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Abstract. An x-ray energy spectrum plays an essential role in computed tomography (CT) imaging and related
tasks. Because of the high photon flux of clinical CT scanners, most of the spectrum estimation methods are
indirect and usually suffer from various limitations. In this study, we aim to provide a segmentation-free, indirect
transmission measurement–based energy spectrum estimation method using dual-energy material decompo-
sition. The general principle of this method is to minimize the quadratic error between the polychromatic forward
projection and the raw projection to calibrate a set of unknown weights, which are used to express the unknown
spectrum together with a set of model spectra. The polychromatic forward projection is performed using material-
specific images, which are obtained using dual-energy material decomposition. The algorithm was evaluated
using numerical simulations, experimental phantom data, and realistic patient data. The results show that the
estimated spectrum matches the reference spectrum quite well and the method is robust. Extensive studies
suggest that the method provides an accurate estimate of the CT spectrum without dedicated physical phantom
and prolonged workflow. This paper may be attractive for CT dose calculation, artifacts reduction, polychromatic
image reconstruction, and other spectrum-involved CT applications. © 2017 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JMI.4.2.023506]
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1 Introduction
X-ray computed tomography (CT) uses polychromatic x-ray
photons to scan objects from different view angles. The energy
spectrum of the x-ray photons is highly correlated to the recon-
structed image value, which is directly related to the application
of CT scanners. Essentially, the spectrum plays a very important
role in dose calculation,1 polychromatic image reconstruction,2

artifacts reduction,3,4 spectral CT,5–7 and high-contrast CT
imaging.8 To obtain the spectrum, a natural solution is to directly
measure the energy of x-ray photons using energy-resolved
detectors. However, to acquire high-quality diagnostic CT
images, the x-ray photons flux of a CT scanner in clinical
application is usually quite high (can exceed 1000 Mcps∕mm29).
For comparison, the count rate of a typical energy-resolved
detector is only 10 Mcps∕mm2;10 thus, it is not easy to directly
measure the energy spectrum of the CT scanner using the
energy-resolved detectors as the detector pile-up effect limits
the maximum count rate. Instead, spectrum calibration often
employs indirect methods, including Compton-scattering
measurement,11–13 Monte Carlo (MC) simulation,14–18 empirical
or semiempirical physical models,19–22 and transmission
measurements.23–28

The Compton-scattering method aims to significantly reduce
the incident photon flux with a factor of 105 to 106. With
this method, the scattered spectrum can be measured using

a high-purity germanium detector29,30 or a cadmium telluride
detector.31,32 The incident spectrum is then reconstructed
using the scattered spectrum and the corresponding scattering
angle. However, the accuracy of the spectrum estimated using
this method may suffer from the absorption in the scatterer and
the limited absorption efficiency of the detector; thus, careful
system calibration is needed before yielding the final spectrum.

MC simulation can be easily used to generate the spectrum of
an x-ray tube when its specifications (such as target angle and
target material) are well known. In this case, the x-ray tube is
modeled using an MC toolkit (such as Geant433) with its spec-
ifications exactly matched with that in the realistic application.
Monochromatic electrons are emitted from an electron gun and
accelerated to hit the target. Both bremsstrahlung and character-
istic x-ray photons are generated and filtered by the inherent
filtration material. As most of the MC toolkits provide compre-
hensive physics modeling and are well validated,34–36 spectrum
generated in this way can precisely match the real spectrum.
However, the x-ray tubes are usually proprietary, and it is diffi-
cult to obtain the exact tube specifications, especially for the
tube filtration, which is very important for spectrum simulation.

Spectral modeling calculates the x-ray spectrum using math-
ematical models. These models are based on physical processes,
including bremsstrahlung and characteristic x-ray production.
To yield a more accurate spectrum, a refined model that
accounts for self-absorption of the x-rays within the target
was also introduced. Nowadays, the popular spectral modeling
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methods usually adopt an empirical or a semiempirical approach
that fits a parameterized model based on previously measured or
simulated spectra.19,20,22

Transmission measurement is another methodology for
spectrum estimation using projection data of a calibration
phantom.37–39 The rationale of this method is based on the fact
that a harder spectrum yields a less attenuated projection, whereas
a softer spectrum yields a more attenuated projection. The method
formulates the polychromatic forward projection equation as
a discrete linear system in which the energy bins of the spectrum
are described as unknown variables40 and then solves the linear
system to obtain each bin content of the spectrum.

The accuracy of the aforementioned methods usually suffers
from various limitations. For example, low-energy tailing
yielded by the hole-trapping effect and environmental condi-
tions (such as low temperature requirement) may affect the spec-
trum measured using energy-resolved detectors.41 Attenuation
and scattering (e.g., Rayleigh and multiple Compton) in the
material of the scatterer of the Compton-scattering measurement
need to be carefully considered.32 Transmission measurements
based on step or wedge phantom require dedicated hardware or
workflow. The recently proposed indirect transmission measure-
ment (ITM) method42 needs at least the segmentation of one
material class. When noise or artifacts are present in the recon-
structed image, it causes incorrect material segmentation and
yields an inferior estimate of the spectrum.

Dual-energy CT (DECT) scanners have been widely used in
realistic applications. Although the x-ray spectrum is helpful for
DECT material decomposition, especially for that in the projec-
tion domain, accurate estimation of the high- and low-energy
x-ray spectra is not a trivial task. Compared with projection-
domain material decomposition, image-domain material decom-
position does not suffer from inconsistent rays issue and is more
convenient in clinical applications as it is performed on CT
images.43–45 In this case, the x-ray spectrum does not need to
be involved in material decomposition. In addition, realistic
projection-domain material decomposition used a phantom
calibration fashion instead of a spectrum-involved method.46,47

With dual-energy material decomposition, this work aims to
develop a segmentation-free, ITM-type energy spectrum estima-
tion method using model spectra and a material images-based
polychromatic forward projection.48

The paper is organized as follows: in Sec. 2, we describe our
method for spectrum estimation and four major components of
the method. In Sec. 3, we describe evaluation studies, which
include numerical simulations, experimental phantom, and real-
istic images. Section 4 presents the results, and we conclude
with a discussion and summary in Sec. 5.

2 Methods
To avoid determining each energy bin of the x-ray spectrum, we
use model spectra to express the spectrum that is to be estimated.
The model spectra expression can significantly reduce the
degrees of freedom (DOFs) of the spectrum estimation problem.
In this case, the unknown spectrum ΩðEÞ is the weighted sum-
mation of a set of model spectra ΩiðEÞ, i.e.,

EQ-TARGET;temp:intralink-;e001;326;366ΩðEÞ ¼
XM
i¼1

ciΩiðEÞ; (1)

whereM is the number of the model spectra and ci is the weight
on the respective model spectrum. The model spectra can be
predetermined using spectrum generators (such as Spektr49

and SpekCalc50) or MC simulation toolkits based on Geant4.
The flowchart of the proposed algorithm is presented in Fig. 1.

