grieser, G. On the Strength of Incremental Learning. In Algorithmic Learning Theory; Lecture
Notes in Computer Science (Lecture Notes in Artificial Intelligence); Watanabe, O., Yokomori, T., Eds.; Springer:
Heidelberg/Berlin, Germany, 1999; pp. 118–131.

12. Xu, Y.; Fern, A.; Yoon, S. Iterative Learning of Weighted Rule Sets for Greedy Search. Proceeding of the 20th
International Conference on Automated Planning and Scheduling, Toronto, ON, Canada, 12–16 May 2010;
pp. 201–208.

13. Davila, J.C.; Zaremba, M. An Iterative Learning Framework for Multimodal Chlorophyll-a Estimation.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 7299–7308. [CrossRef]

14. Freund, Y.; Schapire, R.E. A shore Introduction to Boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 771–780.
15. Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. IEEE Commun.

Surv. Tutor. 2013, 15, 1192–1209. [CrossRef]
16. Munguia Tapia, E. Using Machine Learning for Real-Time Activity Recognition and Estimation of Energy

Expenditure. Ph.D. Thesis, School of Architecture and Planning, Massachusetts Institute of Technology,
Cambridge, MA, USA, June 2008.

17. Sunny, J. Applications and Challenges of Human Activity Recognition using Sensors in a Smart Environment.
IJIRST Int. J. Innov. Res. Sci. Technol. 2015, 2, 50–57.

18. Wang, W.-Z.; Guo, Y.-W.; Huang, B.-Y. Analysis of filtering methods for 3-axial acceleration signals in body
sensor network. In Proceedings of the International Symposium on Bioelectronics and Bio-Information,
Suzhou, China, 3–5 November 2011; pp. 263–266.

19. Lai, X.; Liu, Q.; Wei, X.; Wang, W.; Zhou, G.; Han, G. A Survey of Body Sensor Networks. Sensors 2013, 13,
5406–5447. [CrossRef] [PubMed]

20. Activity Recognition Challenge. Available online: http://opportunity-project.eu/challenge (accessed on
10 October 2016).

21. Roggen, D.; Magnenat, S.; Waibel, M.; Troster, G. Wearable Computing: Designing and Sharing
Activity-Recognition Systems across Platforms. IEEE Robot. Autom. Mag. 2011, 18, 83–95. [CrossRef]

22. Chavarriaga, R.; Bayati, H.; Millán, S.R. Unsupervised adaptation for acceleration-based activity recognition:
Robustness to sensor displacement and rotation. Pers. Ubiquitous Comput. 2013, 17, 479–490. [CrossRef]

23. Gjoreski, M.; Gjoreski, H.; Luštrek, M.; Gams, M. How Accurately Can Your Wrist Device Recognize Daily
Activities and Detect Falls? Sensors 2016, 16, 800. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/1743-0003-9-21
http://www.ncbi.nlm.nih.gov/pubmed/22520559
http://dx.doi.org/10.1016/j.patrec.2012.12.014
http://dx.doi.org/10.1016/j.inffus.2011.08.001
http://dx.doi.org/10.1016/j.patrec.2009.09.019
http://dx.doi.org/10.1109/TBCAS.2011.2160540
http://www.ncbi.nlm.nih.gov/pubmed/23851946
http://dx.doi.org/10.1007/s10994-011-5238-7
http://dx.doi.org/10.1109/THMS.2016.2545243
http://dx.doi.org/10.1109/TGRS.2016.2599101
http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.3390/s130505406
http://www.ncbi.nlm.nih.gov/pubmed/23615581
http://opportunity-project.eu/challenge
http://dx.doi.org/10.1109/MRA.2011.940992
http://dx.doi.org/10.1007/s00779-011-0493-y
http://dx.doi.org/10.3390/s16060800
http://www.ncbi.nlm.nih.gov/pubmed/27258282


Sensors 2017, 17, 1287 18 of 18

24. Zappi, P.; Roggen, D.; Farella, E.; Troster, G.; Benini, L. Network-level power-performance trade-off in
wearable activity recognition: A dynamic sensor selection approach. ACM Trans. Embed. Comput. Syst. 2012,
11, 68. [CrossRef]

25. Consortium Publications. Available online: http://www.opportunity-project.eu/publications (accessed on
1 June 2017).

26. Roggen, D.; Bächlin, M.; Schumm, J. An educational and research kit for activity and context recognition
from on-body sensors. In Proceedings of the International Conference on Body Sensor Networks, Singapore,
7–9 June 2010; pp. 277–282.

27. Taylor, F. Finite Impulse Response Filter in Digital Filters: Principles and Applications with MATLAB.
In E-Book; Wiley-IEEE Press: Hoboken, NJ, USA, 2012; pp. 53–70.

