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Abstract

Stable isotope assisted metabolomics (SIAM) uses stable isotope tracers to support studies of 

biochemical mechanisms. We report a suite of data analysis algorithms for automatic analysis of 

SIAM data acquired on a high resolution mass spectrometer. To increase the accuracy of 

isotopologue assignment, metabolites detected in the unlabeled samples were used as reference 

metabolites to generate possible isotopologue candidates for analysis of peaks detected in the 

labeled samples. An iterative linear regression model was developed to deconvolute the 

overlapping isotopic peaks of isotopologues present in a full MS spectrum, where the threshold for 

the weight factor was determined by a simulation study assuming different levels of Gaussian 

white noise contamination. A normalization method enabling isotope ratio-based normalization 

was implemented to study the difference of isotopologue abundance distribution between sample 

groups. The developed method can analyze SIAM data acquired by direct infusion MS and LC-

MS, and can handle metabolite tracers containing different tracer elements. Analysis of SIAM data 
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acquired from mixtures of known compounds showed that the developed algorithms accurately 

identify metabolites and quantify stable isotope enrichment. Application of SIAM data acquired 

from a biological study further demonstrated the effectiveness and accuracy of the developed 

method for analysis of complex samples.

TOC Image

Developed a suite of data analysis algorithms for automatic analysis of SIAM data acquired on a 

high resolution mass spectrometer.

1. Introduction

The metabolome represents all metabolites in a biological sample. These metabolites are 

commonly derived from enzymatic reactions and form a network where the outputs of 

preceding enzymatic reactions provide inputs to others. In metabolite profiling 

metabolomics, the measured concentration of a metabolite is its summed abundance if this 

metabolite is synthesized in more than one pathways (e.g., lactate). The relative contribution 

of those pathways to the synthesis of that metabolite remains ambiguous. Therefore, 

abundance measurements are frequently insufficient for pathway assignment and 

identification of changes in metabolite fate and flux.

Stable isotope assisted metabolomics (SIAM) uses heavy isotope tracers 

(e.g., 13C, 18O, 15N) to identify and discern pathways involved in biochemical processes, by 

measuring the incorporation of heavy atoms into the metabolites produced downstream of 

the tracer(s) 1–3. While SIAM has been applied in metabolomics, relatively few efforts have 

been devoted to developing bioinformatics tools to analyze SIAM data. Creek et al. 

combined multiple software packages to analyze the SIAM data 1, and Huang and 

colleagues developed the software package X13CMS to track isotopic labels 4. Other 

developments include geoRge 5, mzMatch-ISO 6, and MIRACLE 7. However, technical 

challenges persist, especially with respect to automatic and accurate assignment and 

quantification of isotopologue peaks. These features are crucial to deconvolute SIAM data 

properly and to resolve biologically relevant pathway information.

The objective of this work was to develop a comprehensive computational platform for 

analysis of SIAM data acquired by high resolution mass spectrometry (HRMS), in forms of 

direct infusion mass spectrometry (DI-MS) or liquid chromatography mass spectrometry 

(LC-MS). We developed a data reduction and analysis strategy capable of high-throughput, 

simultaneous assignment and quantification of overlapping isotopologue peaks. Several 

graphical user interfaces (GUIs) were further developed for facile integration and 

visualization of experimental data. The developed software package was tested by analyzing 
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two sets of SIAM data acquired by DI-MS and LC-MS. One set of data was acquired from 

mixtures of known compounds, while the other was acquired from two groups of metabolite 

samples extracted from cardiac-derived cells.

2. Experimental Section

2.1 Mixtures of Known Compounds

A mixture of known metabolites was created by the combination of two commercially-

available amino acid mixtures purchased from Cambridge Isotope Laboratories, Inc. 

(Cambridge, MA, USA): a mixture of unlabeled amino acids (Cat. No. ULM-2314-1, 

ALGAL amino acid mixture unlabeled) and a mixture of 13C-labeled amino acids (Cat. No. 

CNLM-452-0.5, ALGAL amino acid mixture (U-13C, 97–99%)). Each of these two 

mixtures contains 16 amino acids, including L-alanine, L-arginine, L-aspartic acid, L-

glutamic acid, L-glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-

phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine and L-valine. After dissolving 

each amino acid mixture into 0.1 M HCl, the combined concentration of 16 amino acids in 

each mixture was 200 μg/mL. The two amino acid mixtures were then mixed in a ratio of 

weight Wlabeled : Wunlabeled = 100 μg/mL : 200 μg/mL and 200 μg/mL : 200 μg/mL, 

respectively. A total of three samples were prepared in parallel for the mixture with a 

specific weight ratio.