The method starts from raw projection data. Material-specific
images are then calculated using dual-energy material decompo-
sition algorithms. From the material images, along with the model
spectra expression, a set of estimated projection p̂ is calculated.
By iteratively updating the unknown weights ci, we can converge
to a set of optimal ci to minimize the quadratic error between the
measured raw projection pm and the estimated projection p̂. The
unknown spectrum is finally obtained using Eq. (1). The four
major components of the approach will be detailed in the follow-
ing subsections: dual-energy material decomposition, polychro-
matic projection on decomposed material images, weights
estimation, and model spectra generation.

2.1 Dual-Energy Material Decomposition

To obtain quantitative material-specific basis images, we use a
nonlinear empirical dual-energy calibration (EDEC) algorithm
to perform material decomposition.46 For the EDEC technique,
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Fig. 1 Flowchart of the proposed dual-energy material decomposition-based spectrum estimation
method.
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a two-cylinder calibration phantom with the same materials as
the subsequent CT scan is used. The imaging protocol used in
the calibration is the same as that used in the phantom studies.
By minimizing the least-square deviation between a set of basis
images and a corresponding template, one can calibrate the
decomposition coefficients for each basis material. As magni-
fied noise is a general concern for both projection-domain
and image-domain dual-energy material decomposition and to
keep the accuracy of the estimated projection p̂, in this
study, we also used an iterative image-domain method to obtain
the significantly noise-reduced material-specific images.44 The
method optimizes an objective function that consists of a data
fidelity term and a quadratic penalty term using the nonlinear
conjugate gradient algorithm. Using the regularization frame-
work, the iterative image-domain material decomposition
method provides material-specific images with noise that is
well reduced and accuracy that is well preserved.

2.2 Polychromatic Projection on Decomposed
Material Images

In dual-energy material decomposition, the linear attenuation
coefficient μð~r; EÞ is modeled with two basis materials via
a weighted summation fashion as

EQ-TARGET;temp:intralink-;e002;63;491μð~r; EÞ ¼ f1ð~rÞψ1ðEÞ þ f2ð~rÞψ2ðEÞ: (2)

Here, ψ1 and ψ2 are the known independent energy dependen-
cies, which can be mass attenuation coefficients of basis
materials, and f1ð~rÞ and f2ð~rÞ are the material-selective images.
Based on the above formulation, polychromatic projection of
an object is represented as

EQ-TARGET;temp:intralink-;e003;63;400Î ¼ N
ZEmax

0

dEΩðEÞηðEÞ exp½−A1ψ1ðEÞ − A2ψ2ðEÞ�; (3)

where A1 ¼ ∫ Ld~rf1ð~rÞ and A2 ¼ ∫ Ld~rf2ð~rÞ are the line inte-
grals of the material-selective images. Here, L, ΩðEÞ, and
Emax are the propagation path length of each ray, the correspond-
ing polychromatic x-ray spectrum of the ray, and the maximum
photon energy of the spectrum, respectively. ηðEÞ is the energy-
dependent response of the detector. Note that Î is the detector
pixel dependent and the detector channel index is omitted for
convenience. After applying the logarithmic operation, the
estimated projection data can be expressed as

EQ-TARGET;temp:intralink-;e004;63;239p̂ð~cÞ ¼ log

�
Î0
Î

�
; (4)

EQ-TARGET;temp:intralink-;e005;63;190p̂ð~cÞ ¼ log

� R Emax

0 dEΩðEÞηðEÞR Emax

0 dEΩðEÞηðEÞfðA1; A2Þ

�
; (5)

EQ-TARGET;temp:intralink-;e006;63;143p̂ð~cÞ ¼ log

� P
M
i¼1 ci

R Emax

0 dEΩiðEÞηðEÞP
M
i¼1 ci

R Emax

0 dEΩiðEÞηðEÞfðA1; A2Þ

�
; (6)

where

EQ-TARGET;temp:intralink-;e007;326;752fðA1; A2Þ ¼ exp½−A1ψ1ðEÞ − A2ψ2ðEÞ�: (7)

Note that the air scan data Î0 ¼ N∫ Emax

0 dEΩðEÞηðEÞ were
used in Eq. (4) and p̂ð~cÞ is a function of unknown weights ~c.

2.3 Weights Estimation

To estimate the unknown weights for each model spectrum, we
minimize the quadratic error between the detector measurement
pm and the corresponding estimated projection p̂ by iteratively
updating the weights. This procedure is formulated as the
following optimization problem:

EQ-TARGET;temp:intralink-;e008;326;621c� ¼ argmin
c

kpm− p̂ð~cÞk22; s:t:
XM
i¼1

ci¼1; and ci≥0: (8)

Here, the normalization constraint
P

M
i¼1 ci ¼ 1 and the non-

negative constraint, which keeps the solution of the problem
physically meaningful, are introduced. The objective function
is a minimum when the spectrum expressed using the model
spectra matches the unknown raw spectrum. To solve Eq. (8),
we use a sequential optimization approach, i.e., minimizing the
objective function, followed by normalizing the solution and
enforcing a non-negative constraint sequentially. To minimize
the objective function, we used a simple multivariable downhill
simplex method. The calibration procedure can be summarized
in Algorithm 1.

2.4 Model Spectra Generation

There are several different ways to obtain the model spectra,
and they would affect the final results during the calibration
procedure; thus, well-validated spectrum generators, which
generate spectra with accurate physical properties (such as
characteristic peak),22,49–52 need to be employed to calibrate the
real spectrum. In this study, we used MC simulation toolkit
Geant433 and the widely used software SpekCalc50 to produce
the model spectra. For both methods, different thicknesses of
filters are added to yield model spectra with different half-
value layers. For the Geant4 model spectra simulation, we used
monoenergetic electrons (pencil beam) to hit the tungsten target.
The thickness of the target is 0.25 cm, and the target angle is
30 deg. For the SpekCalc model spectra, we set the target
angle to 30 deg and added a 0.8-mm beryllium window. The
energy bin width is 1 keV, and air thickness is 1000 mm.

Algorithm 1 Sequential optimization.