28. Basics of Instrumentation, Measurement and Analysis, Design of FIR Filters. Available online: http://www.
vyssotski.ch/basicsofinstrumentation.html (accessed on 30 March 2017).

29. Signals and Systems I, EECS 206 Laboratory, University of Michigan. Available online: http://www.eecs.
umich.edu/courses/eecs206 (accessed on 30 March 2017).

30. Godfrey, A.; Conway, R.; Meagher, D.; Laighin, G. Direct measurement of human movement by accelerometry.
Med. Eng. Phys. 2008, 30, 1364–1386. [CrossRef] [PubMed]

31. Figo, D.; Diniz, P.C.; Ferreira, D.R.; Cardoso, J.M.P. Preprocessing techniques for context recognition from
accelerometer data. Pers. Ubiquitous Comput. 2010, 14, 645–662. [CrossRef]

32. Levinzon, F. Fundamental Noise Limit of an IEPE Accelerometer from Piezoelectric Accelerometers with Integral
Electronics; Springer: Gewerbestrasse, Switzerland, 2015; pp. 107–116.

33. Misiti, M.; Misiti, Y.; Oppenheim, G.; Poggi, J.-M. Guided Tour from Wavelet and Their Applications; Wiley:
Newport Beach, CA, USA, 2007; pp. 1–27.

34. Verma, N.; Verma, A.K. Performance Analysis of Wavelet Thresholding Methods in Denoising of Audio
Signals of Some Indian Musical Instruments. Int. J. Eng. Sci. Technol. 2012, 4, 2047–2052.

35. Vidakovic, B.; Mueller, P. Wavelet for Kids, a Tutorial Introduction; Duke University: Durham, NC, USA, 1991.
36. Al-Qazzaz, N.K.; Ali, S.; Ahmad, S.A.; Islam, M.S.; Ariff, M.I. Selection of Mother Wavelets Thresholding

Methods in De-noising Multi-channel EEG Signals during Working Memory Task. In Proceedings of the
IEEE Conference on Biomedical Engineering and Science, Miri, Sarawak, Malaysia, 8–10 December 2014;
pp. 214–219.

37. Zhao, M.; Fu, C.; Ji, L.; Tang, K.; Zhou, M. Feature selection and parameter optimization for support vector
machines: A new approach based on genetic algorithm with feature chromosomes. Expert Syst. Appl. 2011,
38, 5197–5204. [CrossRef]

38. Josse, J.; Husson, F. Handling Missing Values in Exploratory Multivariate Data Analysis Methods. J. Soc.
Fr. Stat. 2012, 153, 79–99.

39. Kurucz, M.; Benczúr, A.; Csalogány, K. Methods for Large scale SVD with Missing Values. Comput. Autom.
Res. Inst. Hung. Acad. Sci. 2007, 12, 31–38.

40. Chang, C.-C.; Lin, C.-J. LIBSVM—A Library for Support Vector Machines. Available online: http://www.
csie.ntu.edu.tw/~cjlin/libsvm/ (accessed on 10 October 2016).

41. Verbiest, N.; Derrac, J.; Cornelis, C.; Garcia, S.; Herrera, F. Evolutionary wrapper approaches for training set
selection as preprocessing mechanism for support vector machines: Experimental evaluation and support
vector analysis. Appl. Soft Comput. 2016, 38, 10–22. [CrossRef]

42. Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-score and ROC: A Family of Discriminant
Measures for Performance Evaluation. In Proceedings of the AI 2006: Advances in Artificial Intelligence,
Hobart, Australia, 4–8 December 2006; pp. 1015–1021.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2345770.2345781
http://www.opportunity-project.eu/publications
http://www.vyssotski.ch/basicsofinstrumentation.html
http://www.vyssotski.ch/basicsofinstrumentation.html
http://www.eecs.umich.edu/courses/eecs206
http://www.eecs.umich.edu/courses/eecs206
http://dx.doi.org/10.1016/j.medengphy.2008.09.005
http://www.ncbi.nlm.nih.gov/pubmed/18996729
http://dx.doi.org/10.1007/s00779-010-0293-9
http://dx.doi.org/10.1016/j.eswa.2010.10.041
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://dx.doi.org/10.1016/j.asoc.2015.09.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review and Related Works 
	Sensor Data Processing 
	Acquisition of Sensor Data 
	Data Pre-Processing 
	Band-Pass FIR Filtering 
	Wavelet Filtering 

	Feature Extraction and Selection 

	Iterative Learning Architecture 
	Training Data Selection 
	Model Selection 

	Experimental Results 
	Results Obtained Using Single-Stage Wavelet Filtering 
	Results Obtained Using Two-Stage Consecutive Filtering 
	F-Measure Results when Using Two-Stage Consecutive Filtering 

	Conclusions 