2.2 Cell Culture SIAM Experiment

All animal procedures were performed in compliance with the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals and were approved by the University of 

Louisville Institutional Animal Care and Use Committee. Murine cardiac progenitor cells 

were isolated from adult, male C57BL/6J mouse heart cell outgrowth cultures 8. These cells 

were cultured in DMEM/F12 medium containing the following constituents: glutamine (2.5 

mM), glucose (17.5 mM), pyruvic acid (0.5 mM), leukemia inhibitory factor (1000 U/mL), 

basic fibroblast growth factor (20 ng/mL), epidermal growth factor (20 ng/mL), 10% 

embryonic stem cell fetal bovine serum, penicillin/streptomycin (1×), and insulin-

transferrin-selenium (1×). The cells were grown in 6-well plates in DMEM media to ~80% 

confluency and subsequently, replaced with DMEM containing 5 mM [U-13C]-glucose or 

[U-13C5, 15N2]-glutamine. The cells were then harvested after 3 or 18 h. At the time of 

harvest, the medium was collected and all plates were washed 3× with ice-cold PBS. To 

quench cellular metabolism, 0.3 mL of ice-cold acetonitrile was added, followed by addition 

of 0.225 mL nanopure water.

The cells were harvested by scraping using a rubber policeman. This process was repeated 

once more to ensure complete cell harvest. To extract metabolites, a solvent mixture of 

acetonitrile : water : chloroform (v : v : v = 2 : 1.5 : 1) was used to obtain the polar, non-

polar and insoluble proteinaceous fractions. The non-polar (lipid) layer was collected, dried 

under a stream of nitrogen gas, and then reconstituted in 0.1 mL mixture of chloroform : 

methanol (v : v = 2 : 1) containing 1 mM BHT. The polar layer of the extract was dried by 

Speedvac to remove acetonitrile, followed by freeze drying to remove water. The dried 

sample was reconstituted in 100 μL 20% acetonitrile and used for LC-MS analysis.
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For nucleotide analysis, the samples were prepared using a previously published protocol 9, 

with slight modifications. Briefly, lyophilized polar extracts were first reconstituted in 50 μL 

of 5 mM aqueous hexylamine (pH 6.3) with acetic acid (Solvent A). Samples were then 

loaded onto a 100 μL capacity C18 tip (Pierce-Thermo Fisher Scientific, Rockford, IL, 

USA) via four slow aspirations followed by washing twice with 50 μL of Solvent A. The 

metabolites were eluted with two 50 μL portions of 70% Solvent A and 30% 1 mM 

ammonium acetate in 90% methanol, pH 8.5 (Solvent B) by aspirating ten times. For mass 

spectrometry, the resulting eluates were diluted 3× with methanol and analyzed via DI-

FTICR-MS.

2.3 Direct Infusion FTICR-MS Analysis

The direct infusion experiments were performed on an FTICR-MS instrument (LTQ-FT; 

Thermo Electron Corporation, Bremen, Germany) equipped with a chip-based 

nanoelectrospray ionization (nESI) ion source (Triversa NanoMate) (Advion Biosciences, 

Ithaca, NY, US). The TriVersa NanoMate was operated by applying 1.6 kV and 0.7 psi head 

pressure in the negative mode. High mass accuracy data were collected using the FTICR 

analyzer over a mass range from 150 to 850 Da (- mode) for 15 min at the target mass 

resolution of 400,000 at 400 m/z. The LTQ-FT was tuned using the [ATP–H]– peak (m/ztheor 

= 505.988478) and calibrated according to the manufacturer’s default standard 

recommendations, to achieve mass accuracy of typically ≤ 2 ppm. The maximum ion 

accumulation time was set at 1000 ms.

2.4 LC-MS Analysis

All samples were analyzed on a Thermo Q Exactive HF Hybrid Quadrupole-Orbitrap Mass 

Spectrometer coupled with a Thermo DIONEX UltiMate 3000 HPLC system (Thermo 

Fisher Scientific, Inc., Germany). The UltiMate 3000 HPLC system was equipped with a 

reversed phase (RP) column and a hydrophobic interaction liquid chromatography (HILIC) 

column. The RP and HILIC columns were configured in parallel mode. The HILIC column 

was a Thermo Accucore HILIC column (100×3 mm i.d., 2.6 μm, part number: 

17526-103030). The RP column was a Waters ACQUITY UPLC HSS T3 column (150×2.1 

mm i.d., 1.8 μm, part number: 186003540). The temperature of these two columns was set as 

40 °C. The HILIC column was operated as follows: mobile phase A was 10 mM ammonium 

acetate (pH adjusted to 3.25 with acetate) and mobile phase B was acetonitrile. The gradient 

was: 0 min, 100% B; 0 to 5 min, 100% B to 35% B; 5 to 12.7 min, 35% B; 12.7 to 12.8 min, 

35% B to 95% B; 12.8 to 14.3 min, 95% B. The flow rate was set 0.3 mL/min. For the RP 

column, the mobile phase A was water with 0.1% formic acid and mobile phase B was 

100% acetonitrile. The gradient was as follows: 0 min, 0% B; 0 to 5 min, 0% B; 5 to 6.1 

min, 0 to 15% B; 6.1 to 10 min, 15 to 60% B; 10 to 12 min, 60% B; 12 to 14 min, 60% to 

100% B; 14 to 14.1 min, 100% to 5% B; 14.1 to 16 min, 5% B. The flow rate was 0.4 mL/

min.