1. Set k ¼ 0, choose c0.

2. Repeat

3. ckþ1 ¼ argmin
c

kpm − p̂ðck Þk22
4. ckþ1 ¼ ckþ1∕sumðckþ1Þ

5. ckþ1 ¼ ðckþ1Þþ
6. k←k þ 1

7. Until stopping criterion is satisfied.
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3 Evaluations

3.1 Numerical Study

We first use numerical simulation to evaluate the proposed
spectrum estimation method. A water cylinder with six iodine
concentrate inserts (ranging 0 to 20 mg∕mL with 4 mg∕mL
interval) was simulated in a 2-D fan-beam CT geometry. The
diameter of the water cylinder is 198 mm, and the diameter
of the six inserts is 22.5 mm. The low- and high-energy spectra
are 100 and 140 kVp, respectively, and they were generated
using the SpekCalc software50 with 12-mm Al and 0.4-mm
Snþ 12-mm Al filtration, respectively. For the x-ray detection,
an energy-integrating detector was simulated with 0.388-mm
pixel size and 1024 pixels. The x-ray source to isocenter dis-
tance (SOD) and source to detector distance (SDD) are 785
and 1200 mm, respectively. A set of 720 view angles was
scanned in an angular range of 360 deg. As one difficulty of
DECT decomposition is the ill conditioning, Poisson noise was
introduced to the raw projection to show the robustness of the
algorithm. In addition, first-order beam hardening correction
was performed to improve the accuracy of the material-specific
images. During dual-energy material decomposition, regions
of interest (ROIs) in the central water cylinder and in the
20-mg∕mL iodine concentrate insert are used to calculate the
decomposition matrix.

To quantify the accuracy of the estimated spectrum, we
calculate the normalized root mean square error (NRMSE)
and the mean energy difference ΔE between the raw spectrum
(ground truth) and the estimated spectrum, i.e.,

EQ-TARGET;temp:intralink-;e009;63;427NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
e¼1 ½Ω̂ðeÞ − ΩðeÞ�2PN

e¼1 ΩðeÞ2

s
; (9)

EQ-TARGET;temp:intralink-;e010;63;380ΔE ¼
XN
e¼1

Ee½ΩðeÞ − Ω̂ðeÞ�; (10)

where Ω̂ðeÞ is the e’th energy bin of the normalized estimated
spectrum and ΩðeÞ is the e’th energy bin of the normalized true
spectrum. N and EðeÞ are the number of the energy bins and
the energy of the e’th energy bin of the spectrum, respectively.

For the numerical simulation study, the raw spectrum used to
generate the projection data and the model spectra used to
calibrate the raw spectra are both obtained from SpekCalc soft-
ware. To further cross check the robustness of the proposed
method with respect to the model spectra, MC simulation toolkit
Geant4 is also employed to generate the model spectra. Geant4
provides comprehensive physics process modeling that
embedded in a flexible structure, and it offers a full list of elec-
tron interaction modeling, which makes an important role in x-
ray generation, including the bremsstrahlung effect and charac-
teristic radiation. In addition, Geant4 collaboration has consis-
tently released the G4EMLOW low-energy package that enables
access to precise cross sections for x-ray photons production at a
very low-energy scale.

In this study, eight model spectra are generated with different
thicknesses of aluminum filtration with SpekCalc and Geant4.
For the SpekCalc model spectra, the filtration is from 2 to
30 mm in steps of 4 mm, whereas for the Geant4 model spectra,
the filtration is from 8 to 22 mm in steps of 2 mm. During each
MC simulation, a total number of 5 × 108 electrons are emitted
to hit the target.

3.2 Comparison Study

To further evaluate the performance of the proposed method, the
method is compared with the previous segmentation-based ITM
spectrum estimation method.42 Different from the ITM method,
the proposed DECT-based method does not require a dedicated
phantom calibration and image segmentation. To demonstrate
this feature, we performed spectrum estimation using a numeri-
cal anthropomorphic thorax phantom. In this study, to show the
advantage of the DECT-based method, we estimated the spec-
trum with both standard attenuation coefficients and intended
mismatched attenuation coefficients. That is, raw projection
data are first generated using standard National Institute of
Standards and Technology (NIST) attenuation coefficients and
then reconstructed to obtain CT images. For the segmentation-
based method, the spectrum is estimated based on the segmented
CT image, which is assigned to standard coefficients. For the
DECT-based method, the EDEC algorithm46 is employed to
generate material images.

As the attenuation coefficients of a realistic patient or object
may deviate from the standard value, for example, a fatty body
may have lower attenuation coefficient than the standard value,
we then further estimate the spectrum using intended mis-
matched attenuation coefficients. In this case, raw projection
data were generated using 98% standard attenuation coefficients
for both bone and tissue. Then both methods were employed to
estimate the spectrum based on the raw projection data.

3.3 Experimental Phantom Study

The algorithm was also evaluated using experimental phantom
data acquired with a cone-beam CT (CBCT) benchtop system
and an in-house rotating gantry small animal micro-CT scanner,
which was developed by the authors.

3.3.1 Benchtop cone-beam computed tomography

An anthrophomorphic head phantom was scanned using the
CBCT benchtop system. The SOD and SDD were 1000 and
1500 mm, respectively. A total of 655 projections were evenly
acquired in 360 deg rotation with 2 × 2 rebinning mode and nar-
row collimation to avoid scatter radiation. Tube potentials of
high- and low-energy spectra were 125 and 75 kVp, respec-
tively. During CT data acquistion, the x-ray source (Rad 94,
Varian, Palo Alto, California) and the flat detector (PaxScan
4030D, Varian, Palo Alto, California) were stationary, and
the phantom was rotated to acquire projection from different
view angles. The pixel matrix and size of the detector are 2048 ×
1536 and 194 μm, respectively. A prefiltering of 6.0-mm
aluminum was always applied, and the reference spectrum was
simulated using SpekCalc with the filtration matched with the
prefilter. Because of the large phantom size, scatter radiation
would play an important role in projection. To reduce the impact
of scatter radiation on the accuracy of the estimated spectrum,
we acquired the data using narrow collimation.

3.3.2 Small animal microcomputed tomography

A simplified mice phantom was scanned using a small animal
micro-CT scanner, which was developed by the authors in
a gantry rotating geometry, as shown in Fig. 2. The x-ray
source (L9421-02, Hammamatsu Photonics, Hammamatsu City,
Japan) and detector (Dexela 1207, PerkinElmer, Waltham,
Massachusetts) were assembled on the rotating gantry while
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the phantom was kept stationary during the CT scan. The pixel
matrix and size of the detector are 1536 × 864 and 74.8 μm,
respectively. The SOD and SDD were 229 and 416 mm, respec-
tively. A total of 450 projections were acquired for image
reconstruction. To perform dual-energy CT imaging, the phan-
tom was scanned with a low-energy spectrum (40 kV with 2-mm
aluminum filtration) and a high-energy spectrum (90 kV with
0.3-mm copper filtration) in a sequential mode. For both phan-
tom studies, low- and high-energy CT images were recon-
structed using a filtered backprojection algorithm. Low-energy
data sets were used to estimate low-energy spectra, and high-
energy spectra estimation followed the same procedure.