The electrospray ionization probe was fixed at level C. The parameters for the probe were 

set as follows: sheath gas = 55 arbitrary units, auxiliary gas = 15 arbitrary units, sweep gas = 

3 arbitrary units, spray voltage = 3.5 kV, capillary temperature = 320 °C, S-lens RF level = 

65.0, auxiliary gas heater temperature = 450 °C. The method of mass spectrometer was set 
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as follows: full scan range = 50 to 750 (m/z); resolution = 30,000; maximum injection time 

= 50 ms; automatic gain control (AGC) = 106 ions for both positive and negative modes.

In order to identify the metabolites in samples, MS/MS analysis was performed with the 

unlabeled samples. The LC methods and electrospray ionization conditions were the same as 

those used in analyzing the labeled and unlabeled samples in full MS mode. The method of 

mass spectrometer was set as follows: for full MS scan, scan range = 50 – 750 (m/z), 

resolution = 30,000, maximum injection time = 50 ms, automatic gain control (AGC) = 106 

ions; for dd-MS2 scan, resolution = 15,000, maximum injection time = 100 ms, automatic 

gain control (AGC) = 5×104, loop count = 6, isolation window = 1.3 m/z, dynamic exclusion 

time = 1.2 s, the collision energy was set 10, 20, 40, 60 and 150 eV, respectively.

3. Theoretical Basis

Fig. 1 depicts the experiment design and data analysis workflow of a SIAM project. The 

unlabeled sample group and the labeled sample group are always generated in parallel under 

identical experimental conditions except that the labeled precursor metabolites are applied to 

every sample of the labeled sample groups, while the precursor metabolites without stable 

isotope tracers are applied to the unlabeled samples. The experimental data of unlabeled 

sample groups are used to limit the search space of metabolite candidates for identification 

of isotopologues from the labeled samples. The number of samples in the unlabeled sample 

groups does not need to be as large as that in the labeled sample groups, depending on the 

degree of experimental variation. Details of the data analysis modules are explained in the 

following sections.

3.1 m/z Value Recalibration

To analyze the SIAM data, the experimental data of both labeled and unlabeled samples are 

first deconvoluted and reduced into isotopic peak lists using MetSign software 10–12, by 

setting the minimum time span of a selected ion chromatogram (XIC) as wXIC ≥ 10 scans. 

To minimize the technical variation of the molecular ion m/z values, users can re-calibrate 

the m/z values using one or multiple (two or three) internal standards as reference 

compounds. Given one point calibration, the difference is computed between the theoretical 

m/z value of the reference and the closest experimental m/z value within the m/z variation 

window; all other experimental m/z values are corrected based on this difference. For the 

two and three point calibrations, the linear fitting is applied to the reference m/z values. The 

other m/z values are adjusted to the new m/z values according to the fitted linear function.

3.2 Fractional Mass Filter

Some compounds that are not originally present in the biological samples may be involved 

during sample processing, such as contaminates in the solvents and column bleeding. 

Comparing with metabolites, these compounds usually have different element composition 

and can be recognized by the fractional mass of their molecular weight. Fig. 2 depicts the 

fractional mass of all 45,942 metabolites in the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) 13, LIPID MAPS 14, and the Human Metabolome Database (HMDB) 15. During 

spectrum deconvolution, any ions with fractional mass not falling into the dotted area in Fig. 
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2 are considered from compounds that are not in the biological samples, and the XICs of 

these ions are removed from deconvolution.

3.3 Identification of Metabolites from Unlabeled Samples

After spectrum deconvolution of both the labeled samples and unlabeled samples, the peak 

lists of unlabeled samples are first aligned based on retention time, parent ion m/z values and 

isotopic peak profile 10. If MS/MS spectra are available, the spectrum similarity between an 

experiment MS/MS spectrum X={(x1, m1), (x2, m2), …(xn, mn)} and an MS/MS spectrum 

of compound standard Y={(y1, m1), (y2, m2), …(yn, mn)} is calculated as follows 16:

(1)

where xi and yi are the intensity of the ith fragment ion in the experiment MS/MS spectrum 

X and the spectrum of a compound standard Y, mi is m/z value of the ith fragment ion, 

XWand YW are weighted spectra constructed as follows:  and 

, and a, b are the weight factors for peak intensity and m/z value, 

respectively. The weight factors are set as (a, b) = (0.53, 1.3).

A tier-wise approach is used to assign metabolites to the aligned peaks of unlabeled samples 

based on the information of each compound contained in each database. Three different 

compound databases are used in this study. The in-house database contains chemical 

formula, retention time and MS/MS spectra for each compound standard. The Compound 

Discoverer (Thermo Fisher Scientific, Inc., Germany) contains chemical formula and 

MS/MS spectra for each compound. The KEGG, HMDB and LIPID MAPS only contain the 

chemical formula of each compound. Therefore, every aligned peak of the unlabeled 

samples is first matched to the compound standards in the in-house database based on the 

similarity of retention time, parent ion m/z value, isotopic peak profile and MS/MS spectra. 

Any peaks that do not have a match in the in-house database are then subjected to 

Compound Discoverer for parent ion m/z values and MS/MS spectrum matching. The rest of 

peaks are matched to the compounds in KEGG and HMDB databases by parent ion m/z 

values and isotopic peak profile matching.

In this study, the parameters used for metabolite identification are as follows: retention time 

variation ≤ 0.1 min, parent ion m/z variation ≤ 3 ppm, Pearson correlation coefficient of the 

similarity of isotopic peak profile ≥ 0.6, and the threshold of spectrum similarity SWC ≥ 0.6.

3.4 Initial Isotopologue Assignment

The metabolites assigned to the unlabeled samples are then used as reference metabolites to 

generate possible candidate stable isotope labeled isotopologues. The users can select a 

combination of up to five types of tracers (i.e., 2H, 13C, 15N, 18O and 34S). For example, 

given an unlabeled metabolite adenosine triphosphate (ATP, chemical formula 

C10H16N5O13P3), a total of 33 isotopologues will be generated for this metabolite if the 

users set a maximum number of stable isotope 13C to eight and 15N to three. After creating 
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all possible isotopologues, each isotopic peak in the peak lists of the labeled samples is 

assigned to these isotopologues based on similarity of parent ion m/z value, retention time 

and isotopic peak profile. A correlation score between the experimental isotopic peak profile 

and the theoretical isotopic peak profile is calculated using Pearson’s correlation for each 

assignment to assess the confidence of each isotopologue assignment 10. It should be noted 

that this approach of isotopologue assignment does not require that the unlabeled 

isotopologue presents in the peak list of a labeled sample.

3.5 Overlapping Isotopic Peak Deconvolution

After the initial isotopologue assignment, the isotopologues of the same metabolite are 

consolidated together. The theoretical isotopic peak profile of each isotopologue is 

calculated using its chemical formula by setting the abundance of the monoisotopic peak M0 

to 1.0000, and an iterative linear regression model is used to fit the theoretical isotopic peak 

profiles to the experiment data, i.e., the cluster of overlapping isotopic peaks.

Assuming an experimental isotopic peak cluster contains n isotopic peaks Y={(m/z1, y1), 

(m/z2, y2), …, (m/zn, yn)} and m isotopologues of the sample metabolite are assigned to 

these isotopic peaks, the linear regression model without an intercept is defined as follows:

(2)

(3)

where xij is the theoretical abundance of the jth isotopologue contributed to the ith isotopic 

peak (i=1,…, n and j=1,…, m)), wj is the weight factor of the jth isotopologue,  is fitted 

peak abundance of the ith isotopic peak and yi is the experimental intensity of the ith 

isotopic peak in the cluster. The peak abundances of the isotopologues assigned to this 

isotopic peak cluster W={w1,…,wm } are determined by minimizing the fitting error using 

equation (3).

To reduce the rate of false-positive isotopologue assignment and increase the accuracy of 

spectrum deconvolution, a threshold of weight factor is set during regression. The fitting 

function is then optimized via iterative linear regression. During each iteration, any initially 

assigned isotopologues with weight factors smaller than a user defined non-negative 

threshold wmin are considered as false assignment and are removed from the linear 

combination model. The remaining isotopologues are then used to further fit the 

experimental data. This iteration process is repeated until all weight factors have values no 

less than the user defined threshold wmin .

3.6 Determining the Minimum Weight Factor wmin

Owing to experimental variation and the variation introduced during spectrum 

deconvolution, some isotopologues can be assigned to experiment peaks by error. These 
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isotopologues typically have small weight factor values. To minimize the chance of false 

isotopologue assignment and increase the accuracy of spectrum deconvolution, the threshold 

of weight factor wmin is determined by a simulation study described below.