3.4 Realistic Images Evaluation

To further evaluate the proposed method, we generated high-
and low-energy projection data by forward projecting two sets
of abdomen images, which were acquired from a dual-source
dual-energy CT scanner (Siemens SOMATOM Definition
Flash, Siemens AG, Forchheim, Germany). The system enables
high- and low-energy CT scans with two x-ray tubes and
corresponding detectors mounted onto a single rotating gantry
with a 90 deg angular offset. The x-ray tubes can operated
independently with regard to tube filtration, tube voltage,
and tube current. Low- and high-energy projection data were
obtained with 100 and 140 kVp spectra, respectively. Images
were reconstructed using the built-in commercial software.

Based on these CT images, a graphics processing unit-based
forward-projecting program was used to generate the high- and
low-energy “realistic” abdomen projection images, and these
projection data sets were applied to spectra estimation. An iter-
ative image-domain material decomposition method was used to
yield noise-reduced material-selective images. The iteration
number was set to 200, and the control parameter β, which bal-
ances the data fidelity term and the regularization term, was set
to 0.015. During the calibration procedure, eight model spectra
were used. These spectra were generated using SpekCalc with
an aluminum filter ranging from 6 to 20 mmwith 2-mm interval.
Note that, in this evaluation, we did not have true spectrum, i.e.,
there was no ground truth for comparison. Thus, we compared
the forward projection data with the estimated projection p̂
when the optimization problem was converged.

4 Results

4.1 Numerical Simulation

Figure 3 shows the results of low- and high-energy CT images of
the numerical iodine concentrate phantom. As can be seen,
100-kV image shows much higher contrast level for the iodine
inserts, as expected. During material decomposition, ROIs in the
central area of the numerical phantom and in the 20 mg∕mL are
used to calculate the decomposition matrix.

Model spectra used in the spectrum calibration procedure are
shown in Fig. 4. To evaluate the robustness of the proposed
spectrum estimation method with respect to the model spectra
generator, different methods are employed to obtain the model
spectra. Figure 4(a) shows the 100-kV model spectra generated
using SpekCalc software with fixed kVp setting and different
thicknesses of filtration ranging from 2 to 30 mm in steps of
4 mm. Figure 4(b) shows model spectra simulated using MC
toolkit Geant4 with filtration ranging from 8 to 22 mm in
steps of 2 mm. Because of the limited electron events emitted
in the MC simulation, the Geant4 model spectra contain some
noise, which may impact the final result. For both model spectra,
the spectrum becomes harder and narrower as the thickness of
the filtration increases.

(b)(a)

Fig. 2 Experimental phantom study using the small animal CT scanner. (a) The system geometry for the
CT scanner is rotating gantry, and the x-ray tube and detector are assembled on the gantry while the
specimen lies stationary on the table between the x-ray source and the detector. (b) Phantom scanned
using the micro-CT scanner.

100 kV 

(a) (b)

140 kV 

Fig. 3 (a) Low- and (b) high-energy CT images (C∕W ¼ 0HU∕300HU)
of the numerical water phantom containing inserts with different iodine
concentrates.
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Figure 5 shows the results of the 100-kV spectrum estimation
for the numerical phantom data using both SpekCalc and Geant4
model spectra. The initial spectrum to calibrate the unknown
weights is the hardest and softest model spectra for the
SpekCalc and Geant4 model spectra estimation, respectively.
The reference spectrum is the spectrum that was used to generate
the 100-kV projection data, and it can be regarded as the ground
truth. The estimated spectrum matches the reference spectrum
quite well when SpekCalc model spectra are used [as shown
in Fig. 5(a)], and ΔE and NRMSE are −0.16 keV and 2.6%,
respectively, suggesting the dual-energy material decomposi-
tion-based method provides an accurate spectrum estimate.

For the numerical simulation studies, as the raw projection is
produced by the polychromatic forward projection using the
SpekCalc spectrum, spectrum estimation using different model
spectra is also conducted, which could be a cross check for the
proposed method. Figure 5(b) shows the spectrum estimated
using Geant4 model spectra, and there is some noise in the
estimated spectrum. This noise comes from the Geant4 model
spectra as shown in Fig. 4(b). Although the presence of noise
causes a significantly increased NRMSE between the estimated
spectrum and the true spectrum, their mean energy difference
ΔE is −0.23 keV, which is still comparable with that of spec-
trum estimation using SpekCalc model spectra.

Although the model spectra affect the final result, the pro-
posed method tends to yield an optimal spectrum that minimizes
the quadratic error of the raw projection data and the estimated
reprojection data using the different model spectra. Figure 6
shows the residual between the raw projection data and the esti-
mated projection data as the iteration number of the optimization
problem increases for the numerical simulation. For both model
spectra, the objective function [Eq. (8)] converges to the same
level, indicating that the optimization procedure is robust against
the model spectra. This is why the mean energy difference can
remain at the same level for different model spectra.

As dual-energy material decomposition would amplify the
image noise, which may affect the final result, spectrum estima-
tion using different numbers of primary photon events (i.e.,
dose levels) is performed to demonstrate the robustness of the
proposed method. The first, second, and third rows of Fig. 7
show x-ray spectra estimated from the numerical phantom data
using 3 × 103, 3 × 104, and 3 × 105 photon histories, respec-
tively. The first column of Fig. 7 shows the spectrum estimated
using material-specific images obtained from direct matrix
inversion (i.e., without noise reduction), whereas the second
column of Fig. 7 shows the spectrum estimated using material-
specific images obtained from the iterative image-domain
material decomposition method (i.e., with noise reduction).
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Fig. 4 100 kVp model spectra generated using SpekCalc (a) and MC toolkit Geant4 (b) with different
thicknesses of aluminum filtration. Note that the noise level of the Geant4 model spectra is relatively
high due to the limited 100-keV electron events.
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As can be seen, for different noise levels, the proposed method
can accurately recover the true spectrum. For different dose
levels, the maximum ΔE is 0.56 keV, and the maximum
NRMSE is 3.8%.

4.2 Comparison Studies

Figure 8 shows the results of spectra estimation using the
anthropomorphic thorax phantom. Figures 8(a) and 8(b) are
the polychromatic 100 and 140-kV CT images, respectively.
Compared with the 140-kV image, there are more beam hard-
ening artifacts in the 100-kV image. Figures 8(c) and 8(d) show
the segmentation-based and the proposed DECT-based spectra
estimations using raw projection data obtained with standard
attenuation coefficients. As can be seen, both methods can
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Fig. 6 Residual between the raw projection and the estimated projec-
tion as the iteration number increases for the numerical iodine con-
centrate phantom data.
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Fig. 7 X-ray spectra estimated from the numerical phantom at different numbers of primary photon
events. (a, c, e) use direct matrix inversion to obtain the material images for the spectrum estimation,
whereas (b, d, f) use a noise-reduced dual-energy material decomposition method (i.e., iterative image-
domain method) for the spectrum estimation. The numbers of the primary photon events used in the
numerical simulations of the low-energy CT scans for (a, b), (c, d), and (e, f) are 3 × 103, 3 × 104,
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of the high-energy CT scans are half of the respective low-energy CT scans.
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accurately estimate the spectrum. The NRMSE between the
estimated spectra and their reference for the segmentation-based
method and the DECT-based method are 4.4% and 4.5%,
respectively. Figures 8(e) and 8(f) show the segmentation-
based and the DECT-based spectra estimations using the raw
projection data obtained with 98% standard attenuation coeffi-
cients. As can be seen, for the nonstandard material, the
NRMSE of the estimated spectrum using the segmentation-
based method is increased from 4.4% to 8.2%. However, for
the DECT-based method, the accuracy of the estimated spec-
trum is well preserved.

4.3 Experimental Phantom Studies

Figure 9 shows low- and high-energy CT images of the exper-
imental head phantom. Figure 10 shows the spectrum estimated
with the anthrophomorphic head phantom with and without
detector efficiency incorporation. For this experimental evalu-
ation, the benchtop CBCT system used a flat detector with
0.6-mm thickness of CsI. To better estimate the spectrum,
energy-dependent efficiency should be taken into account.
ΔE is reduced from 1.82 to 0.58 keV after detector efficiency
incorporation, whereas NRMSE is reduced from 14.3% to
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Fig. 8 Results of energy spectrum estimation using the anthropomorphic thorax phantom. (a) and (b) are
the 100 and 140-kV CT images, respectively. Display window for the images: (−150 and 150 HU). (c) and
(d) are the segmentation-based and the proposed DECT-based spectra estimations using the raw
projection data acquired with standard attenuation coefficients, respectively. (e) and (f) are the segmen-
tation-based and the DECT-based spectra estimations, respectively, using the raw projection data
acquired with 98% attenuation coefficients.
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5.5% after detector efficiency incorporation. For both cases, the
initial spectra for the constrained optimization problem are the
hardest model spectra. The reference true spectrum is generated
using SpekCalc with filtration that matches the filtration used in
the experimental data acquisition.

Figure 11 shows low- and high-energy CT images of the
mice phantom scanned using the in-house micro-CT scanner.
Figure 12 shows the estimated low-energy spectrum. The initial
spectrum for the constrained optimization problem is the hardest
model spectra. The reference true spectrum is generated using
SpekCalc with filtration that matches the filtration used in the
experimental data acquisition.

4.4 Realistic Images Evaluations

To confirm the results of the numerical and experimental phan-
tom studies, we used realistic patient data obtained by forward
projecting two abdomen CT images. These two CT images
(as shown in Fig. 13) were acquired and reconstructed with
a Siemens SOMATOM Definiton Flash scanner under 100 and
140 kV. The forward projection data sets are used to mimic
dual-energy low- and high-energy raw projection data.

During dual-energy material decomposition, adipose and
iodine are chosen as the basis materials. For this evaluation,
the true spectrum, which is employed in the raw projection data
acquisition, is not available; therefore, we compare the raw pro-
jection data with the estimated projection, which is calculated
using the estimated spectrum when the objective function is
converged. Figure 14 shows raw projection, estimated projec-
tion, their line profiles, and the estimated spectrum. The final

estimated projection matches the raw projection quite well, indi-
cating that the proposed method can be applied to realistic cases.

5 Discussion
In this study, we present a polychromatic x-ray spectrum esti-
mation method based on dual-energy material decomposition.
Different from the method proposed in Ref. 42, where a segmen-
tation procedure is needed for polychromatic reprojection,
here, polychromatic reprojection is performed on material-
specific images that were obtained by dual-energy material
decomposition. This enables the proposed method to be
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Fig. 9 (a) Low- and (b) high-energy CT images of the experimental
head phantom. Display window: (−300 and 300 HU).
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Fig. 11 (a) Low- and (b) high-energy CT images of the mice phantom
scanned using the micro-CT scanner. Display window: (−600 and 600
HU).

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

Energy (keV)

N
or

m
al

iz
ed

 f
lu

x

Reference
Estimated
Initial

E=0.26keV 
NRMSE=4.3% 

Fig. 12 Spectra estimated using the mice phantom. The initial spec-
trum for the optimization problem is the hardest model spectra.
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segmentation-free. More importantly, based on the DECT
material decomposition, the proposed method can be further
applied to phantom or patient data whose attenuation coeffi-
cients are unknown. This enables the proposed DECT-based
technique to be applied to more realistic and general applica-
tions. Namely, the proposed method does not require a dedicated
phantom calibration. Hence, the method can be regarded as a
major step toward spectrum estimation of realistic applications
without breaking the current workflow.

In realistic applications, the x-ray spectrum is affected by
many parameters, such as focal spot size and thickness of
the target. In addition, the incident electrons used for hitting

the target are also polychromatic. Thus, it is almost impossible
to model all of the parameters and physical effects to obtain the
true spectrum. Instead, the proposed method uses model spectra
to span a space, and the spectrum calibration procedure is used
to find an optimal spectrum in the space to generate a reprojec-
tion data set whose difference is as small as possible from
the raw projection data, i.e., the optimal spectrum has the
most similar attenuation property as the true spectrum. Model
spectra should affect the final results as indicated in Fig. 5.
However, no matter what model spectra are used, the proposed
method tends to yield a spectrum that minimizes the quadratic
error between the raw projection and estimated projection as
characterized by the objective function of Eq. (8). To our belief,
the NRMSE could be significantly reduced if the Geant4 model
spectra contain less noise in the numerical simulation study.
Nevertheless, some widely used and well-validated spectrum
generators, including SpekCalc and Spektr, are suggested to
generate model spectra for this method. For the weights calibra-
tion, as no automatic exposure control is used in the numerical
studies or the experimental phantom study, we only use projec-
tion in one view angle to estimate the spectrum, and the calibra-
tion time is <5 s on a personal PC (Intel Core i7-6700K CPU).