Metabolites recorded in KEGG, LIPID MAPS and HMDB were used for the simulation 

study. For each metabolite, all isotopic peaks (m/z value and associated abundance) were 

calculated from its chemical formula, by setting the abundance of the monoisotopic peak M0 

to 1.0000 and the minimum abundance of other isotopic peaks not less than 10−5. A training 

mass spectrum was then formed using the calculated information of this metabolite, where 

the x-axis is the m/z value of each isotopic peak and the y-axis is its calculated relative 

abundance. We then added variation to the abundances of all isotopic peaks of this training 

spectrum by introducing different levels of Gaussian white noise contamination. To add the 

noise, we implemented two different types of noise, additive noise and multiplicative noise. 

The mathematical equations are shown as follows:

Additive noise:

(4)

where X is the original intensity, eWGN is the white Gaussian noise, Yadd is the output 

intensity with additive noise; and

Multiplicative noise:

(5)

(6)

where log e is the white Gaussian noise which is added to log X, Ymul is the output 

intensity with multiplicative noise.

Assuming the simulated abundances of isotopic peaks in the training spectrum was 

generated by the unlabeled metabolite and all possibly labeled isotopologues of the same 

metabolite, the weight factor of each isotopologue, wj, was determined using the iterative 

linear regression model as described in equations (2) and (3), by setting wmin= 0. Because 

the training spectrum was constructed using the unlabeled metabolite only, any labeled 

isotopologues with non-zero values of weight factor are false-positive. The maximum of 

such weight factors was then considered as the simulated threshold of weight factor in 

equation (2).

3.7 Peak List Alignment and Normalization

After the initial isotopologue assignment and spectrum deconvolution, an isotopologue peak 

list is generated for each labeled sample. To recognize the abundance alteration of each 

isotopologue between sample groups, it is necessary to align the isotopologue peak lists of 
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all labeled samples together, i.e., to recognize the same type isotopologue from different 

labeled samples. All isotopologues detected in the labeled samples are aligned by their 

retention time and m/z values, where all retention time values are converted to z-score and 

then aligned using a two-step approach as described in our previous work 11.

To make the metabolite abundances between samples comparable, an isotope-ratio based 

normalization method was developed to study differences in isotopologue abundance 

distribution between sample groups as follows:

(7)

where yi1, yi2, …, yip are the peak abundances of the isotopologues derived from the ith 

metabolite, and  is the normalized abundance of the jth isotopologue.

After normalization, the conventional statistical significance tests such as two-tailed 

pairwise t-test with sample permutation or false discovery control (FDR), or partial least 

square discriminant analysis (PLS-DA), can be used to recognize significant differences 

between sample groups 11,17.

4. Results and Discussion

A significant feature of SIAM data is that one metabolite in an unlabeled sample is 

represented by multiple isotopologues in a corresponding labeled sample. This is due to the 

incorporation of different numbers of tracer atoms into the metabolite through different 

biosynthetic pathways. In order to identify the isotopologues from experimental data, one 

can directly use all known metabolites recorded in public databases such as KEGG, HMDB 

and LIPID MAPS to generate all possible isotopologue candidates for each metabolite, and 

then match the experimental data to each of those isotopologue candidates. Such an 

approach uses an extremely large search space and results in a high probability of false-

positive isotopologue assignments. One method to reduce the rate of false assignment is to 

assume that the unlabeled isotopologue of each metabolite can be detected in the labeled 

sample. That is, the monoisotopic peak M0 of an unlabeled metabolite always presents in the 

cluster of isotopic peaks (generated by the isotopologues of this metabolite) in the labeled 

samples. However, this is not always valid for two reasons. First, a metabolite in the labeled 

samples could be fully labeled during biosynthesis, so that the unlabeled isotopologue does 

not present in the mass spectra of the labeled samples. Second, the abundance of a 

metabolite in an unlabeled sample is distributed among multiple isotopologues in a 

corresponding labeled sample. A low abundance metabolite detected in the unlabeled sample 

may not be detected in the labeled samples (as the unlabeled isotopologue) because its 

abundance may be less than the lower limit of detection (LOD) of the mass spectrometer.

To resolve these problems, the unlabeled samples are needed for the corresponding labeled 

samples. The metabolites assigned to each unlabeled sample can be aligned to obtain 

consensus of the initial metabolite assignment. After aligning assigned metabolites in the 
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unlabeled samples, the metabolites with high confidence can be used as reference 

metabolites to generate all possible isotopologue candidates, which are then used as the 

search space for the isotopologues present in the labeled samples (left panel of Fig. 1(B)).