To reduce the DOFs of the spectrum estimation problem, we
employed a linear model (i.e., the unknown spectrum is
expressed as a linear combination of a set of model spectra).
However, using the linear model is unnecessary, and other mod-
els, such as a nonlinear model, can be used to express the
unknown spectrum. In this case, a simple curve and its widening
or deforming versions can be used as model spectra. To better

100 kV  140 kV  

(a) (b)

Fig. 13 Axial contrast-enhanced, dual-energy abdominal CT scan
using Siemens SOMATOM definition flash CT scanner. (a) and
(b) show low- and high-energy CT images, respectively. Display win-
dow: (−300 and 300 HU).
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Fig. 14 Results for realistic abdomen images evaluation. (a) Raw projection obtained by forward pro-
jecting the 100-kV CT image. (b) Estimated projection obtained using the estimated 100-kV spectrum.
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trum and the initial spectrum used in the optimization problem. Note that true spectrum is not available
in this case and the estimated spectrum should be an effective spectrum, which takes the system con-
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recover the unknown, we should also take advantage of the prior
knowledge of an x-ray spectrum, namely an x-ray spectrum
contains characteristic x-rays and bremsstrahlung. Hence, some
constraints should be added to the simple curve and its trans-
formations. This is why we used filtered model spectra to fit
the true spectrum in this study, and these spectra can also be
regarded as transformations (deformed by a polychromatic
Beer’s law) of a simple polychromatic x-ray spectrum. In future
study, we would like to estimate the unknown spectrum using
model spectra derived from a simple spectrum with the same
kVp as the unknown spectrum and its high-order transforma-
tions (such as filtered using different materials).

For the experimental phantom study, the discrepancy between
the estimated spectrum and the raw spectrum is much larger than
that in the simulation study. The discrepancy can be attributed to
the following three aspects. First, scatter is not considered in the
reprojection procedure; thus, the inevitable concomitant scatter
radiation in the raw projection data would affect the accuracy
of the spectrum result. To further refine the result, one may
want to perform scatter correction53 before spectrum estimation.
Second, for the material images-based polychromatic forward
projection, the attenuation coefficients of the materials (bone
and tissue) were obtained from the NIST database. These values
may deviate from the real values of the head phantom. Third, the
detector housing and sensor protection material would also affect
the accuracy of the estimated spectrum.

For the realistic patient study, we do not have access to
the raw projection data on real scanners. In this case, we
only have CT images, and the images usually have performed
water correction. If one simply forward projects the corrected
CT images and then uses the projection to estimate the spectrum,
the resulting spectrum should be an effective spectrum, which
takes the contribution of the beam hardening procedure into
account.

6 Conclusions
This work presents an x-ray energy spectrum calibration method
for CT scanners using dual-energy material decomposition and
the ITM framework. The method performs polychromatic repro-
jection using material-specific images instead of segmented CT
images, with which the segmentation procedure is avoided. The
reprojection data are then compared with the raw projection
data, and their difference is minimized by iteratively updating
a set of weights, which are used to express the unknown spec-
trum together with a set of model spectra. The method was
evaluated using numerical simulation data, experimental phan-
tom data, and realistic patient data. The results demonstrate that
raw spectra can be accurately recovered by incorporating the
energy-dependent detector absorption efficiency. The method
does not require dedicated phantom calibration or knowledge
of the material attenuation coefficient. It is promising for spec-
trum estimation of realistic applications.

Disclosures
The authors have no conflicts of interest to declare.

Acknowledgments
This work was supported by the Zhejiang Provincial Natural
Science Foundation of China (Grant No. LR16F010001),
National High-Tech R&D Program for Young Scientists by
the Ministry of Science and Technology of China (Grant
No. 2015AA020917), National Key Research Plan by the

Ministry of Science and Technology of China (Grant
No. 2016YFC0104507), Natural Science Foundation of China
(NSFC Grant Nos. 81201091, 61601190, and 51305257), and
National Institutes of Health (NIH 1R01 EB016777).

References
1. J. DeMarco et al., “A Monte Carlo based method to estimate radiation

dose from multidetector CT (MDCT): cylindrical and anthropomorphic
phantoms,” Phys. Med. Biol. 50(17), 3989–4004 (2005).

2. I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for
polyenergetic x-ray computed tomography,” IEEE Trans. Med. Imaging
21(2), 89–99 (2002).

3. J. Nuyts et al., “Modelling the physics in the iterative reconstruction for
transmission computed tomography,” Phys. Med. Biol. 58(12), R63
(2013).

4. W. Zhao et al., “Using edge-preserving algorithm with non-local mean
for significantly improved image-domain material decomposition in
dual-energy CT,” Phys. Med. Biol. 61(3), 1332–1351 (2016).

5. Y. Long and J. A. Fessler, “Multi-material decomposition using statis-
tical image reconstruction for spectral CT,” IEEE Trans. Med. Imaging
33(8), 1614–1626 (2014).

6. Y. Xi et al., “United iterative reconstruction for spectral computed
tomography,” IEEE Trans. Med. Imaging 34(3), 769–778 (2015).

7. Y. Zhao, X. Zhao, and P. Zhang, “An extended algebraic reconstruction
technique (E-ART) for dual spectral CT,” IEEE Trans. Med. Imaging
34(3), 761–768 (2015).

8. W. Zhao et al., “Energy spectrum extraction and optimal imaging via
dual-energy material decomposition,” in IEEE Nuclear Science Symp.
and Medical Imaging Conf. (NSS/MIC 2015), pp. 1–4, IEEE (2015).

9. K. Taguchi et al., “Enabling photon counting clinical x-ray CT,” in IEEE
Nuclear Science Symp. Conf. Record (NSS/MIC 2009), pp. 3581–3585,
IEEE (2009).

10. K. Taguchi and J. S. Iwanczyk, “Vision 20/20: single photon counting
x-ray detectors in medical imaging,” Med. Phys. 40(10), 100901
(2013).

11. M. Yaffe, K. Taylor, and H. Johns, “Spectroscopy of diagnostic x-rays
by a Compton-scatter method,” Med. Phys. 3(5), 328–334 (1976).

12. G. Matscheko and R. Ribberfors, “A compton scattering spectrometer
for determining x-ray photon energy spectra,” Phys. Med. Biol. 32(5),
577–594 (1987).

13. S. Gallardo, J. Ródenas, and G. Verdú, “Monte Carlo simulation of the
compton scattering technique applied to characterize diagnostic x-ray
spectra,” Med. Phys. 31(7), 2082–2090 (2004).

14. X. Llovet et al., “Monte Carlo simulation of x-ray spectra generated
by kilo-electron-volt electrons,” J. Appl. Phys. 93(7), 3844–3851
(2003).

15. M. Ay et al., “Monte Carlo simulation of x-ray spectra in diagnostic
radiology and mammography using MCNP4C,” Phys. Med. Biol.
49(21), 4897–4917 (2004).

16. E. Mainegra-Hing and I. Kawrakow, “Efficient x-ray tube simulations,”
Med. Phys. 33(8), 2683–2690 (2006).

17. M. Bazalova and F. Verhaegen, “Monte Carlo simulation of a computed
tomography x-ray tube,” Phys. Med. Biol. 52(19), 5945–5955 (2007).

18. A. Miceli et al., “Comparison of simulated and measured spectra of an
industrial 450kv x-ray tube,” Nucl. Instrum. Methods Phys. Res., Sect. A
580(1), 123–126 (2007).

19. R. Birch and M. Marshall, “Computation of bremsstrahlung x-ray spec-
tra and comparison with spectra measured with a Ge (Li) detector,”
Phys. Med. Biol. 24(3), 505–517 (1979).

20. D. M. Tucker, G. T. Barnes, and D. P. Chakraborty, “Semiempirical
model for generating tungsten target x-ray spectra,” Med. Phys. 18(2),
211–218 (1991).

21. J. M. Boone and J. A. Seibert, “An accurate method for computer-
generating tungsten anode x-ray spectra from 30 to 140 kv,”Med. Phys.
24(11), 1661–1670 (1997).

22. A. Hernandez and J. Boone, “Tungsten anode spectral model using
interpolating cubic splines: unfiltered x-ray spectra from 20 kv to
640 kv,” Med. Phys. 41(4), 042101 (2014).

23. B. R. Archer and L. K. Wagner, “A Laplace transform pair model for
spectral reconstruction,” Med. Phys. 9(6), 844–847 (1982).

Journal of Medical Imaging 023506-11 Apr–Jun 2017 • Vol. 4(2)

Zhao et al.: Segmentation-free x-ray energy spectrum estimation for computed tomography using dual-energy. . .

http://dx.doi.org/10.1088/0031-9155/50/17/005
http://dx.doi.org/10.1109/42.993128
http://dx.doi.org/10.1088/0031-9155/58/12/R63
http://dx.doi.org/10.1088/0031-9155/61/3/1332
http://dx.doi.org/10.1109/TMI.2014.2320284
http://dx.doi.org/10.1109/TMI.2014.2339497
http://dx.doi.org/10.1109/TMI.2014.2373396
http://dx.doi.org/10.1109/NSSMIC.2015.7582159
http://dx.doi.org/10.1109/NSSMIC.2015.7582159
http://dx.doi.org/10.1109/NSSMIC.2009.5401823
http://dx.doi.org/10.1109/NSSMIC.2009.5401823
http://dx.doi.org/10.1118/1.4820371
http://dx.doi.org/10.1118/1.594263
http://dx.doi.org/10.1088/0031-9155/32/5/004
http://dx.doi.org/10.1118/1.1759827
http://dx.doi.org/10.1063/1.1545154
http://dx.doi.org/10.1088/0031-9155/49/21/004
http://dx.doi.org/10.1118/1.2219331
http://dx.doi.org/10.1088/0031-9155/52/19/015
http://dx.doi.org/10.1016/j.nima.2007.05.025
http://dx.doi.org/10.1088/0031-9155/24/3/002
http://dx.doi.org/10.1118/1.596709
http://dx.doi.org/10.1118/1.597953
http://dx.doi.org/10.1118/1.4866216
http://dx.doi.org/10.1118/1.595193


24. U. Hassler, L. Garnero, and P. Rizo, “X-ray dual-energy calibration
based on estimated spectral properties of the experimental system,”
IEEE Trans. Nucl. Sci. 45(3), 1699–1712 (1998).

25. R. G. Waggener et al., “X-ray spectra estimation using attenuation
measurements from 25 kVp to 18 MV,” Med. Phys. 26(7), 1269–1278
(1999).

26. Y. Lin et al., “An angle-dependent estimation of CT x-ray spectrum
from rotational transmission measurements,” Med. Phys. 41(6), 062104
(2014).

27. S. Chang and X. Mou, “A statistical iterative reconstruction framework
for dual energy computed tomography without knowing tube spectrum,”
Proc. SPIE 9967, 99671L (2016).

28. B. Perkhounkov et al., “X-ray spectrum estimation from transmission
measurements by an exponential of a polynomial model,” Proc.
SPIE 9783, 97834W (2016).

29. P. Hammersberg et al., “Measurements of absolute energy spectra for
an industrial micro focal x-ray source under working conditions using
a compton scattering spectrometer,” J. X-Ray Sci. Technol. 8(1),
5–18 (1998).

30. L. Wilkinson, P. Johnston, and J. Heggie, “A comparison of mammog-
raphy spectral measurements with spectra produced using several differ-
ent mathematical models,” Phys. Med. Biol. 46(5), 1575–1589 (2001).

31. K. Maeda, M. Matsumoto, and A. Taniguchi, “Compton-scattering
measurement of diagnostic x-ray spectrum using high-resolution
Schottky CdTe detector,” Med. Phys. 32(6), 1542–1547 (2005).

32. H. Duisterwinkel et al., “Spectra of clinical ct scanners using a portable
compton spectrometer,” Med. Phys. 42(4), 1884–1894 (2015).

33. J. Allison et al., “Geant4 developments and applications,” IEEE Trans.
Nucl. Sci. 53(1), 270–278 (2006).

34. R. Taschereau et al., “A microCT x-ray head model for spectra gener-
ation with Monte Carlo simulations,” Nucl. Instrum. Methods Phys.
Res., Sect. A 569(2), 373–377 (2006).

35. A. Miceli et al., “Monte Carlo simulations of a high-resolution x-ray CT
system for industrial applications,” Nucl. Instrum. Methods Phys. Res.,
Sect. A 583(2), 313–323 (2007).

36. M. Guthoff et al., “Geant4 simulation of a filtered x-ray source for
radiation damage studies,” Nucl. Instrum. Methods Phys. Res., Sect. A
675, 118–122 (2012).

37. L. Zhang et al., “X-ray spectrum estimation from transmission measure-
ments using the expectation maximization method,” in IEEE Nuclear
Science Symp. Conf. Record (NSS 2007), Vol. 4, pp. 3089–3093,
IEEE (2007).

38. X. Duan et al., “CT scanner x-ray spectrum estimation from transmis-
sion measurements,” Med. Phys. 38(2), 993–997 (2011).

39. J.-S. Lee and J.-C. Chen, “A single scatter model for x-ray CT energy
spectrum estimation and polychromatic reconstruction,” IEEE Trans.
Med. Imaging 34(6), 1403–1413 (2015).