While high resolution mass spectrometry is able to resolve the isotopic peaks generated by 

the same metabolite, the isotopic peaks of isotopologues overlap with each other in m/z 

domain in SIAM data. For this reason, isotopic peaks (M0, M1, M2, …) generated by an 

unlabeled metabolite can always be assigned to a series of its labeled isotopologues based on 

m/z matching. These initially assigned isotopologues contain a high rate of false assignment, 

and reduce the accuracy of spectrum deconvolution. To minimize the rate of false 

isotopologue assignment, we developed an iterative linear regression model to fit the 

experimental isotopic peaks to the theoretical isotopic peak profiles. These profiles were 

calculated using the chemical formula of initially assigned isotopologues, where a threshold 

of weight factor was estimated from a simulation study. After the initial isotopologue 

assignment, all isotopic peak lists obtained from the labeled samples were aligned and 

normalized for downstream statistical analyses, including statistical significance tests for 

isotopologue quantification, pattern recognition, association network analysis and pathway 

analysis (right panel of Fig. 1(B)). All data analysis algorithms were implemented using a 

modular design.

4.1 Determining Minimum Weight Factor

To determine the threshold of weight factor wmin, we investigated the effects of noise level, 

noise type and tracer atoms on spectrum deconvolution by a simulation study. It has been 

reported that peak intensities in mass spectra are a combination of true signal and several 

categories of noise, which are generally either additive or multiplicative in nature 18,19. We 

first filtered out metabolites recorded in the KEGG, LIPID MAPS and HMDB databases that 

contain elements other than C, H, O, P, S, N and Se, resulting in 27,580 metabolites left for 

simulation study. After computing an isotopic peak profile for each metabolite, 2%, 5%, 7% 

and 10% of Gaussian white noise was added to the abundance of all peaks in an isotopic 

peak profile, respectively. By doing so, each metabolite then has a simulated mass spectrum 

isotopic peak cluster with a known level of Gaussian white noise at peak intensities. We then 

assumed that each simulated mass spectrum was acquired from a SIAM experiment, i.e., 

each simulated mass spectrum may contain isotopic peaks generated by labeled 

isotopologues of the metabolite. We further generated all possible isotopologues for each 

metabolite assuming that each metabolite was labeled by 2H, 13C, 15N, 18O, 34S, 

and 13C-15N, respectively. A linear regression was performed on each simulated mass 

spectrum as described in Equation (2) and (3) by setting the threshold of weight factor 

wmin=0.

To evaluate the performance, the simulation was performed three times under each 

condition. By design, any labeled isotopologues with non-zero weight factors are false 

assignments. A larger fitted weight factor means that the factor of interest (type of noise, 

level of noise, or tracer atom) has a significant effect on the accuracy of spectrum 

deconvolution. Fig. S1 (A) and S1 (C) depict the distribution of simulated maximum weight 

factors of 13C-labeled isotopologues along with their corresponding m/z values with 7% 
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additive noise and multiplicative noise on the abundance of isotopic peaks, respectively. The 

correlation coefficient between the m/z value and weight factor in Fig. S1 (A) is 0.0095, 

while the correlation coefficient is 0.18 in Fig. S1 (C). Such small correlation coefficients 

demonstrate that the simulated maximum weight factors do not correlate with m/z values of 

isotopologues. Similar results were also observed for other tracer atoms at different levels of 

additive and multiplicative noise (data not shown). Therefore, a single value of weight factor 

threshold can be applied to all isotopologues regardless of their m/z values.

Fig. 3 depicts the maximum weight factors of the simulation results at different simulation 

conditions. The numeric numbers and corresponding standard deviations of the simulation 

results are listed in Supplementary Table S1. The multiplicative noise affects more than the 

additive noise when the noise level is less than 5%, while this difference is diminished when 

the noise level is increased to > 5%. The type of tracer atom has a relatively small effect on 

the maximum of simulated weight factors. While the low level of noise does not affect the 

maximum weight factors, a level of noise larger than 5% dramatically increases the 

maximum weight factor, regardless of the type of noise. For example, the average of three 

weight factors for 2H with 2% additive noise is 2.6×10−14, but increased to 8.8×10−6 at 7% 

additive noise level (Table S1). Because noise levels in MS data are LC-MS platform-

dependent, it appears necessary to assess the noise level by analyzing a set of metabolite 

standards to determine the threshold of weight factor before analysis of complex samples.

4.2 Analysis of Mixture of Known Compounds

16 13C-labeled amino acids and 16 unlabeled amino acids were mixed at two different 

weight ratios (0.5:1 and 1:1), and three samples were prepared in parallel for each mixture. 

Thus, two sample groups were formed with three samples in each sample group. All six 

samples were analyzed by DI-FTICR-MS.

Table S2 lists the analysis results, where two tailed pairwise t-test with sample permutation 

was used for statistical significance test. The amino acids L-isoleucine and L-leucine are 

isomers. DI-FTICR-MS cannot differentiate these two metabolites based on their parent ion 

m/z values; therefore, these two metabolites overlapped each other. L-Serine was excluded 

from further analysis because it can be reliably detected in only one sample due to the very 

small peak abundance. All 15 13C-labeled amino acids were correctly recognized as the 

metabolites with significant abundance alterations between two sample groups, with p-

values ranging from 2.5×10−3 to 5.1×10−2. While the ideal fold-change is 0.5, L-proline and 

L-threonine have fold-changes of 0.28 and 0.2, respectively. Fig. S2 depicts that the fold-

change and peak abundance have a strong correlation with a correlation coefficient of 0.86 

(p < 0.0001). Large fold-change variations of L-proline and L-threonine were mainly 

induced by their low peak abundance. Such results demonstrate that the developed method 

can correctly identify and quantify metabolites from mixtures of metabolite standards.

4.3 Analysis of DI-FTICR-MS data of biological samples

To illustrate the applicability of the developed algorithms in the analysis of complex 

samples, we obtained DI-FTICR-MS metabolomics data from the cardiac-derived murine 

cells cultured in 5 mM [U-13C]-glucose. Over 200 metabolites were detected and assigned 
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per sample based on parent ion m/z value and isotopic peak profile, each comprising 

multiple isotopologues.

After isotopologue peak assignment, iterative linear regression was performed to 

deconvolute the isotopic peak cluster of the isotopologues from the same metabolite and the 

peak intensities were modified to reflect true isotopic enrichment. It is worth noting, that this 

process is performed simultaneously and can be applied to data containing any number of 

isotopic tracers (for example, tracers containing a combination of 13C, 15N, 2H, and 18O can 

be used). Table S3 shows the original percent distribution of isotopic peaks of 9 nucleotides/

nucleotide sugars and the percent distributions of 13C-labeled isotopologues after spectrum 

deconvolution. Clear differences can be observed for all listed metabolites with many values 

reduced to zero. In the context of biological data interpretation, the higher the abundance of 

a particular isotopologue, the higher the utilization of a pathway of interest. Conversely, the 

lack of a certain type of isotopologue provides direct evidence that the tracer was not 

metabolized through corresponding pathways.

Once the abundances of all isotopologues were obtained for multiple samples, isotope-ratio 

based normalization was performed to reduce the concentration effect and experimental 

variance, which permits better illustration of isotopic fractional enrichment. Fig. 4(A) shows 

the histogram of isotopologues of UDPHexNAc. A total of seventeen isotopologues were 

detected for this compound. Using isotope-ratio based normalization, it was recognized that 

zero, six, eight, eleven, and thirteen 13C-UDPHexNAc had significant change in its 

abundance level between the Genotype 1 group and Genotype 2 group with fold changes of 

2.33 (p = 0.02), 1.84 (p = 0.01), 1.44 (p = 0.02), 0.71 (p = 0.02), and 0.74 (p = 0.03), 

respectively. Fig. 4(B) is another example showing the histogram of isotopologues of ADP. 

A total of ten isotopologues were detected for this compound. And it was recognized that 

five, seven, eight, and nine 13C-ADP had significant change in its abundance level between 

the Genotype 1 group and Genotype 2 group with fold changes of 1.22 (p = 0.02), 0.21 (p = 

0.001), 0.06 (p = 0.01), and 0.09 (p = 0.04), respectively. Details of the biological discovery 

of this study have been discussed in part in a separate report 3.

4.4 Analysis of LC-MS data of biological samples

To further demonstrate the capability of the developed method in analyzing LC-MS data, the 

polar metabolites of the labeled and unlabeled samples were analyzed by 2DLC-MS, where 

the RP and HILIC columns were configured in parallel. Fig. S3 shows the TICs of two 

samples randomly selected from the unlabeled and labeled samples. The high similarity of 

the two original TICs (Figs. S3 (A) and S3 (C)) demonstrates that incorporating 13C atoms 

into metabolites did not introduce retention time shift between the labeled and unlabeled 

samples, and the 2DLC-MS system was very stable during data acquisition. However, the 

difference can be observed from the two TICs (Figs. S3 (B) and S3 (D)) that were 

reconstructed after spectrum deconvolution. This difference was introduced by incorporation 

of 13C atoms into metabolites.

The purpose of using fractional mass filtering during spectrum deconvolution is to detect 

and remove the non-metabolite peaks. 6443 XICs were constructed from the unlabeled 

Wei et al. Page 12

Anal Methods. Author manuscript; available in PMC 2018 April 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample, while 6670 XICs from the labeled sample. Using the fractional mass filter, 109 

XICs were removed from the unlabeled sample and 103 XICs from the labeled sample.