40. E. Y. Sidky et al., “A robust method of x-ray source spectrum estimation
from transmission measurements: demonstrated on computer simulated,
scatter-free transmission data,” J. Appl. Phys. 97(12), 124701 (2005).

41. T. Koenig et al., “Imaging properties of small-pixel spectroscopic x-ray
detectors based on cadmium telluride sensors,” Phys. Med. Biol. 57(21),
6743–6759 (2012).

42. W. Zhao et al., “An indirect transmission measurement-based spectrum
estimation method for computed tomography,” Phys. Med. Biol. 60(1),
339–357 (2015).

43. C. Maass, M. Baer, and M. Kachelriess, “Image-based dual energy CT
using optimized precorrection functions: a practical new approach of
material decomposition in image domain,” Med. Phys. 36(8), 3818–
3829 (2009).

44. T. Niu et al., “Iterative image-domain decomposition for dual-energy
CT,” Med. Phys. 41(4), 041901 (2014).

45. P. R. Mendonca, P. Lamb, and D. V. Sahani, “A flexible method for
multi-material decomposition of dual-energy CT images,” IEEE Trans.
Med. Imaging 33(1), 99–116 (2014).

46. P. Stenner, T. Berkus, and M. Kachelriess, “Empirical dual energy
calibration (EDEC) for cone-beam computed tomography,” Med. Phys.
34(9), 3630–3641 (2007).

47. D. Wu et al., “A weighted polynomial based material decomposition
method for spectral x-ray CT imaging,” Phys. Med. Biol. 61(10),
3749–3783 (2016).

48. W. Zhao, Q. Zhang, and T. Niu, “Segmentation-free x-ray energy spec-
trum estimation for computed tomography,” Proc. SPIE 9783, 978339
(2016).

49. J. Siewerdsen et al., “Spektr: a computational tool for x-ray spectral
analysis and imaging system optimization,” Med. Phys. 31(11),
3057–3067 (2004).

50. G. Poludniowski et al., “Spekcalc: a program to calculate photon spectra
from tungsten anode x-ray tubes,” Phys. Med. Biol. 54(19), N433
(2009).

51. G. Hernández and F. Fernández, “A model of tungsten anode x-ray
spectra,” Med. Phys. 43(8), 4655–4664 (2016).

52. J. Punnoose et al., “Technical note: spektr 3.0—a computational tool for
x-ray spectrum modeling and analysis,” Med. Phys. 43(8), 4711–4717
(2016).

53. L. Zhu et al., “Scatter correction for cone-beam CT in radiation therapy,”
Med. Phys. 36(6), 2258–2268 (2009).

Wei Zhao received his PhD in particle physics and nuclear physics
from the Institute of High Energy Physics, Chinese Academy of
Sciences, in 2012. He is currently a research scientist in the Depart-
ment of Radiation Oncology at Stanford University. His research inter-
ests are CT system development and x-ray imaging methods and
devices. He is an NSFC-funded investigator.

Lei Xing received his PhD from Johns Hopkins University in 1992.
He is currently the Jacob Haimson professor of medical physics and
the director of the medical physics division of the Radiation Oncology
Department at Stanford University. His research focuses on inverse
treatment planning, tomographic image reconstruction, CT, optical
and positron emission tomography (PET) imaging instrumentations,
image guided interventions, nanomedicine, and applications of
molecular imaging in radiation oncology. He is an NIH, DOD, NSF,
ACS-funded investigator and is active in numerous professional
organizations. He is a fellow of the AAPM and AIMBE.

Qiude Zhang received his BS and MS degrees in biomedical engi-
neering from Huazhong University of Science and Technology in
2013 and 2016, respectively. His research interest is CT system and
x-ray detector development.

Qingguo Xie received his PhD in control theory and control engineer-
ing from Huazhong University of Science and Technology (HUST) in
2001. He is currently a professor of biomedical engineering at HUST,
where he directs the digital PET Lab. His research interests include
system development and clinical application of PET. He is an NSFC-
funded investigator.

Tianye Niu received his BS degree in modern physics and his PhD in
physical electronics from the University of Science and Technology of
China in 2008. He is currently a professor of biomedical engineering in
the School of Medicine at Zhejiang University. His research interests
include system development and clinical application of CT. He is an
NSFC-funded investigator.

Journal of Medical Imaging 023506-12 Apr–Jun 2017 • Vol. 4(2)

Zhao et al.: Segmentation-free x-ray energy spectrum estimation for computed tomography using dual-energy. . .

http://dx.doi.org/10.1109/23.685292
http://dx.doi.org/10.1118/1.598622
http://dx.doi.org/10.1118/1.4876380
http://dx.doi.org/10.1117/12.2236588
http://dx.doi.org/10.1117/12.2217100
http://dx.doi.org/10.1117/12.2217100
http://dx.doi.org/10.1088/0031-9155/46/5/316
http://dx.doi.org/10.1118/1.1921647
http://dx.doi.org/10.1118/1.4915497
http://dx.doi.org/10.1109/TNS.2006.869826
http://dx.doi.org/10.1109/TNS.2006.869826
http://dx.doi.org/10.1016/j.nima.2006.08.038
http://dx.doi.org/10.1016/j.nima.2006.08.038
http://dx.doi.org/10.1016/j.nima.2007.09.012
http://dx.doi.org/10.1016/j.nima.2007.09.012
http://dx.doi.org/10.1016/j.nima.2012.01.029
http://dx.doi.org/10.1109/NSSMIC.2007.4436783
http://dx.doi.org/10.1109/NSSMIC.2007.4436783
http://dx.doi.org/10.1118/1.3547718
http://dx.doi.org/10.1109/TMI.2015.2395438
http://dx.doi.org/10.1109/TMI.2015.2395438
http://dx.doi.org/10.1063/1.1928312
http://dx.doi.org/10.1088/0031-9155/57/21/6743
http://dx.doi.org/10.1088/0031-9155/60/1/339
http://dx.doi.org/10.1118/1.3157235
http://dx.doi.org/10.1118/1.4866386
http://dx.doi.org/10.1109/TMI.2013.2281719
http://dx.doi.org/10.1109/TMI.2013.2281719
http://dx.doi.org/10.1118/1.2769104
http://dx.doi.org/10.1088/0031-9155/61/10/3749
http://dx.doi.org/10.1117/12.2216196
http://dx.doi.org/10.1118/1.1758350
http://dx.doi.org/10.1088/0031-9155/54/19/N01
http://dx.doi.org/10.1118/1.4955120
http://dx.doi.org/10.1118/1.4955438
http://dx.doi.org/10.1118/1.3130047