After fractional mass filtering, a total of 9,917 peaks were picked from the unlabeled sample 

and 10,422 peaks from the labeled sample. By using retention time, parent ion m/z value and 

MS/MS spectrum matching, 134 compounds were identified from the unlabeled sample. 

Using these compounds as reference compounds, a total of 753 possible isotopologues were 

generated and 378 of these isotopologues were assigned to the peaks detected in the labeled 

sample.

Fig. 5(A) depicts the mass spectrum of L-glutamic acid detected in a 13C-labeled sample 

(top) and an unlabeled (bottom) sample. After isotopologue peak deconvolution, six 

isotopologues of L-glutamic acid were detected from these labeled sample, including 

zero 13C-, one 13C-, two 13C-, three 13C-, four 13C- and five 13C-glutamic acid. Fig. 5(B) 

shows the isotopologues distribution of L-alanine eluted at retention time 4.75 min from the 

RP column. A total of two isotopologues were detected for this compound. Using isotope-

ratio based normalization, it was recognized that three 13C-alanine had significant change in 

its abundance level between the Genotype 1 group and Genotype 2 group with a fold-change 

of 0.26 (p = 0.02). Fig. S4 is another example, showing the histogram of isotopologues of L-

glutathione (reduced). While five isotopologues were quantified for this metabolite, none of 

the isotopologues were recognized with significant abundance changes. These analysis 

results demonstrate that the developed algorithms are also able to process SIAM data of 

biological samples analyzed by LC-MS.

5. Conclusions

We developed a suite of algorithms for automatic analysis of stable isotope assisted 

metabolomics (SIAM) data acquired on a high resolution mass spectrometer. To reduce the 

rate of false positive isotopologue assignment, metabolites detected in the unlabeled samples 

were used as the reference metabolites to generate possible isotopologue candidates for 

assigning an isotopologue to peaks detected in the labeled samples. In this approach, the 

isotopologue assignment does not require that the unlabeled isotopologue presents in the 

peak list of a labeled sample.

To increase the accuracy of deconvoluting the overlapping isotopologue peaks, an iterative 

linear regression model was also developed, where the threshold of weight factor was 

determined by a simulation study assuming different levels of Gaussian white noise 

contamination. Our study show that the threshold of weight factor depends on the degree of 

noise level, and there is no significant difference between the effects of additive noise and 

those of multiplicative noise. To investigate the difference of isotopologue distribution 

between sample groups, an isotope-ratio based normalization was also developed. These 

data analysis methods were integrated into a computational package using a modular design.

The developed software package can be applied to data containing any number of isotopic 

tracers, such as tracers containing a combination of 13C, 15N, 2H, and 18O. The performance 

of the algorithms was tested by analyzing two sets of SIAM data acquired by DI-MS and 
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LC-MS. The analysis of the DI-MS data acquired from mixtures of known compounds 

shows that all of the known compounds were correctly identified and quantified. Analysis of 

DI-MS and LC-MS data acquired from the two groups of metabolite samples extracted from 

cardiac-derived cells further demonstrated that the developed algorithms can be used to 

SIAM data acquired from complex samples.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Experimental design and data analysis workflow of a SIAM project. (A) General 

experimental design of a SIAM study. A total of four sample groups are usually created. The 

unlabeled sample groups are mainly used to limit the metabolite candidates for identification 

of isotopologues from the labeled samples. (B) Workflow for analyzing SIAM data. 

Metabolites assigned for the unlabeled samples are used as the reference library to assign 

isotopologues in the labeled samples. Assigned isotopologues are then used to assess their 

abundance alteration between sample groups, pattern recognition, and pathway analysis.
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Fig. 2. 
Fractional mass filter. The dotted lines are the boundary of the metabolite fractional mass 

that covers metabolites from the HMDB, KEGG, LIPID MAPS and our in-house database. 

The solid lines are the boundary created from the dotted lines using a user defined mass 

variation, e.g. 2 ppm. The ‘forbidden zone’ the region encompassed by solid lines and axes. 

The compounds in the ellipse area contain element As, and the compounds in the rectangle 

area contain element Br. (A) is the fractional mass filter generated for data acquired in 

positive mode and (B) is for data acquired in negative mode.
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Fig. 3. 
Effects of noise type, noise level and tracer atoms on weight factor.
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Fig. 4. 
Sample isotopologue abundance distributions. Each plot shows the abundance distribution of 

all isotopologues of the same metabolite in two sample groups. (A) UDPHexNAc, and (B) 

ADP.
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Fig. 5. 
Sample mass spectra and abundance distributions selected from the results of analyzing LC-

MS data. (A) Sample mass spectra of 13C-labeled (top) and unlabeled (bottom) mass spectra 

of L-glutamic acid. (B) Histogram of each isotopologue grouped by sample groups of L-

alanine.
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